Norm equalities for operators

in the spirit of Daugavet equation

Miguel Martín

Joint work in progress with V. Kadets, J. Merí, and D. Werner

The Daugavet equation

X Banach space, $T \in L(X)$

$$
\begin{equation*}
\|\operatorname{Id}+T\|=1+\|T\| \tag{DE}
\end{equation*}
$$

CLASSICAL EXAMPLES:

- Daugavet, 1963:

Every compact operator on $C[0,1]$ satisfies (DE).

- Lozanoskii, 1966:

Every compact operator on $L_{1}[0,1]$ satisfies (DE).

- Abramovich, Holub, and more, 80's:
$X=C(K), K$ perfect compact space
or $X=L_{1}(\mu), \mu$ atomless measure
\Longrightarrow every weakly compact $T \in L(X)$ satisfies (DE).

The Daugavet property

A Banach space X is said to have the Daugavet property if every rank-one operator on X satisfies (DE).

- Then, every weakly compact operator also satisfies (DE).
- If X^{*} has the Daugavet property, so does X.

The converse is not true.
(Kadets-Shvidkoy-Sirotkin-Werner, 1997)

Prior versions of: Chauveheid, 1982; Abramovich-Aliprantis-Burkinshaw, 1991

SOME PROPAGANDA:

X with the Daugavet property. Then

- X does not have the Radon-Nikodým property.
(Wojtaszczyk, 1992)
- Every weakly-open subset of B_{X} has diameter 2 .
(Shvidkoy, 2000)
- X contains a copy of ℓ_{1}. X^{*} contains a copy or $L_{1}[0,1]$.
(Kadets-Shvidkoy-Sirotkin-Werner, 2000)
- X does not embed into a space with unconditional basis.

> (Kadets-Shvidkoy-Sirotkin-Werner, 2000)

Daugavet type inequalities

- Benyamini-Lin, 1985:

If $1<p<\infty, p \neq 2, T \in L\left(L_{p}[0,1]\right)$ compact, then

$$
\|\operatorname{Id}+T\| \geqslant\left(1+a_{p}\|T\|^{2}\right)^{\frac{1}{2}}
$$

for some $a_{p} \neq 0$.

- If $p=2$, then there are non-null compact T 's such that

$$
\|\operatorname{Id}+T\|=1
$$

- Oikhberg, 2005:

If $1<p<\infty, p \neq 2, T \in L\left(\mathcal{L}_{p}(\tau)\right)$ compact, then

$$
\|\mathrm{Id}+T\| \geqslant 1+k_{p} \min \left\{\|T\|,\|T\|^{2}\right\}
$$

for some $k_{p} \neq 0$.

Our main questions

- Is any of the previous inequalities an equality ?
- Even more, is there any norm equality valid for all compact operators on L_{p} or \mathcal{L}_{p} spaces ?
- Actually, we would like to study the possibility of finding norm equalities for operators in the spirit of Daugavet equation, valid for all compact (rank-one) operators on a Banach space. We will study three cases:
- $\|\mathrm{Id}+T\|=f(\|T\|)$ for arbitrary f.
- $\|g(T)\|=f(\|T\|)$ for analytic g and arbitrary f.
- $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$ for analytic g and continuous f.

Equalities of the form

$$
\|\operatorname{Id}+T\|=f(\|T\|)
$$

Proposition:

X real or complex Banach space, $f: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}$ arbitrary, $a, b \in \mathbb{K}$. If the norm equality

$$
\|a \operatorname{Id}+b T\|=f(\|T\|)
$$

holds for every rank-one operator T on X, then

$$
f(t)=|a|+|b| t \quad\left(t \in \mathbb{R}_{0}^{+}\right) .
$$

If $a \neq 0, b \neq 0$, then X has the Daugavet property.

Then, we have to look for Daugavet-type equalities in which $\mathrm{Id}+T$ is replaced by something different.

Equalities of the form

$$
\|g(T)\|=f(\|T\|)
$$

Theorem:

X real or complex Banach space with $\operatorname{dim}(X) \geqslant 2$.
Suppose that the norm equality

$$
\|g(T)\|=f(\|T\|)
$$

holds for every rank-one operator T on X, where

- $g: \mathbb{K} \longrightarrow \mathbb{K}$ is analytic,
- $f: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}$ is arbitrary.

Then, there are $a, b \in \mathbb{K}$ such that

$$
g(\zeta)=a+b \zeta \quad(\zeta \in \mathbb{K}) .
$$

Equalities of the form $\|g(T)\|=f(\|T\|)$

Corollary:

Only three norm equalities of the form

$$
\|g(T)\|=f(\|T\|)
$$

are possible:

- $(g$ is constant $):\|a \mathrm{Id}\|=|a|$,
- $(g(\zeta)=b \zeta):\|b T\|=|b|\|T\|$,
(trivial cases)
- $(g(\zeta)=a+b \zeta$ with $a \neq 0, b \neq 0)$:
$\|a \operatorname{Id}+b T\|=|a|+|b|\|T\|$, which implies that X has the Daugavet property.

Equalities of the form
 $$
\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)
$$

Complex case:
X complex Banach space with $\operatorname{dim}(X) \geqslant 2$.
Suppose that the norm equality

$$
\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)
$$

holds for every rank-one operator on X, where

- $g: \mathbb{C} \longrightarrow \mathbb{C}$ is analytic and non-constant,
- $f: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}$ is continuous.

Proposition:

The only possible form of the function f is the following:

$$
f(t)=|1+g(0)|-|g(0)|+t \quad(t \geqslant|g(0)|) .
$$

We obtain two different cases:

- $|1+g(0)| \neq|g(0)|$ i.e., $\operatorname{Re} g(0) \neq-1 / 2$,
- $|1+g(0)|=|g(0)|$ i.e., $\operatorname{Re} g(0)=-1 / 2$.

- Theorem:

If $\operatorname{Re} g(0) \neq-1 / 2$ and

$$
\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)[=|1+g(0)|-|g(0)|+\|g(T)\|]
$$

for every rank-one T, then X has the Daugavet property.

- EXAMPLE:

If we take $g(\zeta)=-1 / 2+\zeta$, we obtain the equation

$$
\begin{gathered}
\left\|\operatorname{Id}+\left(-\frac{1}{2} \operatorname{Id}+T\right)\right\|=\left\|-\frac{1}{2} \operatorname{Id}+T\right\| \text { or, equivalently, } \\
\|\operatorname{Id}+T\|=\|\operatorname{Id}-T\|
\end{gathered}
$$

- Every rank-one operator T on $C[0,1] \oplus_{2} C[0,1]$ satisfies $\left\|\operatorname{Id}+\mathrm{e}^{i \theta} T\right\|=\|\operatorname{Id}+T\|$ for every $\theta \in \mathbb{R}$.
- The space $C[0,1] \oplus_{2} C[0,1]$ does not have the Daugavet property.

$$
\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)
$$

REAL CASE:

- The proofs of the above results are not valid (we use Picard's Theorem).
- We do not even know if any of the following simple equalities implies the Daugavet property:
- $\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|$ for every rank-one operator,
- $\left\|\operatorname{Id}-T^{2}\right\|=1+\left\|T^{2}\right\|$ for every rank-one operator.
- Every rank-one operator T on the real $C[0,1] \oplus_{2} C[0,1]$ satisfies $\|\operatorname{Id}+T\|=\|\operatorname{Id}-T\|$.

Some questions

- Study the real Banach spaces X for which the equality

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

holds for every rank-one operator T on X.

- Is there any real Banach space such that every operator T on X satisfies the equality $\left\|\mathrm{Id}+T^{2}\right\|=1+\left\|T^{2}\right\| \quad ?$
- Study the real or complex X for which the equality

$$
\|\operatorname{Id}+T\|=\|\operatorname{Id}-T\|
$$

holds for every rank-one operator T on X.

