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The alternative Daugavet equation

X Banach space, T ∈ L(X ), we say that T satisfies the alternative Daugavet
equation iff

max
|ω|=1

‖Id + ω T‖ = 1 + ‖T‖ (aDE)

(Duncan–McGregor–Pryce–White, 1970; Holub, Abramovich. . . , 80’s)

Two equivalent reformulations:

There exists ω ∈ T such that S = ω T satisfies “usual” Daugavet
equation, namely

‖Id + S‖ = 1 + ‖S‖ (DE)

v(T ) = ‖T‖, where

v(T ) = sup{|x∗(Tx)| : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1}.

is the numerical radius of T .
(Duncan–McGregor–Pryce–White, 1970)
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The alternative Daugavet property

A Banach space X is said to have the alternative Daugavet property (ADP) iff
every rank-one operator on X satisfies (aDE).

(Abramovich, 1991; M.–Oikhberg, 2004)

Two sufficient conditions for the ADP

If every rank-one operator on X satisfies (DE),
i.e. if the space X has the Daugavet property.
If every operator on X satisfies (aDE), i.e. if numerical radius and norm
coincides in the whole L(X ).
In this case, X is said to have numerical index 1.
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The Daugavet equation

X Banach space, T ∈ L(X )

‖Id + T‖ = 1 + ‖T‖ (DE)

Classical examples
1 Daugavet, 1963:

Every compact operator on C [0, 1] satisfies (DE).
2 Lozanoskii, 1966:

Every compact operator on L1[0, 1] satisfies (DE).
3 Abramovich, Holub, and more, 80’s:

X = C(K), K perfect compact space
or X = L1(µ), µ atomless measure
=⇒ every weakly compact T ∈ L(X ) satisfies (DE).
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The Daugavet property

A Banach space X is said to have the Daugavet property if every rank-one
operator on X satisfies (DE).
Then, every weakly compact operator also satisfies (DE).
If X ∗ has the Daugavet property, so does X . The converse is not true.

(Kadets–Shvidkoy–Sirotkin–Werner, 1997 & 2000)

Some examples...
1 K perfect, µ atomeless, X arbitrary Banach space

=⇒ C(K , X ), L1(µ, X ), and L∞(µ, X ) have the Daugavet property.
(Kadets, 1996; Nazarenko, –; Shvidkoy, 2001)

2 K arbitrary. If X has the Daugavet property, then so does C(K , X ).
(M.–Payá, 2000)
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More examples...
3 The c0, `1, and `∞ sums of Banach spaces with the Daugavet property

have the Daugavet property.
4 A(D) and H∞ have the Daugavet property.

(Wojtaszczyk, 1992)

5 R ⊂ L1[0, 1] =: L1 reflexive, then L1/R has the Daugavet property.
(Kadets–Shvidkoy–Sirotkin–Werner, 2000)

6 A C∗-algebra has the Daugavet property if and only if it is non-atomic.
7 The predual of a von Neumann algebra has the Daugavet property if and

only if the algebra is non-atomic.

(Oikhberg, 2002)
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Geometric characterizations

Theorem [KSSW]

TFAE:
X has the Daugavet property.

For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists
y ∈ SX such that

Re x∗(y) > 1 − ε and ‖x − y‖ > 2 − ε.

For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists
y∗ ∈ SX∗ such that

Re y∗(x) > 1 − ε and ‖x∗ − y∗‖ > 2 − ε.

For every x ∈ SX and every ε > 0, we have

BX = co
�
{y ∈ BX : ‖x − y‖ > 2 − ε}

�
.

x

{y ∈ BX : ‖x− y‖ > 2− ε}
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A new sufficient condition

Theorem

Let X be a Banach space such that

X ∗ = Y ⊕1 Z

with Y and Z norming subspaces. Then, X has the Daugavet property.

A closed subspace W ⊆ X ∗ is norming if

‖x‖ = sup {|w∗(x)| : w∗ ∈ W , ‖w∗‖ = 1}

or, equivalently, if BW is w∗-dense in BX∗ .
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Proof of the theorem

We have...

X∗ = Y ⊕1 Z ,
BY , BZ w∗-dense in BX∗ .

?⇒
We need...

fixed x0 ∈ SX , x∗0 ∈ SX∗ , ε > 0, find y∗ ∈ SX∗ such that

‖x∗0 + y∗‖ > 2 − ε and Re y∗(x0) > 1 − ε.

Write x∗0 = y∗0 + z∗0 with y∗0 ∈ Y , z∗0 ∈ Z , ‖x∗0 ‖ = ‖y∗0 ‖ + ‖z∗0 ‖, and write

U = {x∗ ∈ BX∗ : Re x∗(x0) > 1 − ε}.

Take z∗ ∈ BZ ∩ U and a net (y∗λ) in BY ∩ U, such that (y∗λ)
w∗−→ z∗.

(y∗λ + y∗0 ) −→ z∗ + y∗0 and the norm is w∗-lower semi-continuous, therefore

lim inf ‖y∗λ + y∗0 ‖ > ‖z∗ + y∗0 ‖ = ‖z∗‖ + ‖y∗0 ‖ > 1 + ‖y∗0 ‖ − ε.

Then, we may find µ such that ‖y∗µ + y∗0 ‖ > 1 + ‖y∗0 ‖ − ε/2.

Finally, observe that

‖x∗0 + y∗µ‖ = ‖(y∗0 + y∗µ) + z∗0 ‖ =

= ‖y∗0 + y∗µ‖ + ‖z∗0 ‖ > 1 + ‖y∗0 ‖ − ε + ‖z∗0 ‖ = 2 − ε,

and that Re y∗µ(x0) > 1 − ε (since y∗µ ∈ U).
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Some immediate consequences

Corollary

Let X be an L-embedded space with ext (BX ) = ∅. Then, X ∗ (and hence X )
has the Daugavet property.

Corollary

If Y is an L-embedded space which is a subspace of L1 ≡ L1[0, 1], then
(L1/Y )∗ has the Daugavet property.

It was already known that...

If Y ⊂ L1 is reflexive, then L1/Y has the Daugavet property.
(Kadets–Shvidkoy–Sirotkin–Werner, 2000)

If Y ⊂ L1 is L-embedded, then L1/Y does not have the RNP.
(Harmand–Werner–Werner, 1993)
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von Neumann preduals

von Neumann preduals

A C∗-algebra X is a von Neumann algebra if it is a dual space.
In such a case, X has a unique predual X∗.
X∗ is always L-embedded.
Therefore, if ext (BX∗) is empty, then X and X∗ have the Daugavet
property.

Actually, much more can be proved:
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Theorem

Let X∗ be the predual of the von Neumann algebra X . Then, TFAE:
X has the Daugavet property.
X∗ has the Daugavet property.
Every weakly open subset of BX∗ has diameter 2.
BX∗ has no strongly exposed points.
BX∗ has no extreme points.
X is non-atomic (i.e. it has no atomic projections).

An atomic projection is an element p ∈ X such that

p2 = p∗ = p and p X p = Cp.
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C ∗-algebras

Let X be a C∗-algebra. Then, X ∗∗ is a von Neumann algebra.
Write X ∗ =

�
X ∗∗�

∗ = A⊕1 N, where
A is the atomic part,
N is the non-atomic part.

Every extreme point of BX∗ is in BA.
Therefore, A is norming.
What’s about N ?

Theorem

If X is non-atomic, then N is norming. Therefore, X has the Daugavet
property.

Actually, much more can be proved:
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Theorem

Let X be a C∗-algebra. Then, TFAE:
X has the Daugavet property.
The norm of X is extremely rough, i.e.,

lim sup
‖h‖→0

‖x + h‖+ ‖x − h‖ − 2
‖h‖ = 2

for every x ∈ SX (equivalently, every w∗-slice of BX∗ has diameter 2).
The norm of X is not Fréchet-smooth at any point.
X is non-atomic.
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Numerical range of an operator

H Hilbert space, T ∈ L(H),

W (T ) := {(Tx |x) : x ∈ H, ‖x‖ = 1}.

(Toeplitz, 1918)
X Banach space, T ∈ L(X ),

W (T ) := {x∗(Tx) : ‖x‖ = ‖x∗‖ = x∗(x) = 1}.

(Lumer, 1961; Bauer, 1962)

Numerical radius of an operator

X Banach space, T ∈ L(X ),

v(T ) := sup{|λ| : λ ∈ W (T )}.
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Numerical index of a Banach space

X Banach space,

n(X ) := max{k > 0 : k‖T‖ 6 v(T ) ∀T ∈ L(X )}
= inf{v(T ) : T ∈ L(X ), ‖T‖ = 1}.

(Lumer, 1968; Duncan-McGregor-Pryce-White, 1970)

Immediate properties

0 6 n(X ) 6 1.
n(X ∗) 6 n(X ).

Numerical index 1

X has numerical index 1 if v(T ) = ‖T‖ for every T ∈ L(X ).
Equivalently, if every operator T on X satisfies

max
|ω|=1

‖Id + ω T‖ = 1 + ‖T‖ (aDE)
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Some examples

1 n
�
L1(µ)

�
= 1 for every positive measure µ.

2 Therefore, X ∗ ≡ L1(µ) ⇒ n(X ) = 1.
3 For instance, n

�
C(K)

�
= 1 for every compact space K .

(Duncan-McGregor-Pryce-White, 1970)

4 The disk algebra A(D) has numerical index 1.
(Crabb-Duncan-McGregor, 1972)

5 Every space “nicely embedded” into some Cb(Ω) has numerical index 1.
(Werner, 1997)
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More examples
6 If dim(X ) < ∞, then X has numerical index 1 iff

|x∗(x)| = 1
�
x∗ ∈ ext(BX∗), x ∈ ext(BX )

�
.

(McGregor, 1971)
7 The c0, `1, and `∞ sums of Banach spaces with numerical index 1 have

numerical index 1.
8 X Banach space, K compact space, µ positive measure. Then

C(K , X ), L1(µ, X ), and L∞(µ, X ) have numerical index 1 iff X does.

(M.–Payá, 2000; M.–Villena, 2003)
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C ∗-algebras and preduals

Theorem

Let X be a C∗-algebra. Then, TFAE:
X is commutative.
|x∗∗(x∗)| = 1 for every extreme points x∗∗ of BX∗∗ and x∗ of BX∗ .
X has numerical index 1.
X ∗ has numerical index 1.

(Huruya, 1977; Kaidi–Morales–Rodriguez-Palacios, 2001)

Theorem

Let X be a von Neumann algebra. Then, TFAE:
X is commutative (meaning n(X ) = 1).
|x∗(x)| = 1 for every extreme points x∗ of BX∗ and x of BX .
X∗ has numerical index 1.

(Kaidi–Morales–Rodriguez-Palacios, 2001)
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The alternative Daugavet equation

X Banach space, T ∈ L(X )

max
|ω|=1

‖Id + ω T‖ = 1 + ‖T‖ (aDE)

(Duncan–McGregor–Pryce–White, 1970; Holub, Abramovich. . . , 80’s)

The alternative Daugavet property

A Banach space X is said to have the alternative Daugavet property
(ADP) iff every rank-one operator on X satisfies (aDE).
Then, every weakly compact operator also satisfies (aDE).
If X ∗ has the ADP, so does X . The converse is not true.

(Abramovich, 1991; M.–Oikhberg, 2004)
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Some examples
1 Banach spaces with the Daugavet property and Banach spaces with

numerical index 1 have the ADP.
2 The c0, `1, and `∞ sums of Banach spaces with the ADP have the ADP.
3 The space C([0, 1], `2)⊕∞ c0 has the ADP but not the Daugavet property

neither numerical index 1.
4 Every Banach space with the ADP can be renormed still having the ADP

but lacking the Daugavet property.
5 X Banach space, K compact space, µ positive measure. Then:

C(K , X ) has the ADP iff K is perfect of X has the ADP.
L1(µ, X ) and L∞(µ, X ) have the ADP iff µ is atomless or X has the ADP.

6 X real Banach space, dim(X ) = ∞.
If X has the RNP and the ADP, then X ⊇ `1.
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Geometric characterizations

Theorem

TFAE:
X has the ADP.

For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists
y ∈ SX such that

|x∗(y)| > 1 − ε and ‖x − y‖ > 2 − ε.

For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists
y∗ ∈ SX∗ such that

|y∗(x)| > 1 − ε and ‖x∗ − y∗‖ > 2 − ε.

For every x ∈ SX and every ε > 0, we have

BX = co
�
T {y ∈ BX : ‖x − y‖ > 2 − ε}

�
.

x

{y ∈ BX : ‖x− y‖ > 2− ε}

{y ∈ BX : ‖x + y‖ > 2− ε}
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von Neumann preduals

Proposition

H Hilbert space. If K(H) has the ADP, then H = C.

Let X be a von Neumann algebra.
X∗ = A⊕1 N decomposition into atomic and non-atomic part.
N has the Daugavet property

A =
�M

i∈I

L1(Hi )
�
`1

.

Therefore, X∗ has the ADP iff A is commutative.

Actually, much more can be proved:
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Theorem

Let X∗ be the predual of the von Neumann algebra X . Then, TFAE:
X has the ADP.
X∗ has the ADP.
|x(x∗)| = 1 for every x ∈ ext(BX ) and every x∗ ∈ ext(BX∗).
X = `∞(Γ)⊕∞ N , where N has the Daugavet property.
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C ∗-algebras

Let X be a C∗-algebra. Then, X ∗∗ is a von Neumann algebra.
Write

X ∗ =
�
X ∗∗�

∗ = A⊕1 N X ∗∗ = A⊕∞ N .

Take Y = X ∩ A.
Then Y is an M-ideal of X and X/Y has the Daugavet property.
Therefore, X has the ADP iff Y does.
But Y is an Asplund space, where ADP implies numerical index 1, and Y
should be commutative.

Actually, the following result can be proved:
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Theorem

Let X be a C∗-algebra. Then, TFAE:
X has the ADP.
|x∗∗(x∗)| = 1 for every x∗∗ ∈ ext(BX∗∗)
and every w∗-strongly exposed x∗ ∈ BX∗ .
There exists a commutative ideal Y such that X/Y has the Daugavet
property.
All the atomic projections are in the center of the algebra.
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Let V∗ be the predual of the von Neumann algebra V .

The Daugavet property of V∗ is equivalent to:

V has no atomic projections, or
the unit ball of V∗ has no extreme points.

V∗ has numerical index 1 iff:

V is commutative, or
|v∗(v)| = 1 for v ∈ ext (BV ) and v∗ ∈ ext (BV∗).

The alternative Daugavet property of V∗ is equivalent to:

the atomic projections of V are central, or
|v(v∗)| = 1 for v ∈ ext (BV ) and v∗ ∈ ext (BV∗), or
V = C ⊕∞ N, where C is commutative and N has no atomic projections.
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Let X be a C∗-algebra.

The Daugavet property of X is equivalent to:

X does not have any atomic projection, or
the unit ball of X ∗ does not have any w∗-strongly exposed point.

X has numerical index 1 iff:

X is commutative, or
|x∗∗(x∗)| = 1 for x∗∗ ∈ ext (BX∗∗) and x∗ ∈ ext (BX∗).

The alternative Daugavet property of X is equivalent to:

the atomic projections of X are central, or
|x∗∗(x∗)| = 1, for x∗∗ ∈ ext (BX∗∗), and x∗ ∈ BX∗ w∗-strongly exposed, or
∃ a commutative ideal Y such that X/Y has the Daugavet property.
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