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Introduction

In a Banach space X with the
Radon-Nikodým property the unit ball has
many denting points.
x ∈ SX is a denting point of BX if for every
ε > 0 one has

x /∈ co
�
BX \ (x + εBX )

�
.

C [0, 1] and L1[0, 1] have an extremely
opposite property: for every x ∈ SX and
every ε > 0

co
�

BX \
�
x + (2− ε)BX

��
= BX .

This geometric property is equivalent to a
property of operators on the space.

x

BX \
(

x + (2− ε)BX

)
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The Daugavet property

The Daugavet equation
X Banach space, T ∈ L(X)

‖Id + T‖ = 1 + ‖T‖ (DE)

The Daugavet property
A Banach space X is said to have the
Daugavet property iff every rank-one operator
on X satisfies (DE).

Then, every weakly compact operator on
X satisfies (DE).
Geometric characterization: X has the
Daugavet property iff for each x ∈ SX

co
�

BX \
�
x + (2− ε)BX

��
= BX .

(Kadets–Shvidkoy–Sirotkin–Werner, 1997 & 2000)

x

BX \
(

x + (2− ε)BX

)
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The Daugavet property

Some propaganda
Suppose X has the Daugavet property. Then:

X does not have the Radon-Nikodým property.
(Wojtaszczyk, 1992)

Every weakly-open subset of BX has diameter 2.
(Shvidkoy, 2000)

X contains a copy of `1. X∗ contains a copy of L1[0, 1].
(Kadets–Shvidkoy–Sirotkin–Werner, 2000)

X does not have unconditional basis.
(Kadets, 1996)

X does not embed into a unconditional sum of Banach spaces without a
copy of `1.

(Shvidkoy, 2000)
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Daugavet type inequalities

Commutative Lp spaces
Benyamini–Lin, 1985:
For every 1 < p <∞, p 6= 2, there exists ψp : (0,∞) −→ (0,∞)
such that

‖Id + T‖ > ψp(‖T‖)

for every compact operator T on Lp[0, 1].

If p = 2, then there is a non-null compact T on L2[0, 1] such that

‖Id + T‖ = 1.

Boyko–Kadets, 2004:
If ψp is the best possible function above, then

lim
p→1+

ψp(t) = t (t > 0).
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Daugavet type inequalities

Non-commutative Lp spaces
Oikhberg, 2002:
For every 1 < p <∞, p 6= 2, there exists kp > 0 such that

‖Id + T‖ > 1 + kp min{‖T‖, ‖T‖2}

for every compact T on Lp(τ).

Spaces of operators
Oikhberg, 2005:
If K(`2) ⊆ X ⊆ L(`2), then

‖Id + T‖ > 1 + 1
8
√

2‖T‖

for every compact T on X .
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The questions

Is any of the previous inequalities an equality ?

Even more, is there any norm equality valid for all
compact operators on any of the above spaces ?

Main question
Study the possibility of finding norm equalities for operators in the spirit of
Daugavet equation, valid for all rank-one operators on a Banach space.

We will study three cases:

1 ‖Id + T‖ = f (‖T‖) for arbitrary f .

2 ‖g(T )‖ = f (‖T‖) for analytic g and arbitrary f .

3 ‖Id + g(T )‖ = f (‖g(T )‖) for analytic g and continuous f .
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‖Id + T‖ = f (‖T‖)
‖g(T )‖ = f (‖T‖)
‖Id + g(T )‖ = f (‖g(T )‖)

Equalities of the form ‖Id + T‖ = f (‖T‖)

Proposition
X real or complex, f : R+

0 −→ R arbitrary, a, b ∈ K. If the norm equality

‖a Id + b T‖ = f (‖T‖)

holds for every rank-one operator T ∈ L(X), then

f (t) = |a|+ |b| t
�
t ∈ R+

0
�
.

If a 6= 0, b 6= 0, then X has the Daugavet property.

Then, we have to look for Daugavet-type equalities in which Id + T is replaced
by something different.
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Theorem
X real or complex with dim(X) > 2.
Suppose that the norm equality

‖g(T )‖ = f (‖T‖)

holds for every rank-one operator
T ∈ L(X), where

g : K −→ K is analytic,
f : R+

0 −→ R is arbitrary.
Then, there are a, b ∈ K such that

g(ζ) = a + b ζ
�
ζ ∈ K).

Corollary
Only three norm equalities of the form

‖g(T )‖ = f (‖T‖)

are possible:
b = 0 : ‖a Id‖ = |a|,
a = 0 : ‖b T‖ = |b| ‖T‖,

(trivial cases)
a 6= 0, b 6= 0 :
‖a Id + b T‖ = |a|+ |b| ‖T‖,

(Daugavet property)
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‖g(T )‖ = f (‖T‖)
‖Id + g(T )‖ = f (‖g(T )‖)
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Remark
If X has the Daugavet property and g is analytic, then

‖Id + g(T )‖ = |1 + g(0)| − |g(0)|+ ‖g(T )‖

for every rank-one T ∈ L(X).

Our aim here is not to show that g has a suitable form,
but it is to see that for every g another simpler equation can be found.
From now on, we have to separate the complex and the real case.
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• Complex case:

Proposition
X complex, dim(X) > 2. Suppose that

‖Id + g(T )‖ = f (‖g(T )‖)

for every rank-one T ∈ L(X), where
g : C −→ C analytic non-constant,
f : R+

0 −→ R continuous.
Then



(1 + g(0))Id + T




= |1 + g(0)| − |g(0)|+


g(0)Id + T





for every rank-one T ∈ L(X).

We obtain two different cases:
|1 + g(0)| − |g(0)| 6= 0 or
|1 + g(0)| − |g(0)| = 0.

−1
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Theorem
If Re g(0) 6= −1/2 and

‖Id + g(T )‖ = f (‖g(T )‖)

for every rank-one T , then X has
the Daugavet property.

Theorem
If Re g(0) = −1/2 and

‖Id + g(T )‖ = f (‖g(T )‖)

for every rank-one T , then exists θ0 ∈ R s.t.


Id + ei θ0 T



 = ‖Id + T‖

for every rank-one T ∈ L(X).

Example
If X = C [0, 1]⊕2 C [0, 1], then

Id + ei θ T



 = ‖Id + T‖
for every θ ∈ R, rank-one T ∈ L(X).
X does not have the Daugavet property.
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Equalities of the form ‖Id + g(T )‖ = f (‖g(T )‖). Real case

• Real case:

Remarks
The proofs are not valid (we use
Picard’s Theorem).
They work when g is onto.
But we do not know what is the
situation when g is not onto, even
in the easiest examples:




Id + T 2

 = 1 + ‖T 2‖,



Id− T 2

 = 1 + ‖T 2‖.

g(0) = −1/2:

Example
If X = C [0, 1]⊕2 C [0, 1], then

Id− T



 = ‖Id + T‖
for every rank-one T ∈ L(X).
X does not have the Daugavet
property.
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1 Study the real or complex spaces for which the equality

‖Id + T‖ = ‖Id− T‖

holds for every rank-one operator.

2 Study the real spaces X for which the equality


Id + T 2

 = 1 + ‖T 2‖

holds for every rank-one operator T on X .

3 Is there any real space X with dim(X) > 1 such that


Id + T 2

 = 1 + ‖T 2‖

for every operator ?
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