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The Daugavet equation

X Banach space, T ∈ L(X )

‖Id + T‖ = 1 + ‖T‖ (DE)

Classical examples
1 Daugavet, 1963:

Every compact operator on C [0, 1] satisfies (DE).
2 Lozanoskii, 1966:

Every compact operator on L1[0, 1] satisfies (DE).
3 Abramovich, Holub, and more, 80’s:

X = C(K), K perfect compact space
or X = L1(µ), µ atomless measure
=⇒ every weakly compact T ∈ L(X ) satisfies (DE).
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The Daugavet property

A Banach space X is said to have the Daugavet property if every rank-one
operator on X satisfies (DE).

Then, all weakly compact operators also satisfy (DE).
Obviously, if X∗ has the Daugavet property, so does X .
The converse is not true.

(Kadets–Shvidkoy–Sirotkin–Werner, 1997 & 2000)

Prior versions of: Chauveheid, 1982; Abramovich–Aliprantis–Burkinshaw, 1991

Some examples...
1 K perfect, µ atomeless, X arbitrary Banach space

=⇒ C(K , X ), L1(µ, X ), and L∞(µ, X ) have the Daugavet property.
(Kadets, 1996; Nazarenko, –; Shvidkoy, 2001)

2 K arbitrary. If X has the Daugavet property, then so does C(K , X ).
(M.–Payá, 2000)
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More examples...
3 The c0, `1, and `∞ sums of Banach spaces with the Daugavet property

have the Daugavet property.
4 A(D) and H∞ have the Daugavet property.

(Wojtaszczyk, 1992)

5 R ⊂ L1[0, 1] =: L1 reflexive, then L1/R has the Daugavet property.
(Kadets–Shvidkoy–Sirotkin–Werner, 2000)

6 A C∗-algebra has the Daugavet property if and only if it is non-atomic.
7 The predual of a von Neumann algebra has the Daugavet property if and

only if the algebra is non-atomic.

(Oikhberg, 2002)
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Some propaganda. . .

Let X be a Banach space with the Daugavet property. Then
X does not have the Radon-Nikodým property.

(Wojtaszczyk, 1992)
Every slice of BX and every w∗-slice of BX∗ have diameter 2.

(Kadets–Shvidkoy–Sirotkin–Werner, 2000)
Actually, every weakly-open subset of BX has diameter 2.

(Shvidkoy, 2000)
X contains a copy of `1. X ∗ contains a copy or L1[0, 1].
X has no unconditional basis.

(Kadets, 1996)
Actually, X does not embed into a space with unconditional basis.

(Kadets–Shvidkoy–Sirotkin–Werner, 2000)
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Geometric characterizations

Theorem [KSSW]

X has the Daugavet property.

For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists
y ∈ SX such that

Re x∗(y) > 1 − ε and ‖x − y‖ > 2 − ε.

For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists
y∗ ∈ SX∗ such that

Re y∗(x) > 1 − ε and ‖x∗ − y∗‖ > 2 − ε.

For every x ∈ SX and every ε > 0, we have

BX = co
�
{y ∈ BX : ‖x − y‖ > 2 − ε}

�
.

x

{y ∈ BX : ‖x− y‖ > 2− ε}
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A new sufficient condition

Theorem

Let X be a Banach space such that

X ∗ = Y ⊕1 Z

with Y and Z norming subspaces. Then, X has the Daugavet property.

A closed subspace W ⊆ X ∗ is norming if

‖x‖ = sup {|w∗(x)| : w∗ ∈ W , ‖w∗‖ = 1}

or, equivalently, if BW is w∗-dense in BX∗ .
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We have...

X∗ = Y ⊕1 Z ,
BY , BZ w∗-dense in BX∗ .

?⇒
We need...

fixed x0 ∈ SX , x∗0 ∈ SX∗ , ε > 0, find y∗ ∈ SX∗ such that

‖x∗0 + y∗‖ > 2 − ε and Re y∗(x0) > 1 − ε.

Write x∗0 = y∗0 + z∗0 with y∗0 ∈ Y , z∗0 ∈ Z , ‖x∗0 ‖ = ‖y∗0 ‖ + ‖z∗0 ‖, and write

U = {x∗ ∈ BX∗ : Re x∗(x0) > 1 − ε}.

Take z∗ ∈ BZ ∩ U and a net (y∗λ) in BY ∩ U, such that (y∗λ)
w∗−→ z∗.

(y∗λ + y∗0 ) −→ z∗ + y∗0 and the norm is w∗-lower semi-continuous, therefore

lim inf ‖y∗λ + y∗0 ‖ > ‖z∗ + y∗0 ‖ = ‖z∗‖ + ‖y∗0 ‖ > 1 + ‖y∗0 ‖ − ε.

Then, we may find µ such that ‖y∗µ + y∗0 ‖ > 1 + ‖y∗0 ‖ − ε/2.

Finally, observe that

‖x∗0 + y∗µ‖ = ‖(y∗0 + y∗µ) + z∗0 ‖ =

= ‖y∗0 + y∗µ‖ + ‖z∗0 ‖ > 1 + ‖y∗0 ‖ − ε + ‖z∗0 ‖ = 2 − ε,

and that Re y∗µ(x0) > 1 − ε (since y∗µ ∈ U).
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Some immediate consequences

Corollary

Let X be an L-embedded space with ext (BX ) = ∅. Then, X ∗ (and hence X )
has the Daugavet property.

Corollary

If Y is an L-embedded space which is a subspace of L1 ≡ L1[0, 1], then
(L1/Y )∗ has the Daugavet property.

It was already known that...

If Y ⊂ L1 is reflexive, then L1/Y has the Daugavet property.
(Kadets–Shvidkoy–Sirotkin–Werner, 2000)

If Y ⊂ L1 is L-embedded, then L1/Y does not have the RNP.
(Godefroy–Li, 1990)
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von Neumann preduals

A C∗-algebra X is a von Neumann algebra if it is a dual space.
In such a case, X has a unique predual X∗.
X∗ is always L-embedded.
Therefore, if ext (BX∗) is empty, then X and X∗ have the Daugavet
property.

Actually, much more can be proved:
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Theorem

Let X∗ be the predual of the von Neumann algebra X . Then, TFAE:
X has the Daugavet property.
X∗ has the Daugavet property.
Every weakly open subset of BX∗ has diameter 2.
BX∗ has no strongly exposed points.
BX∗ has no extreme points.
X is non-atomic (i.e. it has no atomic projections).

An atomic projection is an element p ∈ X such that

p2 = p∗ = p and p X p = Cp.

Miguel Martín The Daugavet property



Introduction
A new sufficient condition

Applications
The alternative Daugavet equation

Recommended readings

von Neumann preduals
C∗-algebras

C ∗-algebras

Let X be a C∗-algebra. Then, X ∗∗ is a von Neumann algebra.
Write X ∗ =

�
X ∗∗�

∗ = A⊕1 N, where
A is the atomic part,
N is the non-atomic part.

Every extreme point of BX∗ is in BA.
Therefore, A is norming.
What’s about N ?

Theorem

If X is non-atomic, then N is norming. Therefore, X has the Daugavet
property.

Actually, much more can be proved:
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Theorem

Let X be a C∗-algebra. Then, TFAE:
X has the Daugavet property.
X is non-atomic.
The norm of X is extremely rough, i.e.,

lim sup
‖h‖→0

‖x + h‖+ ‖x − h‖ − 2
‖h‖ = 2

for every x ∈ SX (equivalently, every w∗-slice of BX∗ has diameter 2).
The norm of X is not Fréchet-smooth at any point.
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The alternative Daugavet equation

The alternative Daugavet equation

X Banach space, T ∈ L(X )

max
|ω|=1

‖Id + ω T‖ = 1 + ‖T‖ (aDE)

(Duncan–McGregor–Pryce–White, 1970; Holub, Abramovich. . . , 80’s)

Two possible properties

X is said to have the alternative Daugavet property (ADP) iff every
rank-one (equivalently every compact) operator on X satisfies (aDE).

(Abramovich, 1991; M.–Oikhberg, 2004)
X is said to have numerical index 1 iff every operator on X satisfies
(aDE).

(Lumer, 1968; Duncan–McGregor–Pryce–White, 1970)
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Numerical index 1

C(K) and L1(µ) have numerical index 1.
(Duncan–McGregor–Pryce–White, 1970)

A(D) also has numerical index 1.
(Crabb–Duncan–McGregor, 1972)

In case dim(X ) < ∞, X has numerical index 1 iff

|x∗(x)| = 1 x∗ ∈ ext (BX∗) , x ∈ ext (BX ) .

(McGregor, 1971)
In case dim(X ) = ∞, if X has numerical index 1 and it has the RNP,
then X ⊇ `1.

(López–M.–Payá, 1999)
A C∗-algebra has numerical index 1 iff it is commutative.

(Huruya, 1977)
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The alternative Daugavet property

The ADP is weaker than the Daugavet property and the numerical index 1.
c0 ⊕∞ C([0, 1], `2) has the ADP, but neither the Daugavet property, nor
numerical index 1.
Every Banach space with the ADP can be renormed still having the ADP
but lacking the Daugavet property.
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Theorem

X has the ADP.

For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists
y ∈ SX such that

|x∗(y)| > 1 − ε and ‖x − y‖ > 2 − ε.

For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists
y∗ ∈ SX∗ such that

|y∗(x)| > 1 − ε and ‖x∗ − y∗‖ > 2 − ε.

For every x ∈ SX and every ε > 0, we have

BX = co
�
T {y ∈ BX : ‖x − y‖ > 2 − ε}

�
.

x

{y ∈ BX : ‖x− y‖ > 2− ε}

{y ∈ BX : ‖x + y‖ > 2− ε}
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Let V∗ be the predual of the von Neumann algebra V .

The Daugavet property of V∗ is equivalent to:

V has no atomic projections, or
the unit ball of V∗ has no extreme points.

V∗ has numerical index 1 iff:

V is commutative, or
|v∗(v)| = 1 for v ∈ ext (BV ) and v∗ ∈ ext (BV∗).

The alternative Daugavet property of V∗ is equivalent to:

the atomic projections of V are central, or
|v(v∗)| = 1 for v ∈ ext (BV ) and v∗ ∈ ext (BV∗), or
V = C ⊕∞ N, where C is commutative and N has no atomic projections.
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Let X be a C∗-algebra.

The Daugavet property of X is equivalent to:

X does not have any atomic projection, or
the unit ball of X ∗ does not have any w∗-strongly exposed point.

X has numerical index 1 iff:

X is commutative, or
|x∗∗(x∗)| = 1 for x∗∗ ∈ ext (BX∗∗) and x∗ ∈ ext (BX∗).

The alternative Daugavet property of X is equivalent to:

the atomic projections of X are central, or
|x∗∗(x∗)| = 1, for x∗∗ ∈ ext (BX∗∗), and x∗ ∈ BX∗ w∗-strongly exposed, or
∃ a commutative ideal Y such that X/Y has the Daugavet property.
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An invitation to operator theory.
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Y. Abramovich, and C. Aliprantis,
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Graduate Studies in Math. 51, AMS, 2002.
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Trans. Amer. Math. Soc. (2000).
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D. Werner,
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Irish Math. Soc. Bulletin (2001).
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