On a C(K) space with few operators

Miguel Martín

http://www.ugr.es/local/mmartins

Work in progress with Piotr Koszmider and Javier Merí

July 25th, 2007 - Castellón

Notatio ●O	on, objective, outline	Motivation	The examples	Consequences 000	Open Problems O	
Not	tation and ol	ojective				
	Basic notatio	n				
	X real Banac	h space.				
• S_X unit sphere, B_X unit ball,						
	 X[*] dual 	space, $L(X)$ bounded	l linear operators			
	• $T^* \in L(X)$	X*) adjoint operator of	$T \in L(X).$			
	Main Objectiv	/e				
	We show that there exists a real Banach space X such that					
		$\ \mathrm{Id} + T^2\ = 1 + \ T$	² (for ev	very $T \in L(X)$		

For topologists...

Actually, we may take as X any C(K) space, K perfect compact space such that

 $T^* = g \operatorname{Id} + S$ (g Borel function, S weakly compact).

for every $T \in L(X)$

(existence of such K's proved by Koszmider in 2004).

Notation, objective, outline	Motivation	The examples OO	Consequences	Open Problems O
Outline				

Motivation

- The Daugavet property
- Daugavet-type inequalities
- Norm equalities for operators

2 The examples

3 Consequences

Open Problems

Notation, objective, outline	Motivation	The examples	Consequences	Open Problems

Motivation

Notation, objective, outline	Motivation •••••	The examples	Consequences 000	Open Problems O	
The Daugavet equation					
What Daugavet	did in 1963				
The norm equa	lity				

$$\|\mathrm{Id} + T\| = 1 + \|T\|$$

holds for every compact T on C[0, 1].

The Daugavet equation

X Banach space, $T \in L(X)$, ||Id + T|| = 1 + ||T||

Classical examples

(DE).

Notation, objective, outline	Motivation OOOOOOO	The examples	Consequences 000	Open Problems O
The Daugavet property				

The Daugavet property (Kadets-Shvidkoy-Sirotkin-Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet property. Then

- Every weakly compact operator on *X* satisfies (DE).
- X contains ℓ_1 .
- X does not embed into a Banach spaces with unconditional basis.
- Geometric characterization: X has the Daugavet property iff for each x ∈ S_X

$$\overline{\operatorname{co}}\left(B_X\setminus (x+(2-\varepsilon)B_X)\right)=B_X.$$

(Kadets-Shvidkoy-Sirotkin-Werner, 1997 & 2000)

Notation, objective, outline Motivation The examples Consequences Open Problems

For C(K) spaces

K compact space, C(K) has the Daugavet property if and only if K is perfect.

A related result

For every compact space *K* and every $T \in L(C(K))$,

||Id + T|| = 1 + ||T|| or ||Id - T|| = 1 + ||T||.

More examples

The following spaces have the Daugavet property.

• Wojtaszczyk, 1992:

The disk algebra \mathbb{A} and H^{∞} .

• Oikhberg, 2005:

Non-atomic C^* -algebras and preduals of non-atomic von Neumann algebras.

• Ivankhno, Kadets, Werner, 2007:

Lip(K) when $K \subseteq \mathbb{R}^n$ is compact and convex.

Notation, objective, outline	Motivation	The examples	Consequences 000	Open Problems O
Daugavet-type inequalities				

Some examples

• Benyamini-Lin, 1985:

For every $1 , <math>p \neq 2$, there exists $\psi_p : (0, \infty) \longrightarrow (0, \infty)$ such that

 $\|\mathrm{Id} + T\| \ge 1 + \psi_p(\|T\|)$

for every compact operator T on $L_p[0, 1]$.

• If p = 2, then there is a non-null compact T on $L_2[0, 1]$ such that

 $\|Id + T\| = 1.$

• Boyko-Kadets, 2004:

If ψ_p is the best possible function above, then

$$\lim_{p\to 1^+}\psi_p(t)=t\qquad (t>0).$$

• Oikhberg, 2005: If $K(\ell_2) \subseteq X \subseteq L(\ell_2)$, then

$$\| \text{Id} + T \| \ge 1 + \frac{1}{8\sqrt{2}} \| T \|$$

for every compact T on X.

Notation, objective, outline	Motivation ○○○○●○○○	The examples	Consequences	Open Problems O
Norm equalities for	or operators			
V. Kadets, Norm equa	M. Martín, J. Merí, alities for operators).		

Indiana U. Math. J. (to appear).

Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces ?

Concretely

We looked for non-trivial norm equalities of the forms

```
||g(T)|| = f(||T||) or ||Id + g(T)|| = f(||g(T)||)
```

(g analytic, f arbitrary) in such a way that all rank-one operators on a Banach space X satisfy.

Solution

We proved that there are not to many possibilities...

Notation, objective, outline	Motivation	The examples	Consequences	Open Problems	
	00000000				
Norm equalities for operators: Occlusive results					

Theorem

X real or complex with $dim(X) \ge 2$. Suppose that the norm equality

||g(T)|| = f(||T||)

holds for every rank-one operator $T \in L(X)$, where

- $g: \mathbb{K} \longrightarrow \mathbb{K}$ is analytic,
- $f : \mathbb{R}_0^+ \longrightarrow \mathbb{R}$ is arbitrary.

Then, there are $a, b \in \mathbb{K}$ such that

$$g(\zeta) = a + b \zeta$$
 $(\zeta \in \mathbb{K}).$

Corollary

Only three norm equalities of the form

||g(T)|| = f(||T||)

are possible:

• b = 0: ||a Id|| = |a|,

•
$$a = 0$$
: $||b T|| = |b| ||T||$,

(trivial cases)

•
$$a \neq 0, b \neq 0$$
:
||a Id + b T|| = |a| + |b| ||T||,

(Daugavet property)

Norm equalities for operators: Occlusive results II					
00	00000000	00	000		
Notation, objective, outline	Motivation	The examples	Consequences	Open Problems	

Theorem

X complex with $\dim(X) \ge 2$. Suppose that the norm equality

 $\|\mathrm{Id} + g(T)\| = f(\|g(T)\|)$

holds for every rank-one operator $T \in L(X)$, where

- $g: \mathbb{K} \longrightarrow \mathbb{K}$ is analytic with g(0) = 0,
- $f : \mathbb{R}_0^+ \longrightarrow \mathbb{R}$ is continuous.

Then, X has the Daugavet property

Remarks

- We do not know if the result is true in the real case.
- It is true if g is onto.
- Even the simplest case, $g(t) = t^2$, is not known. The only known thing is that, in this case, f(t) = 1 + t, leading to the equation

$$\|\mathrm{Id} + T^2\| = 1 + \|T^2\|$$

Notation, objective, outline	Motivation	The examples	Consequences	Open Problems O
The question				

Godefroy, private communication

Is there any real Banach space X (with dim(X) > 1) such that

 $\|\mathrm{Id} + T^2\| = 1 + \|T^2\|$

for every operator $T \in L(X)$?

Definition

We will call \star the property defined above.

Notation, objective, outline	Motivation	The examples	Consequences	Open Problems

The examples

Notation 00		Motivation	The examples	Consequences 000	Open Problems O	
The	examples					
	Weak multiplier					
	Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if					
	$\mathcal{T}^* = g \operatorname{Id} + S$					
	where g is a Borel function and S is weakly compact.					
ļ	Our main result					
	If K is perfect an	d all operators on	C(K) are weak m	nultipliers, then $C(K)$) has ★.	

Theorem (Koszmider, 2004; Plebanek, 2004)

There exist perfect compact spaces K such that all operators on C(K) are weak multipliers. There are examples of two kinds:

- *K* connected where every operator in L(C(K)) is of the form $g \operatorname{Id} + S$ for $g \in C(K)$ and *S* weakly compact.
- K totally disconnected and perfect.

In particular, there are nonisomorphic C(K) spaces with \star .

Notation, objective, outline	Motivation 00000000	The examples	Consequenc	es Open Problems O
Proving a simple	case			
Hypothesis				
Every $T \in L(C(K))$	is of the form gId - S weakly compact	$+$ S, with $g \in C(K)$),	Ve need $ Id + T^2 = 1 + T^2 $

- If T = gId + S, then $T^2 = g^2Id + S'$ with S' weakly compact.
- We will prove that $\|\operatorname{Id} + g^2 \operatorname{Id} + S\| = 1 + \|g^2 \operatorname{Id} + S\|$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $||g^2|| \leq 1$ and min $g^2(K) > 0$.
- Step 2: We can avoid the assuption that $\min g^2(K) > 0$.
- Step 3: Finally, for every g the above gives

$$\left\| \mathrm{Id} + \frac{1}{\|g^2\|} \left(g^2 \, \mathrm{Id} + S \right) \right\| = 1 + \frac{1}{\|g^2\|} \|g^2 \, \mathrm{Id} + S\|$$

which gives us the result.

Notation, objective, outline	Motivation	The examples	Consequences	Open Problems

Consequences

Miguel Martín (Granada) On a C(K) space with few operators — SUMTOP 2007, July 2007

Notation, objective, outline	Motivation 0000000	The examples OO	Consequences	Open Problems O
Consequences I: firs	t results			

Proposition

If X has \star , then

- X does not have the RNP.
- X does not have unconditional basis.

For C(K) spaces

This said not too much about C(K)...

Notation, objective, outline	Motivation	The examples OO	Consequences ○●○	Open Problems O
Consequences II: isometries				

Theorem

If X has \star , then every surjective isometry J on X satisfies $J^2 = \text{Id.}$

For C(K) spaces

If all operators on a C(K) space are weak multipliers, then every homeomorphism φ of K satisfies $\varphi^2 = id$.

Notation, objective, outline	Motivation 00000000	The examples	Consequences	Open Problems O	

Consequences III: complex structure

Theorem

X having \star , Y finite-codimensional subspace of X. Then

- Y does not have any complex structure.
- In particular, Y is not isomorphic to $Z \oplus Z$ for any Z.

Notation, objective, outline	Motivation 00000000	The examples	Consequences 000	Open Problems
Open Problems				

Question 1

Find topological characterization of the compact Hausdorff spaces K such that C(K) has \star .

Question 2

Find other Banach spaces having *.

Question 3

Characterize isometrically and/or isomorphically the property *.