

Norm equalities for operators

in the spirit of Daugavet equation

Miguel Martín

Joint work in progress with V. Kadets, J. Merí, and D. Werner

The Daugavet equation

X Banach space, $T \in L(X)$

 $\| \mathrm{Id} + T \| = 1 + \| T \|$ (DE)

CLASSICAL EXAMPLES:

• Daugavet, 1963: Every compact operator on C[0,1] satisfies (DE).

Lozanoskii, 1966:
 Every compact operator on L₁[0, 1] satisfies (DE).

Abramovich, Holub, and more, 80's:
 X = C(K), K perfect compact space
 or X = L₁(μ), μ atomless measure
 ⇒ every weakly compact T ∈ L(X) satisfies (DE).

The Daugavet property

A Banach space X is said to have the Daugavet property if every rank-one operator on X satisfies (DE).

- Then, every weakly compact operator also satisfies (DE).
- If X* has the Daugavet property, so does X.
 The converse is not true.

(Kadets-Shvidkoy-Sirotkin-Werner, 1997)

Prior versions of: Chauveheid, 1982; Abramovich-Aliprantis-Burkinshaw, 1991

THE DAUGAVET PROPERTY

Some propaganda:

 \boldsymbol{X} with the Daugavet property. Then

• X does not have the Radon-Nikodým property.

(Wojtaszczyk, 1992)

• Every weakly-open subset of B_X has diameter 2.

(Shvidkoy, 2000)

• X contains a copy of ℓ_1 . X^* contains a copy or $L_1[0,1]$.

(Kadets-Shvidkoy-Sirotkin-Werner, 2000)

• X does not embed into a space with unconditional basis.

(Kadets–Shvidkoy–Sirotkin–Werner, 2000)

Daugavet type inequalities

• Benyamini-Lin, 1985: If $1 , <math>p \neq 2$, $T \in L(L_p[0, 1])$ compact, then $\|\operatorname{Id} + T\| \ge (1 + a_p \|T\|^2)^{\frac{1}{2}}$

for some $a_p \neq 0$.

• If p = 2, then there are non-null compact T's such that

$$\|\mathrm{Id} + T\| = 1$$

• Oikhberg, 2005:

If $1 , <math>p \neq 2$, $T \in L(\mathcal{L}_p(\tau))$ compact, then

 $\| \mathrm{Id} + T \| \ge 1 + k_p \min\{ \|T\|, \|T\|^2 \}$

for some $k_p \neq 0$.

Our main questions

- Is any of the previous inequalities an equality ?
- Even more, is there **any** norm equality valid for all compact operators on L_p or \mathcal{L}_p spaces **?**
- Actually, we would like to study the possibility of finding norm equalities for operators in the spirit of Daugavet equation, valid for all compact (rank-one) operators on a Banach space. We will study three cases:
 - $\|\operatorname{Id} + T\| = f(\|T\|)$ for arbitrary f.
 - ||g(T)|| = f(||T||) for analytic g and arbitrary f.
 - $\|\operatorname{Id} + g(T)\| = f(\|g(T)\|)$ for analytic g and continuous f.

Equalities of the form $\|\operatorname{Id} + T\| = f(\|T\|)$

PROPOSITION:

X real or complex Banach space, $f : \mathbb{R}_0^+ \longrightarrow \mathbb{R}$ arbitrary, $a, b \in \mathbb{K}$. If the norm equality

$$\|a\operatorname{Id} + bT\| = f(\|T\|)$$

holds for every rank-one operator ${\cal T}$ on ${\cal X},$ then

$$f(t) = |a| + |b|t \qquad (t \in \mathbb{R}_0^+).$$

If $a \neq 0$, $b \neq 0$, then X has the Daugavet property.

Then, we have to look for Daugavet-type equalities in which Id + T is replaced by something different.

Equalities of the form $\|g(T)\| = f(\|T\|)$

THEOREM:

X real or complex Banach space with $\dim(X) \ge 2$. Suppose that the norm equality

 $\|g(T)\|=f(\|T\|)$

holds for every rank-one operator ${\cal T}$ on ${\cal X}$, where

•
$$g:\mathbb{K}\longrightarrow\mathbb{K}$$
 is analytic,

• $f: \mathbb{R}^+_0 \longrightarrow \mathbb{R}$ is arbitrary.

Then, there are $a,b\in\mathbb{K}$ such that

$$g(\zeta) = a + b\zeta \qquad (\zeta \in \mathbb{K}).$$

8

Equalities of the form $\|g(T)\| = f(\|T\|)$

COROLLARY:

Only three norm equalities of the form

 $\|g(T)\| = f(\|T\|)$

are possible:

• (g is constant): $||a \operatorname{Id}|| = |a|$,

•
$$(g(\zeta) = b \zeta)$$
: $||bT|| = |b| ||T||$,

(trivial cases)

 (g(ζ) = a + b ζ with a ≠ 0, b ≠ 0): ||a Id + b T || = |a| + |b| ||T||, which implies that X has the Daugavet property.

Equalities of the form $\|\operatorname{Id} + g(T)\| = f(\|g(T)\|)$

COMPLEX CASE:

X complex Banach space with $\dim(X) \ge 2$. Suppose that the norm equality

$$\|\mathrm{Id} + g(T)\| = f(\|g(T)\|)$$

holds for every rank-one operator on X, where

- $g: \mathbb{C} \longrightarrow \mathbb{C}$ is analytic and non-constant,
- $f: \mathbb{R}^+_0 \longrightarrow \mathbb{R}$ is continuous.

COMPLEX CASE

PROPOSITION:

The only possible form of the function f is the following:

$$f(t) = |1 + g(0)| - |g(0)| + t \qquad (t \ge |g(0)|).$$

We obtain two different cases:

•
$$|1+g(0)| \neq |g(0)|$$
 i.e., $\operatorname{Re} g(0) \neq -1/2$,

•
$$|1 + g(0)| = |g(0)|$$
 i.e., $\operatorname{Re} g(0) = -1/2$.

COMPLEX CASE

• <u>THEOREM</u>:

If $\operatorname{Re} g(0) \neq -1/2$ and

$$\|\operatorname{Id}+g(T)\| = f(\|g(T)\|) \left[= |1+g(0)| - |g(0)| + \|g(T)\| \right]$$

for every rank-one T, then X has the Daugavet property.

• EXAMPLE:

If we take $g(\zeta) = -1/2 + \zeta$, we obtain the equation $\|\operatorname{Id} + (-\frac{1}{2}\operatorname{Id} + T)\| = \|-\frac{1}{2}\operatorname{Id} + T\|$ or, equivalently,

$$\|\mathrm{Id} + T\| = \|\mathrm{Id} - T\|.$$

- Every rank-one operator T on $C[0,1] \oplus_2 C[0,1]$ satisfies $\|\operatorname{Id} + e^{i\theta} T\| = \|\operatorname{Id} + T\|$ for every $\theta \in \mathbb{R}$.
- The space C[0,1] ⊕₂ C[0,1] does not have the Daugavet property.

$\|\mathrm{Id} + g(T)\| = f(\|g(T)\|)$

REAL CASE:

- The proofs of the above results are not valid (we use Picard's Theorem).
- We do not even know if any of the following simple equalities implies the Daugavet property:
 - $\left\| \operatorname{Id} + T^2 \right\| = 1 + \left\| T^2 \right\|$ for every rank-one operator,
 - $\|\operatorname{Id} T^2\| = 1 + \|T^2\|$ for every rank-one operator.
- Every rank-one operator T on the real $C[0,1] \oplus_2 C[0,1]$ satisfies $\|\operatorname{Id} + T\| = \|\operatorname{Id} - T\|$.

Some questions

• Study the real Banach spaces X for which the equality

$$\left\| \operatorname{Id} + T^2 \right\| = 1 + \left\| T^2 \right\|$$

holds for every rank-one operator T on X.

- Is there any real Banach space such that every operator T on X satisfies the equality $\|\operatorname{Id} + T^2\| = 1 + \|T^2\|$?
- Study the real or complex X for which the equality

$$\|\mathrm{Id} + T\| = \|\mathrm{Id} - T\|$$

holds for every rank-one operator T on X.