# On a $C(K)$ space with few operators 

## Miguel Martín

http://www.ugr.es/local/mmartins

Work in progress with Piotr Koszmider and Javier Merí


July 25th, 2007 - Castellón

## Notation and objective

## Basic notation

$X$ real Banach space.

- $S_{X}$ unit sphere, $B_{X}$ unit ball,
- $X^{*}$ dual space, $L(X)$ bounded linear operators
- $T^{*} \in L\left(X^{*}\right)$ adjoint operator of $T \in L(X)$.


## Main Objective

We show that there exists a real Banach space $X$ such that

$$
\left\|I d+T^{2}\right\|=1+\left\|T^{2}\right\| \quad(\text { for every } T \in L(X))
$$

For topologists. . .
Actually, we may take as $X$ any $C(K)$ space, $K$ perfect compact space such that

$$
T^{*}=g \mathrm{Id}+S \quad(g \text { Borel function, } S \text { weakly compact }) .
$$

for every $T \in L(X)$
(existence of such K's proved by Koszmider in 2004).

## Outline

(1) Motivation

- The Daugavet property
- Daugavet-type inequalities
- Norm equalities for operators
(2) The examples
(3) Consequences

4 Open Problems

## Motivation

## The Daugavet equation

## What Daugavet did in 1963

The norm equality

$$
\|\mathrm{Id}+T\|=1+\|T\|
$$

holds for every compact $T$ on $C[0,1]$.

## The Daugavet equation

$X$ Banach space, $T \in L(X), \|$ Id $+T\|=1+\| T \|$

## Classical examples

(1) Daugavet, 1963:

Every compact operator on $C[0,1]$ satisfies (DE).
(2) Lozanoskii, 1966:

Every compact operator on $L_{1}[0,1]$ satisfies (DE).
(3) Abramovich, Holub, and more, 80's:
$X=C(K), K$ perfect compact space
or $X=L_{1}(\mu), \mu$ atomless measure
$\Longrightarrow$ every weakly compact $T \in L(X)$ satisfies (DE).

## The Daugavet property

## The Daugavet property (Kadets-Shvidkoy-Sirotkin-Werner, 1997)

A Banach space $X$ is said to have the Daugavet property iff every rank-one operator on $X$ satisfies (DE).

## Some results

Let $X$ be a Banach space with the Daugavet property. Then

- Every weakly compact operator on $X$ satisfies (DE).
- $X$ contains $\ell_{1}$.
- $X$ does not embed into a Banach spaces with unconditional basis.
- Geometric characterization: $X$ has the Daugavet property iff for each $x \in S_{X}$

$$
\overline{\mathrm{co}}\left(B_{X} \backslash\left(x+(2-\varepsilon) B_{X}\right)\right)=B_{X}
$$

(Kadets-Shvidkoy-Sirotkin-Werner, 1997 \& 2000)

## The Daugavet property II

## For $C(K)$ spaces

$K$ compact space, $C(K)$ has the Daugavet property if and only if $K$ is perfect.

## A related result

For every compact space $K$ and every $T \in L(C(K))$,

$$
\|\mathrm{Id}+T\|=1+\|T\| \quad \text { or } \quad\|\mathrm{Id}-T\|=1+\|T\|
$$

## More examples

The following spaces have the Daugavet property.

- Wojtaszczyk, 1992:

The disk algebra $\mathbb{A}$ and $H^{\infty}$.

- Oikhberg, 2005:

Non-atomic $C^{*}$-algebras and preduals of non-atomic von Neumann algebras.

- Ivankhno, Kadets, Werner, 2007:
$\operatorname{Lip}(K)$ when $K \subseteq \mathbb{R}^{n}$ is compact and convex.


## Daugavet-type inequalities

## Some examples

- Benyamini-Lin, 1985:

For every $1<p<\infty, p \neq 2$, there exists $\psi_{p}:(0, \infty) \longrightarrow(0, \infty)$
such that

$$
\|\mathrm{Id}+T\| \geqslant 1+\psi_{p}(\|T\|)
$$

for every compact operator $T$ on $L_{p}[0,1]$.

- If $p=2$, then there is a non-null compact $T$ on $L_{2}[0,1]$ such that

$$
\|\mathrm{Id}+T\|=1
$$

- Boyko-Kadets, 2004:

If $\psi_{p}$ is the best possible function above, then

$$
\lim _{p \rightarrow 1^{+}} \psi_{p}(t)=t \quad(t>0)
$$

- Oikhberg, 2005:

If $K\left(\ell_{2}\right) \subseteq X \subseteq L\left(\ell_{2}\right)$, then

$$
\|\mathrm{Id}+T\| \geqslant 1+\frac{1}{8 \sqrt{2}}\|T\|
$$

for every compact $T$ on $X$.

## Norm equalities for operators

- V. Kadets, M. Martín, J. Merí, Norm equalities for operators. Indiana U. Math. J. (to appear).


## Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces ?

## Concretely

We looked for non-trivial norm equalities of the forms

$$
\|g(T)\|=f(\|T\|) \quad \text { or } \quad\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)
$$

( $g$ analytic, $f$ arbitrary) in such a way that all rank-one operators on a Banach space $X$ satisfy.

Solution
We proved that there are not to many possibilities...

## Norm equalities for operators: Occlusive results

## Theorem

$X$ real or complex with $\operatorname{dim}(X) \geqslant 2$.
Suppose that the norm equality

$$
\|g(T)\|=f(\|T\|)
$$

holds for every rank-one operator
$T \in L(X)$, where

- $g: \mathbb{K} \longrightarrow \mathbb{K}$ is analytic,
- $f: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}$ is arbitrary.

Then, there are $a, b \in \mathbb{K}$ such that

$$
g(\zeta)=a+b \zeta \quad(\zeta \in \mathbb{K})
$$

## Corollary

Only three norm equalities of the form

$$
\|g(T)\|=f(\|T\|)
$$

are possible:

- $b=0:\|a \operatorname{Id}\|=|a|$,
- $a=0$ : $\|b T\|=|b|\|T\|$,
(trivial cases)
- $a \neq 0, b \neq 0$ :
$\|a \mathrm{Id}+b T\|=|a|+|b|\|T\|$,
(Daugavet property)


## Norm equalities for operators: Occlusive results II

## Theorem

$X$ complex with $\operatorname{dim}(X) \geqslant 2$. Suppose that the norm equality

$$
\|\mathrm{Id}+g(T)\|=f(\|g(T)\|)
$$

holds for every rank-one operator $T \in L(X)$, where

- $g: \mathbb{K} \longrightarrow \mathbb{K}$ is analytic with $g(0)=0$,
- $f: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}$ is continuous.

Then, $X$ has the Daugavet property

## Remarks

- We do not know if the result is true in the real case.
- It is true if $g$ is onto.
- Even the simplest case, $g(t)=t^{2}$, is not known. The only known thing is that, in this case, $f(t)=1+t$, leading to the equation

$$
\left\|\mathrm{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

## The question

## Godefroy, private communication

Is there any real Banach space $X$ (with $\operatorname{dim}(X)>1)$ such that

$$
\left\|\mathrm{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

for every operator $T \in L(X)$ ?

## Definition

We will call $\star$ the property defined above.

The examples

## The examples

## Weak multiplier

Let $K$ be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$
T^{*}=g \mathrm{Id}+S
$$

where $g$ is a Borel function and $S$ is weakly compact.

## Our main result

If $K$ is perfect and all operators on $C(K)$ are weak multipliers, then $C(K)$ has

## Theorem (Koszmider, 2004; Plebanek, 2004)

There exist perfect compact spaces $K$ such that all operators on $C(K)$ are weak multipliers. There are examples of two kinds:

- $K$ connected where every operator in $L(C(K))$ is of the form $g$ Id $+S$ for $g \in C(K)$ and $S$ weakly compact.
- K totally disconnected and perfect.

In particular, there are nonisomorphic $C(K)$ spaces with $\star$.

## Proving a simple case...

## Hypothesis

Every $T \in L(C(K))$ is of the form $g \mathrm{Id}+S$, with $g \in C(K)$, $S$ weakly compact.

## We need

$\left\|I d+T^{2}\right\|=1+\left\|T^{2}\right\|$

- If $T=g \mathrm{Id}+S$, then $T^{2}=g^{2} \mathrm{Id}+S^{\prime}$ with $S^{\prime}$ weakly compact.
- We will prove that $\left\|\mathrm{Id}+g^{2} \mathrm{Id}+S\right\|=1+\left\|g^{2} \mathrm{Id}+S\right\|$ for $g \in C(K)$ and $S$ weakly compact.
- Step 1: We assume $\left\|g^{2}\right\| \leqslant 1$ and $\min g^{2}(K)>0$.
- Step 2: We can avoid the assuption that $\min g^{2}(K)>0$.
- Step 3: Finally, for every $g$ the above gives

$$
\left\|\operatorname{Id}+\frac{1}{\left\|g^{2}\right\|}\left(g^{2} \mathrm{Id}+S\right)\right\|=1+\frac{1}{\left\|g^{2}\right\|}\left\|g^{2} \mathrm{Id}+S\right\|
$$

which gives us the result.

## Consequences

## Consequences I: first results

## Proposition

If $X$ has $\star$, then

- $X$ does not have the RNP.
- $X$ does not have unconditional basis.


## For $C(K)$ spaces

This said not too much about $C(K) \ldots$

## Consequences II: isometries

## Theorem

If $X$ has $\star$, then every surjective isometry $J$ on $X$ satisfies $J^{2}=$ Id.

## For $C(K)$ spaces

If all operators on a $C(K)$ space are weak multipliers, then every homeomorphism $\varphi$ of $K$ satisfies $\varphi^{2}=\mathrm{id}$.

## Consequences III: complex structure

## Complex structure

## A comp For $C(K)$ spaces

space $L$ - There is a connected compact space $K$ such that

- $C(K)$ has $\star$,
- the only complemented subspaces of $C(K)$ having complex structure are the finite-dimensional ones,
where ,

Remarl
If $X$ has

- In particular, no complemented subspace of $C(K)$ is isomorphic to $Z \oplus Z$ for any $Z$.
- There is another perfect compact space $K^{\prime}$ such that
- $C\left(K^{\prime}\right)$ has $\star$,
- $C\left(K^{\prime}\right)$ contains a complemented copy of $c_{0}$.


## Theorem

$X$ having $\star, Y$ finite-codimensional subspace of $X$. Then

- $Y$ does not have any complex structure.
- In particular, $Y$ is not isomorphic to $Z \oplus Z$ for any $Z$.


## Open Problems

## Question 1

Find topological characterization of the compact Hausdorff spaces $K$ such that $C(K)$ has $\star$.

## Question 2

Find other Banach spaces having $\star$.

## Question 3

Characterize isometrically and/or isomorphically the property $\star$.

