ICM 2006 MADRID

Numerical index of Banach spaces and duality

Miguel Martín (Granada, Spain)

http://www.ugr.es/local/mmartins

Joint work with K. Boyko, V. Kadets, and D. Werner

Math. Proc. Cambridge Phil. Soc. (to appear)

Numerical Range of an operator

• Toeplitz, 1918:

H Hilbert space, $T \in L(H)$

$$V(T) = \{ (Tx \mid x) : x \in H, ||x|| = 1 \}$$

• Lumer, 1961; Bauer, 1962:

X Banach space, $T \in L(X)$

$$V(T) = \{x^*(Tx) : ||x|| = ||x^*|| = x^*(x) = 1\}$$

Numerical radius and numerical index

• Numerical radius:

X Banach space, $T \in L(X)$,

$$v(T) = \sup\{|\lambda| : \lambda \in V(T)\}$$

v is a continuous seminorm: $v(T) \leqslant ||T||$

• Numerical index:

X Banach space,

$$n(X) = \inf\{v(T) : T \in L(X), ||T|| = 1\}$$

$$= \max\{k \geqslant 0 : k||T|| \leqslant v(T) \ \forall T \in L(X)\}$$
(Lumer, 1968)

Some basic properties

- n(X) = 1 iff v and $\|\cdot\|$ coincide
- n(X) = 0 iff v is not an equivalent norm in L(X)
- $X \text{ complex } \Rightarrow n(X) \geqslant 1/e.$

(Bohnenblust-Karlin, 1955; Glickfeld, 1970)

• $\{n(X) : X \text{ complex}, \dim(X) = 2\} = [e^{-1}, 1]$

 $\{n(X) : X \text{ real}, \dim(X) = 2\} = [0, 1]$

(Duncan-McGregor-Pryce-White, 1970)

Some examples

• H Hilbert space, $\dim(H) > 1$,

$$n(H)=0$$
 if H is real
$$n(H)=1/2$$
 if H is complex

• $nig(L_1(\mu)ig)=1$ μ positive measure nig(C(K)ig)=1 K compact Hausdorff space

(Duncan et al., 1970)

• If A is a C^* -algebra $\Rightarrow \begin{cases} n(A)=1 & A \text{ commutative} \\ n(A)=1/2 & A \text{ not commutative} \end{cases}$ (Huruya, 1977)

• If A is a function algebra $\Rightarrow n(A) = 1$

(Werner, 1997)

• For $n \ge 2$, the unit ball of X_n is a 2n regular polygon:

$$n(X_n) = egin{cases} an\left(rac{\pi}{2n}
ight) & ext{if n is even,} \ ext{sin}\left(rac{\pi}{2n}
ight) & ext{if n is odd.} \end{cases}$$
 (M.-Merí, \ref{Modes})

• Every finite-codimensional subspace of C[0,1] has numerical index 1

(Boyko-Kadets-M.-Werner, 2006)

Some interesting results

- $\dim(X) < \infty$:
 - $n(X) = 1 \Leftrightarrow |x^*(x)| = 1 (x \in \text{ext}(B_X), x^* \in \text{ext}(B_{X^*}))$ (McGregor, 1971)
 - $n(X) = 0 \Leftrightarrow$ the group of isometries of X is infinite $\Leftrightarrow X$ has certain complex structure (Rosenthal, 1984)
- $\dim(X) = \infty$:
 - X real, $n(X) = 1 \implies X^{**}/X$ is non-separable (López–M.–Payá, 1999)
 - n(X) = 0 does not imply $X \supset \mathbb{C}$ (in particular, X could be polyhedral)

(M.-Merí-Rodríguez-Palacios, 2004)

Numerical range and duality

- X Banach space, $T \in L(X)$,
 - sup Re $V(T) = \lim_{\alpha \to 0^+} \frac{\|\operatorname{Id} + \alpha T\| 1}{\alpha}$.
 - Then, $v(T) = v(T^*)$.
- Therefore, $n(X^*) \leqslant n(X)$.

(Duncan et al., 1970)

• QUESTION:

Are n(X) and $n(X^*)$ always equal ?

• Answer:

No, as we will show in the following.

The counterexample

Let us consider the Banach space

$$X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\}.$$

Then, n(X) = 1 but $n(X^*) < 1$.

Proof:

• We write $c^* = \ell_1 \oplus_1 < \lim>$ and we observe that

$$X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / < (\lim, \lim, \lim) > .$$

• Then, writing $Z=\ell_1^{(3)}/<(1,1,1)>$, we can identify

$$X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z,$$

$$X^{**} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^{*}.$$

- Let us prove that n(X) = 1.
 - $A = \{(e_n, 0, 0, 0)\} \cup \{(0, e_n, 0, 0)\} \cup \{(0, 0, e_n, 0)\}.$
 - Then $B_{X^*} = \overline{\mathsf{aco}}^{w^*}(A)$ and

$$|x^{**}(a)| = 1 \quad \forall \ x^{**} \in \text{ext}(B_{X^{**}}) \ \forall \ a \in A.$$

- Fix $T \in L(X)$ and $\varepsilon > 0$.
- We find $a \in A$ such that $||T^*(a)|| > ||T^*|| \varepsilon$.
- Then, we find $x^{**} \in \text{ext}(B_{X^{**}})$ such that

$$|x^{**}(T^*(a))| = ||T^*(a)|| > ||T^*|| - \varepsilon.$$

• Since $|x^{**}(a)| = 1$, this gives that

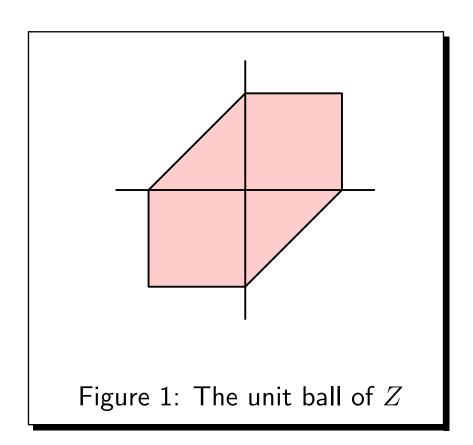
$$v(T^*) > ||T^*|| - \varepsilon,$$

so
$$v(T) = \|T\|$$
 and $n(X) = 1$.

ullet Z is an L-summand of X^* so

$$n(X^*) \leqslant n(Z)$$
.

• But n(Z) < 1 !



Remarks

- There is a real X such that n(X) = 1 and $n(X^*) = 0$.
- There is a complex X such that n(X) = 1 and $n(X^*) = 1/e$.
- There is Z with two preduals X_1 and X_2 such that $n(X_1)$ and $n(X_2)$ are not equal:

$$X_1 = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\},\$$

$$X_2 = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : x(1) + y(1) + z(1) = 0\}.$$

- $n(X_1) = 1$, $n(X_2) < 1$.
- $Z = X_1^* \equiv X_2^*$.

Open problems

- Y dual space. Is there a predual X such that n(X) = n(Y) ?
- Find (isomorphic) properties implying the equality of the numerical index of a space and the one of its dual.
 - Reflexivity is such a property.
 - Asplundness is not.
 - RNP ?
 - A positive result:

Let X be a Banach space with the RNP.

If
$$n(X) = 1$$
, then $n(X^*) = 1$.