Norm equalities for operators

Miguel Martín

(joint work with Vladimir Kadets and Javier Merí)

http://www.ugr.es/local/mmartins

March 4th, 2006 - La Manga del Mar Menor, Murcia

Introduction

- In a Banach space X with the Radon-Nikodým property the unit ball has many denting points.
- $x \in S_{X}$ is a denting point of B_{X} if for every $\varepsilon>0$ one has

$$
x \notin \overline{\operatorname{co}}\left(B_{X} \backslash\left(x+\varepsilon B_{X}\right)\right) .
$$

- $C[0,1]$ and $L_{1}[0,1]$ have an extremely opposite property: for every $x \in S_{X}$ and every $\varepsilon>0$

$$
\overline{\mathrm{co}}\left(B_{X} \backslash\left(x+(2-\varepsilon) B_{X}\right)\right)=B_{X}
$$

- This geometric property is equivalent to a property of operators on the space.

The Daugavet property

The Daugavet equation

X Banach space, $T \in L(X)$

$$
\begin{equation*}
\|\mathrm{Id}+T\|=1+\|T\| \tag{DE}
\end{equation*}
$$

The Daugavet property

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

- Then, every weakly compact operator on X satisfies (DE).
- Geometric characterization: X has the Daugavet property iff for each $x \in S_{X}$

$$
\overline{\mathrm{co}}\left(B_{X} \backslash\left(x+(2-\varepsilon) B_{X}\right)\right)=B_{X}
$$

(Kadets-Shvidkoy-Sirotkin-Werner, 1997 \& 2000)

The Daugavet property

Some propaganda

Suppose X has the Daugavet property. Then:

- X does not have the Radon-Nikodým property.
(Wojtaszczyk, 1992)
- Every weakly-open subset of B_{X} has diameter 2.
(Shvidkoy, 2000)
- X contains a copy of ℓ_{1}. X^{*} contains a copy of $L_{1}[0,1]$. (Kadets-Shvidkoy-Sirotkin-Werner, 2000)
- X does not have unconditional basis.
(Kadets, 1996)
- X does not embed into a unconditional sum of Banach spaces without a copy of ℓ_{1}.
(Shvidkoy, 2000)

Daugavet type inequalities

Commutative L_{p} spaces

- Benyamini-Lin, 1985:

For every $1<p<\infty, p \neq 2$, there exists $\psi_{p}:(0, \infty) \longrightarrow(0, \infty)$
such that

$$
\|\operatorname{Id}+T\| \geqslant \psi_{p}(\|T\|)
$$

for every compact operator T on $L_{p}[0,1]$.

- If $p=2$, then there is a non-null compact T on $L_{2}[0,1]$ such that

$$
\|\operatorname{Id}+T\|=1
$$

- Boyko-Kadets, 2004:

If ψ_{p} is the best possible function above, then

$$
\lim _{p \rightarrow 1^{+}} \psi_{p}(t)=t \quad(t>0)
$$

Daugavet type inequalities

Non-commutative \mathcal{L}_{p} spaces

- Oikhberg, 2002:

For every $1<p<\infty, p \neq 2$, there exists $k_{p}>0$ such that

$$
\|\mathrm{Id}+T\| \geqslant 1+k_{p} \min \left\{\|T\|,\|T\|^{2}\right\}
$$

for every compact T on $\mathcal{L}_{p}(\tau)$.

Spaces of operators

- Oikhberg, 2005:

If $K\left(\ell_{2}\right) \subseteq X \subseteq L\left(\ell_{2}\right)$, then

$$
\|\mathrm{Id}+T\| \geqslant 1+\frac{1}{8 \sqrt{2}}\|T\|
$$

for every compact T on X.

The questions

Is any of the previous inequalities an equality ?

Even more, is there any norm equality valid for all compact operators on any of the above spaces ?

Main question

Study the possibility of finding norm equalities for operators in the spirit of Daugavet equation, valid for all rank-one operators on a Banach space.

We will study three cases:
(1) $\|\mathrm{Id}+T\|=f(\|T\|)$ for arbitrary f.
(2) $\|g(T)\|=f(\|T\|)$ for analytic g and arbitrary f.
(3) \|Id $+g(T) \|=f(\|g(T)\|)$ for analytic g and continuous f.

Equalities of the form $\|\mathrm{Id}+T\|=f(\|T\|)$

Proposition

X real or complex, $f: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}$ arbitrary, $a, b \in \mathbb{K}$. If the norm equality

$$
\|a \operatorname{Id}+b T\|=f(\|T\|)
$$

holds for every rank-one operator $T \in L(X)$, then

$$
f(t)=|a|+|b| t \quad\left(t \in \mathbb{R}_{0}^{+}\right)
$$

If $a \neq 0, b \neq 0$, then X has the Daugavet property.

Then, we have to look for Daugavet-type equalities in which $\mathrm{Id}+T$ is replaced by something different.

Equalities of the form $\|g(T)\|=f(\|T\|)$

Theorem

X real or complex with $\operatorname{dim}(X) \geqslant 2$.
Suppose that the norm equality

$$
\|g(T)\|=f(\|T\|)
$$

holds for every rank-one operator $T \in L(X)$, where

- $g: \mathbb{K} \longrightarrow \mathbb{K}$ is analytic,
- $f: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}$ is arbitrary.

Then, there are $a, b \in \mathbb{K}$ such that

$$
g(\zeta)=a+b \zeta \quad(\zeta \in \mathbb{K})
$$

Corollary

Only three norm equalities of the form

$$
\|g(T)\|=f(\|T\|)
$$

are possible:

- $b=0: \quad\|a \mathrm{Id}\|=|a|$,
- $a=0$: $\|b T\|=|b|\|T\|$,
(trivial cases)
- $a \neq 0, b \neq 0$:

$$
\|a \operatorname{Id}+b T\|=|a|+|b|\|T\|,
$$

(Daugavet property)

Equalities of the form $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$

Remark

If X has the Daugavet property and g is analytic, then

$$
\|\operatorname{Id}+g(T)\|=|1+g(0)|-|g(0)|+\|g(T)\|
$$

for every rank-one $T \in L(X)$.

- Our aim here is not to show that g has a suitable form,
- but it is to see that for every g another simpler equation can be found.
- From now on, we have to separate the complex and the real case.

Equalities of the form $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$

- Complex case:

Proposition

X complex, $\operatorname{dim}(X) \geqslant 2$. Suppose that

$$
\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)
$$

for every rank-one $T \in L(X)$, where

- $g: \mathbb{C} \longrightarrow \mathbb{C}$ analytic non-constant,
- $f: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}$ continuous.

Then

$$
\begin{aligned}
& \|(1+g(0)) \mathrm{Id}+T\| \\
& \quad=|1+g(0)|-|g(0)|+\|g(0) \mathrm{Id}+T\|
\end{aligned}
$$

for every rank-one $T \in L(X)$.

We obtain two different cases:

- $|1+g(0)|-|g(0)| \neq 0$ or
- $|1+g(0)|-|g(0)|=0$.

Equalities of the form $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$. Complex case

Theorem

If $\operatorname{Re} g(0) \neq-1 / 2$ and

$$
\|\mathrm{Id}+g(T)\|=f(\|g(T)\|)
$$

for every rank-one T, then X has the Daugavet property.

Theorem

If $\operatorname{Re} g(0)=-1 / 2$ and

$$
\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)
$$

for every rank-one T, then exists $\theta_{0} \in \mathbb{R}$ s.t.

$$
\left\|\mathrm{Id}+\mathrm{e}^{i \theta_{0}} T\right\|=\|\mathrm{Id}+T\|
$$

for every rank-one $T \in L(X)$.

Example

If $X=C[0,1] \oplus_{2} C[0,1]$, then

- $\left\|\operatorname{Id}+\mathrm{e}^{i \theta} T\right\|=\|\operatorname{Id}+T\|$ for every $\theta \in \mathbb{R}$, rank-one $T \in L(X)$.
- X does not have the Daugavet property.

Equalities of the form $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$. Real case

- Real case:

Remarks

- The proofs are not valid (we use Picard's Theorem).
- They work when g is onto.
- But we do not know what is the situation when g is not onto, even in the easiest examples:

$$
\begin{aligned}
& -\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|, \\
& \cdot\left\|\operatorname{Id}-T^{2}\right\|=1+\left\|T^{2}\right\| .
\end{aligned}
$$

$$
g(0)=-1 / 2
$$

Example

If $X=C[0,1] \oplus_{2} C[0,1]$, then

- $\|\mathrm{Id}-T\|=\|\operatorname{Id}+T\|$ for every rank-one $T \in L(X)$.
- X does not have the Daugavet property.

Some questions

(1) Study the real or complex spaces for which the equality

$$
\|\mathrm{Id}+T\|=\|\mathrm{Id}-T\|
$$

holds for every rank-one operator.
(2) Study the real spaces X for which the equality

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

holds for every rank-one operator T on X.
(3) Is there any real space X with $\operatorname{dim}(X)>1$ such that

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

for every operator?

