Existence of hermitian operators on finite-dimensional Banach spaces: geometrical consequences

Miguel Martín, Javier Merí, Ángel Rodríguez-Palacios

- Hermitian operators

 H complex Hilbert space, $T \in L(H)$$T$ is Hermitian $\Longleftrightarrow T=T^{*}$

$$
\begin{array}{ll}
\Longleftrightarrow & (T x \mid x) \in \mathbb{R} \quad \forall x \in H \\
\Longleftrightarrow & \|\exp (i \rho T)\|=1 \quad \forall \rho \in \mathbb{R}
\end{array}
$$

$i T$ is Hermitian

$$
\begin{aligned}
& \Longleftrightarrow \quad T^{*}=-T \\
& \Longleftrightarrow \quad \operatorname{Re}(T x \mid x)=0 \quad \forall x \in H \\
& \Longleftrightarrow \quad\|\exp (\rho T)\|=1 \quad \forall \rho \in \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
i T \text { is Hermitian } & \Longleftrightarrow \operatorname{Re}(T x \mid x)=0 \quad \forall x \in H \\
& \Longleftrightarrow\|\exp (\rho T)\|=1 \quad \forall \rho \in \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Re}(T x \mid x)=0 \quad \forall x \in H \\
& \Uparrow
\end{aligned}
$$

$\operatorname{Re} x^{*}(T x)=0$ when $x \in S_{H}, x^{*} \in S_{H^{*}}, x^{*}(x)=1$

$$
\begin{gathered}
\Uparrow \\
x^{*}(T x)=0 \text { when } x \in S_{X}, x^{*} \in S_{X^{*}}, x^{*}(x)=1 \\
\left(\text { calling } X=H_{\mathbb{R}}\right)
\end{gathered}
$$

- Numerical Range

X Banach space, $T \in L(X)$
\square Numerical range:

$$
V(T)=\left\{x^{*}(T x): x \in S_{X}, x^{*} \in S_{X^{*}}, x^{*}(x)=1\right\}
$$

\square Numerical radius:

$$
v(T)=\sup \{|\lambda|: \lambda \in V(T)\}
$$

Theorem (Bohnenblust-Karlin, 1955)

$\square X$ real Banach space, $T \in L(X)$

$$
v(T)=0 \quad \Longleftrightarrow \quad\|\exp (\rho T)\|=1 \forall \rho \in \mathbb{R}
$$

($i T$ is hermitian in $L(X)_{\text {C }}$)

\square Numerical index:

$$
\begin{aligned}
& n(X)=\inf \{v(T):\|T\|=1\} \\
&=\max \{k \geqslant 0: k\|T\| \leqslant v(T) \forall T\} \\
& 0 \leqslant n(X) \leqslant 1 \text { if } X \text { is real } \\
& \frac{1}{\mathrm{e}} \leqslant n(X) \leqslant 1 \text { if } X \text { is complex }
\end{aligned}
$$

$\square \exists T \neq 0$ with $v(T)=0 \Rightarrow n(X)=0$
\square Of course, if $\operatorname{dim}(X)<\infty$, the equivalence holds

- Real Banach spaces with numerical index zero

SOME KNOWN EXAMPLES:
$\square H$ Hilbert space, $\operatorname{dim}(H)>1 \Longrightarrow n(H)=0$
$\square X$ complex Banach space $\Longrightarrow n\left(X_{\mathbb{R}}\right)=0$

$$
(T x=i x \forall x \in X, \quad v(T)=0)
$$

$\square n(Z)=0, Y$ arbitrary, $X=Y \oplus Z$ (absolute sum)

$$
\Longrightarrow n(X)=0
$$

PROPOSITION

X real Banach space, $Y, Z \leqslant X, Z \neq 0$.
If Z has a complex structure, $X=Y \oplus Z$, and

$$
\left\|y+\mathrm{e}^{i \rho} z\right\|=\|y+z\| \quad(\rho \in \mathbb{R}, y \in Y, z \in Z)
$$

then $n(X)=0$.
Moreover, $T(y, z)=(0, i z)$ has numerical radius 0 .

EXAMPLE

Exists a real polyhedral Banach space X such that $n(X)=0$
$\square X$ does not contains \mathbb{C} isometrically
$\square v(T)>0$ for every $T \in L(X) \backslash\{0\}$

- Finite dimension

Theorem

X finite-dimensional real space. TFAE:
(i) $n(X)=0$
(ii) Exist nonzero complex spaces X_{1}, \ldots, X_{n}, a real space X_{0}, and $q_{1}, \ldots, q_{n} \in \mathbb{N}$ such that $X=X_{0} \oplus X_{1} \oplus \cdots \oplus X_{n}$ and

$$
\left\|x_{0}+\mathrm{e}^{i q_{1} \rho} x_{1}+\cdots+\mathrm{e}^{i q_{n} \rho} x_{n}\right\|=\left\|x_{0}+\cdots+x_{n}\right\|
$$

for every $\rho \in \mathbb{R}$ and every $x_{j} \in X_{j}(j=0,1, \ldots, n)$.

Sketch of the proof

\square Fix $T \in L(X) \backslash\{0\}$ such that $v(T)=0$
\square A Theorem by Auerbach: there exists a Hilbert space H with $\operatorname{dim}(H)=\operatorname{dim}(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$
\square Apply the above to $\exp (\rho T)$ for every $\rho \in \mathbb{R}$
\square Use Kronecker's Approximation Theorem to change the roots of the characteristic polynomial of T by rational numbers

Corollary

X real Banach space with $n(X)=0$
\square If $\operatorname{dim}(X)=2$, then $X \equiv \mathbb{C}$
\square If $\operatorname{dim}(X)=3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum)

Corollary

X real Banach space, consider the subspace of $L(X)$

$$
Z(X)=\{T \in L(X): v(T)=0\}
$$

$\square \operatorname{dim}(X)=n \Longrightarrow \operatorname{dim}(Z(X)) \leqslant \frac{n(n-1)}{2}$
$\square \operatorname{dim}(Z(X))=\frac{n(n-1)}{2} \Longleftrightarrow X$ is a Hilbert space

EXAMPLE

Exists a real Banach space X such that $\operatorname{dim}(X)=4, n(X)=0$, and the numbers of complex spaces in the theorem cannot be reduced to one.
$X=\left(\mathbb{R}^{4},\|\cdot\|\right)$, where

$$
\|(a, b, c, d)\|=\frac{1}{4} \int_{0}^{2 \pi}\left|\operatorname{Re}\left(\mathrm{e}^{2 i t}(a+i b)+\mathrm{e}^{i t}(c+i d)\right)\right| d t
$$

which satisfies

$$
\left\|\mathrm{e}^{2 i \rho}(a, b, 0,0)+\mathrm{e}^{i \rho}(0,0, c, d)\right\|=\|(a, b, c, d)\|
$$

for every $\rho \in \mathbb{R}$ and every $a, b, c, d \in \mathbb{R}$.

In this case, $\operatorname{dim}(Z(X))=1$ and $Z(X)$ is generated by

$$
T \equiv\left(\begin{array}{cccc}
0 & 2 & 0 & 0 \\
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

