ICM 2006 MADRID

Numerical index of Banach spaces
 and duality

Miguel Martín (Granada, Spain) http://www.ugr.es/local/mmartins

Joint work with K. Boyko, V. Kadets, and D. Werner

Math. Proc. Cambridge Phil. Soc. (to appear)

Numerical Range of an operator

- Toeplitz, 1918:
H Hilbert space, $T \in L(H)$

$$
V(T)=\{(T x \mid x): x \in H,\|x\|=1\}
$$

- Lumer, 1961; Bauer, 1962:
X Banach space, $T \in L(X)$

$$
V(T)=\left\{x^{*}(T x):\|x\|=\left\|x^{*}\right\|=x^{*}(x)=1\right\}
$$

Numerical radius and numerical index

- Numerical radius:
X Banach space, $T \in L(X)$,

$$
v(T)=\sup \{|\lambda|: \lambda \in V(T)\}
$$

v is a continuous seminorm: $v(T) \leqslant\|T\|$

- Numerical index:
X Banach space,

$$
\begin{aligned}
n(X) & =\inf \{v(T): T \in L(X),\|T\|=1\} \\
& =\max \{k \geqslant 0: k\|T\| \leqslant v(T) \forall T \in L(X)\}
\end{aligned}
$$

(Lumer, 1968)

Some basic properties

- $n(X)=1$ iff v and $\|\cdot\|$ coincide
- $n(X)=0$ iff v is not an equivalent norm in $L(X)$
- X complex $\Rightarrow n(X) \geqslant 1 / \mathrm{e}$.
(Bohnenblust-Karlin, 1955; Glickfeld, 1970)
- $\{n(X): X$ complex, $\operatorname{dim}(X)=2\}=\left[\mathrm{e}^{-1}, 1\right]$
$\{n(X): X$ real, $\operatorname{dim}(X)=2\}=[0,1]$
(Duncan-McGregor-Pryce-White, 1970)

Some examples

- H Hilbert space, $\operatorname{dim}(H)>1$,

$$
\begin{array}{ll}
n(H)=0 & \text { if } H \text { is real } \\
n(H)=1 / 2 & \text { if } H \text { is complex }
\end{array}
$$

- $n\left(L_{1}(\mu)\right)=1 \quad \mu$ positive measure $n(C(K))=1 \quad K$ compact Hausdorff space
(Duncan et al., 1970)
- If A is a C^{*}-algebra $\Rightarrow \begin{cases}n(A)=1 & A \text { commutative } \\ n(A)=1 / 2 & A \text { not commutative }\end{cases}$
(Huruya, 1977)
- If A is a function algebra $\Rightarrow n(A)=1$
(Werner, 1997)
- For $n \geqslant 2$, the unit ball of X_{n} is a $2 n$ regular polygon:

$$
\begin{gathered}
n\left(X_{n}\right)= \begin{cases}\tan \left(\frac{\pi}{2 n}\right) & \text { if } n \text { is even, } \\
\sin \left(\frac{\pi}{2 n}\right) & \text { if } n \text { is odd. }\end{cases} \\
\text { (M.-Merí, ??) }
\end{gathered}
$$

- Every finite-codimensional subspace of $C[0,1]$ has numerical index 1
(Boyko-Kadets-M.-Werner, 2006)

Some interesting results

- $\operatorname{dim}(X)<\infty$:
- $n(X)=1 \Leftrightarrow\left|x^{*}(x)\right|=1\left(x \in \operatorname{ext}\left(B_{X}\right), x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)\right)$
(McGregor, 1971)
- $n(X)=0 \Leftrightarrow$ the group of isometries of X is infinite $\Leftrightarrow X$ has certain complex structure
(Rosenthal, 1984)
- $\operatorname{dim}(X)=\infty$:
- X real, $n(X)=1 \Longrightarrow X^{* *} / X$ is non-separable
(López-M.-Payá, 1999)
- $n(X)=0$ does not imply $X \supset \mathbb{C}$ (in particular, X could be polyhedral)

> (M.-Merí-Rodríguez-Palacios, 2004)

Numerical range and duality

- X Banach space, $T \in L(X)$,
- $\sup \operatorname{Re} V(T)=\lim _{\alpha \rightarrow 0^{+}} \frac{\|\operatorname{Id}+\alpha T\|-1}{\alpha}$.
- Then, $v(T)=v\left(T^{*}\right)$.
- Therefore, $n\left(X^{*}\right) \leqslant n(X)$.
(Duncan et al., 1970)
- Question:

Are $n(X)$ and $n\left(X^{*}\right)$ always equal ?

- ANSWER:

No, as we will show in the following.

The counterexample

Let us consider the Banach space
$X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\}$.
Then, $n(X)=1$ but $n\left(X^{*}\right)<1$.

Proof:

- We write $c^{*}=\ell_{1} \oplus_{1}<\lim >$ and we observe that

$$
X^{*}=\left[c^{*} \oplus_{1} c^{*} \oplus_{1} c^{*}\right] /<(\lim , \lim , \lim)>
$$

- Then, writing $Z=\ell_{1}^{(3)} /<(1,1,1)>$, we can identify

$$
\begin{aligned}
X^{*} & \equiv \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} Z \\
X^{* *} & \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^{*}
\end{aligned}
$$

- Let us prove that $n(X)=1$.
- $A=\left\{\left(e_{n}, 0,0,0\right)\right\} \cup\left\{\left(0, e_{n}, 0,0\right)\right\} \cup\left\{\left(0,0, e_{n}, 0\right)\right\}$.
- Then $B_{X^{*}}=\overline{\mathrm{aco}}^{w^{*}}(A)$ and

$$
\left|x^{* *}(a)\right|=1 \quad \forall x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right) \forall a \in A .
$$

- Fix $T \in L(X)$ and $\varepsilon>0$.
- We find $a \in A$ such that $\left\|T^{*}(a)\right\|>\left\|T^{*}\right\|-\varepsilon$.
- Then, we find $x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$ such that

$$
\left|x^{* *}\left(T^{*}(a)\right)\right|=\left\|T^{*}(a)\right\|>\left\|T^{*}\right\|-\varepsilon .
$$

- Since $\left|x^{* *}(a)\right|=1$, this gives that

$$
v\left(T^{*}\right)>\left\|T^{*}\right\|-\varepsilon,
$$

so $v(T)=\|T\|$ and $n(X)=1$.

- Z is an L-summand of X^{*} so

$$
n\left(X^{*}\right) \leqslant n(Z)
$$

- But $n(Z)<1$!

Figure 1: The unit ball of Z

Remarks

- There is a real X such that $n(X)=1$ and $n\left(X^{*}\right)=0$.
- There is a complex X such that $n(X)=1$ and $n\left(X^{*}\right)=1 / \mathrm{e}$.
- There is Z with two preduals X_{1} and X_{2} such that $n\left(X_{1}\right)$ and $n\left(X_{2}\right)$ are not equal:
$X_{1}=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\}$,
$X_{2}=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: x(1)+y(1)+z(1)=0\right\}$.
- $n\left(X_{1}\right)=1, n\left(X_{2}\right)<1$.
- $Z=X_{1}^{*} \equiv X_{2}^{*}$.

Open problems

- Y dual space. Is there a predual X such that $n(X)=n(Y)$?
- Find (isomorphic) properties implying the equality of the numerical index of a space and the one of its dual.
- Reflexivity is such a property.
- Asplundness is not.
- RNP ?
- A positive result:

Let X be a Banach space with the RNP. If $n(X)=1$, then $n\left(X^{*}\right)=1$.

