

UNIVERSIDAD DE GRANADA

Finite-dimensional Banach spaces with numerical index zero

Miguel Martín, Javier Merí, Ángel Rodríguez-Palacios

Hermitian operators

H complex Hilbert space, $T \in L(H)$
T is Hermitian $\Longleftrightarrow \quad T=T^{*}$

$$
\begin{aligned}
& \Longleftrightarrow \quad(T x \mid x) \in \mathbb{R} \quad \forall x \in H \\
& \Longleftrightarrow \quad\|\exp (i \rho T)\|=1 \quad \forall \rho \in \mathbb{R}
\end{aligned}
$$

$i T$ is Hermitian $\Longleftrightarrow T^{*}=-T$

$$
\begin{array}{ll}
\Longleftrightarrow & \operatorname{Re}(T x \mid x)=0 \quad \forall x \in H \\
\Longleftrightarrow & \|\exp (\rho T)\|=1 \quad \forall \rho \in \mathbb{R}
\end{array}
$$

$\operatorname{Re}(T x \mid x)=0 \quad \forall x \in H$
॥
$\operatorname{Re} x^{*}(T x)=0 \quad x \in S_{H}, x^{*} \in S_{H^{*}}, x^{*}(x)=1$

Numerical Range of operators

- H Hilbert space, $T \in L(H)$

$$
V(T)=\{(T x \mid x): x \in H,\|x\|=1\}
$$

(Toeplitz, 1918)

- X Banach space, $T \in L(X)$

$$
V(T)=\left\{x^{*}(T x):\|x\|=\left\|x^{*}\right\|=x^{*}(x)=1\right\}
$$

(Lumer, 1961; Bauer, 1962)

- Numerical radius:
X Banach space, $T \in L(X)$,

$$
v(T)=\sup \{|\lambda|: \lambda \in V(T)\}
$$

v is a continuous seminorm:

$$
v(T) \leqslant\|T\|
$$

- Numerical index:
X Banach space,

$$
\begin{aligned}
n(X) & =\inf \{v(T): T \in L(X),\|T\|=1\} \\
& =\max \{k \geqslant 0: k\|T\| \leqslant v(T) \forall T \in L(X)\}
\end{aligned}
$$

(Lumer, 1970)

- $n(X)=0 \Longleftrightarrow v$ is not an equivalent norm
- $0 \leqslant n(X) \leqslant 1$ if X is real
$\frac{1}{\mathrm{e}} \leqslant n(X) \leqslant 1$ if X is complex
(Bohnenblust-Karlin, 1955; Glickfeld, 1970)

Some examples and results

- H Hilbert space, $\operatorname{dim}(H)>1$
$\Longrightarrow \begin{cases}n(H)=0 & \text { if } H \text { is real } \\ n(H)=1 / 2 & \text { if } H \text { is complex }\end{cases}$
- $n\left(L_{1}(\mu)\right)=1$
$X^{*} \equiv L_{1}(\mu) \Longrightarrow n(X)=1$
In particular, $n(C(K))=1$
(Duncan-McGregor-Pryce-White, 1970)
- X real, $\operatorname{dim}(X)=\infty$, RNP, $n(X)=1 \Longrightarrow X \supset \ell_{1}$
(López-Martín-Payá, 1999)
- $(X,\|\cdot\|)$ Banach space, $\operatorname{dim}(X)>1$, write

$$
\mathcal{N}(X)=\{n(X,\| \| \cdot \| \mid):\| \| \cdot\| \| \equiv\|\cdot\|\}
$$

Then
$\square 0 \in \mathcal{N}(X)$ in the real case
$1 / \mathrm{e} \in \mathcal{N}(X)$ in the complex case
$\square \mathcal{N}(X)$ is a non-trivial interval
\square If X has a "long biorthogonal system"
(v.g. if X is WCG),

$$
\Longrightarrow \begin{cases}\mathcal{N}(X) \supset[0,1) & \text { real case } \\ \mathcal{N}(X) \supset\left[\mathrm{e}^{-1}, 1\right) & \text { complex case }\end{cases}
$$

(Finet-Martín-Payá, 2003)

Real Banach spaces with numerical index zero

EXAMPLES:
$\square H$ real Hilbert space, $\operatorname{dim}(H)>1 \Longrightarrow n(H)=0$
$\square X$ complex Banach space $\Longrightarrow n\left(X_{\mathbb{R}}\right)=0$

$$
(T x=i x \forall x \in X, \quad v(T)=0)
$$

$\square n(Z)=0, Y$ arbitrary, $X=Y \oplus Z$ (absolute sum)

$$
\Longrightarrow n(X)=0
$$

Proposition

X real Banach space, $Y, Z \leqslant X, Z \neq 0$.
If Z has a complex structure, $X=Y \oplus Z$, and

$$
\left\|y+\mathrm{e}^{i \rho} z\right\|=\|y+z\| \quad(\rho \in \mathbb{R}, y \in Y, z \in Z),
$$

then $n(X)=0$.
Moreover, $T(y, z)=(0, i z)$ has numerical radius 0 .

ExAMPLE

Exists a real polyhedral Banach space X such that $n(X)=0$
$\square X$ does not contains \mathbb{C} isometrically
$\square v(T)>0$ for every $T \in L(X) \backslash\{0\}$

Finite-dimensional spaces

THEOREM

X finite-dimensional real space. TFAE:
(i) $n(X)=0$
(ii) Exist nonzero complex X_{1}, \ldots, X_{n}, a real X_{0}, and $q_{1}, \ldots, q_{n} \in \mathbb{N}$ such that $X=X_{0} \oplus X_{1} \oplus \cdots \oplus X_{n}$ and

$$
\left\|x_{0}+\mathrm{e}^{i q_{1} \rho} x_{1}+\cdots+\mathrm{e}^{i q_{n} \rho} x_{n}\right\|=\left\|x_{0}+\cdots+x_{n}\right\|
$$

for every $\rho \in \mathbb{R}$ and every $x_{j} \in X_{j}(j=0,1, \ldots, n)$.

SkETCH OF THE PROOF

\square Fix $T \in L(X) \backslash\{0\}$ such that $v(T)=0$
\square A Theorem by Bohnenblust \& Karlin:

$$
v(T)=0 \quad \Longleftrightarrow \quad\|\exp (\rho T)\|=1 \quad \forall \rho \in \mathbb{R}
$$

\square A Theorem by Auerbach: there exists a Hilbert space H with $\operatorname{dim}(H)=\operatorname{dim}(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$
\square Apply the above to $\exp (\rho T)$ for every $\rho \in \mathbb{R}$
\square You get $i T$ is hermitian in $L(H)$, so $T^{*}=-T$ and T^{2} is self-adjoint. The X_{j} 's are the eigenspaces of T^{2}.
\square Use Kronecker's Approximation Theorem to change the roots of the characteristic polynomial of T^{2} by rational numbers

A SIMPLE CASE

Let $X=X_{0} \oplus X_{1} \oplus X_{2}$ and $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ s.t.
$\left\|x_{0}+\mathrm{e}^{i \rho} x_{1}+\mathrm{e}^{i \alpha \rho} x_{2}\right\|=\left\|x_{0}+x_{1}+x_{2}\right\| \quad \forall \rho, \forall x_{0}, x_{1}, x_{2}$
Then

$$
\left\|x_{0}+x_{1}+x_{2}\right\|=\left\|x_{0}+\mathrm{e}^{i \rho}\left(x_{1}+\mathrm{e}^{i(\alpha-1) \rho} x_{2}\right)\right\| \quad \forall \rho
$$

Take $\rho=\frac{2 \pi k}{\alpha-1}$ with $k \in \mathbb{Z}$. Then

$$
\left\|x_{0}+\left(x_{1}+x_{2}\right)\right\|=\left\|x_{0}+\mathrm{e}^{i \frac{2 \pi k}{\alpha-1}}\left(x_{1}+x_{2}\right)\right\| \quad \forall k \in \mathbb{Z}
$$

But $\left\{\frac{2 \pi k}{\alpha-1}: k \in \mathbb{Z}\right\}$ is dense in \mathbb{T}, so

$$
\left\|x_{0}+\left(x_{1}+x_{2}\right)\right\|=\left\|x_{0}+\mathrm{e}^{i \rho}\left(x_{1}+x_{2}\right)\right\| \quad \forall \rho \in \mathbb{R}
$$

and $X=X_{0} \oplus Z$ where $Z=X_{1} \oplus X_{2}$ is a complex space

COROLLARY

X real Banach space with $n(X)=0$
\square If $\operatorname{dim}(X)=2$, then $X \equiv \mathbb{C}$
\square If $\operatorname{dim}(X)=3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum)

Corollary

X real Banach space, consider the subspace of $L(X)$

$$
\begin{gathered}
Z(X)=\{T \in L(X): v(T)=0\} \\
\square \operatorname{dim}(X)=n \Longrightarrow \operatorname{dim}(Z(X)) \leqslant \frac{n(n-1)}{2} \\
\square \operatorname{dim}(Z(X))=\frac{n(n-1)}{2} \Longleftrightarrow X \text { is a Hilbert space }
\end{gathered}
$$

ExAMPLE

Exists a real Banach space X such that $\operatorname{dim}(X)=4$, $n(X)=0$, and the numbers of complex spaces in the theorem cannot be reduced to one.
$X=\left(\mathbb{R}^{4},\|\cdot\|\right)$ where
$\|(a, b, c, d)\|=\frac{1}{4} \int_{0}^{2 \pi}\left|\operatorname{Re}\left(\mathrm{e}^{2 i t}(a+i b)+\mathrm{e}^{i t}(c+i d)\right)\right| d t$,
which satisfies

$$
\left\|\mathrm{e}^{2 i \rho}(a, b, 0,0)+\mathrm{e}^{i \rho}(0,0, c, d)\right\|=\|(a, b, c, d)\|
$$

for every $\rho \in \mathbb{R}$ and every $a, b, c, d \in \mathbb{R}$.

In this case, $\operatorname{dim}(Z(X))=1$ and $Z(X)$ is generated by

$$
T \equiv\left(\begin{array}{cccc}
0 & 2 & 0 & 0 \\
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

