

UNIVERSIDAD DE GRANADA

## The Daugavet property

## of C\*-algebras and von Neumann preduals

Julio Becerra Miguel Martín

# The Daugavet equation

X Banach space,  $T \in L(X)$ 

$$||Id + T|| = 1 + ||T||$$
 (DE)

#### • Daugavet, 1963:

Every compact operator on C[0, 1] satisfies (DE).

#### Lozanoskii, 1966:

Every compact operator on  $L_1[0, 1]$  satisfies (DE).

#### • Abramovich, Holub and more, 80's:

X = C(K), K perfect compact space

or  $X = L_1(\mu)$ ,  $\mu$  atomless measure,

 $\implies$  every weakly compact  $T \in L(X)$  satisfies (DE).

A Banach space X is said to have the Daugavet property if every rank-one operator  $T \in L(X)$  satisfies (DE). \* Then, all weakly compact operators also satisfy (DE).

(Kadets-Shvidkoy-Sirotkin-Werner, 1997 & 2000)

\*  $X^*$  Daugavet property  $\implies X$  Daugavet property

#### EXAMPLES

• K perfect,  $\mu$  atomeless, X arbitrary Banach space  $\implies C(K, X), L_1(\mu, X), \text{ and } L_{\infty}(\mu, X)$  have the Daugavet property.

(Kadets, 1996; Nazarenko, -; M.-Villena, 2003)

THE DAUGAVET PROPERTY

• K arbitrary compact space. If X has the Daugavet property, then so does C(K, X).

(M.–Payá, 2000)

•  $A(\mathbb{D})$  and  $H^{\infty}$  have the Daugavet property.

(Wojtaszczyk, 1992)

- A C\*-algebra has the Daugavet property if and only if it is non-atomic.
- The predual of a von Neumann algebra has the Daugavet property if and only if the algebra is non-atomic.

(Oikhberg, 2002)

THE DAUGAVET PROPERTY

#### Some known properties

Let X be a Banach space with the Daugavet property. Then

- X contains a copy of  $\ell_1$ .
- X does not embed into a space with unconditional basis.

(Kadets-Shvidkoy-Sirotkin-Werner, 2000)

• X does not have the Radon-Nikodým property.

(Wojtaszczyk, 1992)

• Every weakly-open subset of  $B_X$  has diameter 2.

(Shvidkoy, 2000)

<u>PROPOSITION</u> (KSSW, 2000) X Banach space. TFAE:

- (i) X has the Daugavet property.
- (*ii*) For every  $x \in S_X$ ,  $x^* \in S_{X^*}$ , and  $\varepsilon > 0$ , there exists  $y \in S_X$  such that

Re 
$$x^*(y) > 1 - \varepsilon$$
 and  $||x + y|| \ge 2 - \varepsilon$ .

(iii) For every  $x \in S_X$ ,  $x^* \in S_{X^*}$ , and  $\varepsilon > 0$ , there exists  $y^* \in S_{X^*}$  such that

Re  $y^*(x) > 1 - \varepsilon$  and  $||x^* + y^*|| \ge 2 - \varepsilon$ .

(iv) For every  $x \in S_X$  and every  $\varepsilon > 0$ , we have

 $B_X = \overline{\operatorname{co}}(\{y \in B_X : \|x - y\| \ge 2 - \varepsilon\}).$ 

6

# **New sufficient conditions**

## THEOREM

Let X be a Banach space such that

$$X^* = Y \oplus_1 Z$$

with Y and Z 1-norming subspaces. Then, X has the Daugavet property.

### COROLLARY

- X L-embedded without extreme points. Then, X\*
  (and hence X) has the Daugavet property.
- $Y \subseteq L_1[0,1]$ , Y *L*-embedded. Then  $(L_1[0,1]/Y)^*$  has the Daugavet property.

# **Von Neumann preduals**

Let  $X_*$  be the predual of the von Neumann algebra X.

- $X_*$  is *L*-embedded.
- Therefore, if  $ex(B_{X_*})$  is empty, then X and  $X_*$  have the Daugavet property.

Actually, more can be proved:

## THEOREM

 $X_*$  the predual of the von Neumann algebra X. TFAE:

- (i) X has the Daugavet property.
- (ii)  $X_*$  has the Daugavet property.
- (*iii*) Every relative weak open subset of  $B_{X_*}$  has diameter 2.
- (iv)  $B_{X_*}$  has no strongly exposed points.
- (v)  $B_{X_*}$  has no extreme points.
- (vi) X is non-atomic, i.e., there is no  $p \in X$  such that

$$p^2 = p^* = p$$
 and  $p X p = \mathbb{C}p$ .

Let X be a von Neumann algebra.

- X decomposes as  $\mathcal{A} \oplus_{\infty} \mathcal{N}$ , where  $\mathcal{A}$  is purely atomic and  $\mathcal{N}$  has no atoms.
- Then, X<sub>∗</sub> decomposes as A ⊕<sub>1</sub> N, where A is generated by its extreme points and N has no extreme points.

## COROLLARY

In the natural decomposition  $X_* = A \oplus_1 N$ , we have

- N has the Daugavet property and
- A has the RNP.

# C\*-algebras

Let X be a  $C^*$ -algebra. Then,  $X^{**}$  is a von Neumann algebra and, as before,

$$X^* = \left(X^{**}\right)_* = A \oplus_1 N$$

- A is generated by the extreme points of  $X^*$
- $B_N$  has no extreme points

### COROLLARY

- The dual of a C\*-algebra does not have the Daugavet property.
- A  $C^*$ -algebra  $X = Z^{**}$  does not have the Daugavet property.

 $C^*$ -Algebras

Let X be a  $C^*$ -algebra. Write  $X^* = A \oplus_1 N$ .

- *A* is 1-norming for *X* (Krein-Milman Theorem)
- What's about N?

### PROPOSITION

If X is non-atomic, then N is 1-norming for X. Therefore, X has the Daugavet property.

Actually, more can be proved:

#### $C^*$ -ALGEBRAS

#### THEOREM

Let X be a  $C^*$ -algebra. TFAE:

- (i) X has the Daugavet property.
- (ii) X is non-atomic.
- (iii) The norm of X is extremely rough, i.e.,

$$\limsup_{\|h\| \to 0} \frac{\|x+h\| + \|x-h\| - 2}{\|h\|} = 2$$

for every  $x \in S_X$ .

(iv) The norm of X is not Fréchet-smooth at any point.

THE DAUGAVET PROPERTY

## Remark

- If X is an arbitrary infinite-dimensional  $C^*$ -algebra, then every relative weak-open subset of  $B_X$  has diameter 2.
- If X is an arbitrary infinite-dimensional von Neumann algebra, then the norm of  $X_*$  is extremely rough.

(Becerra–López–Rodríguez-Palacios, 2003)

## The uniform Daugavet property

A Banach space X is said to have the Uniform Daugavet property (UDP) if, for every  $\varepsilon > 0$ ,

 $\inf\{n \in \mathbb{N} : \operatorname{conv}_n(l^+(x,\varepsilon)) \supset S_X \ \forall x \in S_X\} < \infty$ 

where  $conv_n$  denotes the set of convex combinations of *n*-point collections and

$$l^+(x,\varepsilon) = \{y \in (1+\varepsilon)B_X : ||x+y|| > 2-\varepsilon\}.$$

• X has the UDP iff  $X_{\mathcal{U}}$  has the Daugavet property for every free ultrafilter  $\mathcal{U}$  of  $\mathbb{N}$ .

The uniform Daugavet property

### EXAMPLES

- If K is perfect, C(K) has the UDP.
- $L_1[0,1]$  has the UDP.

(Bilik–Kadets–Shvidkoy–Werner, 2004)

• There exists X having the Daugavet property but not the UDP.

(Kadets–Werner, 2004)

#### THEOREM

The UDP and the Daugavet property are equivalent for  $C^*$ -algebras and for von Neumann preduals.

THE UNIFORM DAUGAVET PROPERTY

### Sketch of the proof

- For *C*\*-algebras:
  - The ultrapower of a  $C^*$ -algebra is a  $C^*$ -algebra.
  - The roughness of the norm passes to ultrapower.
- For von Neumann preduals:
  - We do not know if the ultrapower of a von Neumann predual is again a von Neumann predual.
  - But, it is the predual of a  $JBW^*$ -triple.
  - The geometrical characterization is valid for preduals of JBW\*-triples.
  - If all the slices of  $B_X$  have diameter 2, then the unit ball of  $X_U$  has no strongly exposed points.

## The alternative Daugavet property

X Banach space,  $T \in L(X)$ 

$$\max_{\omega \in \mathbb{T}} \|Id + \omega T\| = 1 + \|T\|$$
 (aDE)

 X is said to have the alternative Daugavet property if every rank-one operator T ∈ L(X) satisfies (aDE).
 \* Then, all weakly compact operators also satisfy (aDE).

(M.–Oikhberg, 2004)

 If all the operators T ∈ L(X) satisfy (aDE), X is said to have numerical index 1.

(Lumer, 1968)

The alternative Daugavet property

- \* For a  $C^*$ -algebra X:
- The Daugavet property is equivalent to:
  - X does not have any atomic projection, or
  - $B_{X^*}$  has no  $w^*$ -strongly exposed points.
- The numerical index 1 is equivalent to:
  - X is commutative, or
  - $|x^{**}(x^*)| = 1$  for  $x^{**} \in ex(B_{X^{**}})$  and  $x^* \in ex(B_{X^*})$ .

(Huruya, 1977)

- The alternative Daugavet property is equivalent to:
  - the atomic projections of X are central, or

(M.–Oikhberg, 2004)

- $|x^{**}(x^*)| = 1$  for every  $x^{**} \in ex(B_{X^{**}})$  and every  $w^*$ -strongly exposed point  $x^*$  of  $B_{X^*}$ , or
- There is a commutative ideal Y of X such that X/Y has the Daugavet property.

- \* For the predual  $V_*$  of a von Neumann algebra V:
- The Daugavet property of  $V_*$  is equivalent to:
  - V has the Daugavet property, or
  - V<sub>\*</sub> has no extreme points.
- The numerical index 1 of  $V_*$  is equivalent to:
  - V has numerical index 1, or (Kaidi-Morales-Rodríguez-Palacios, 2001)
  - $|v^*(v)| = 1$  for  $v^* \in ex(B_{V^*})$  and  $v \in ex(B_V)$ .
- The alternative Daugavet property of  $V_*$  is equivalent to:
  - V has the alternative Daugavet property, or
  - $|v(v_*)| = 1$  for  $v \in ex(B_V)$  and  $v_* \in ex(B_{V_*})$ , or
  - $V = C \oplus_{\infty} N$ , where C has numerical index 1 and N has the Daugavet property.