

UNIVERSIDAD DE GRANADA

CL-spaces and almost-CL-spaces

MIGUEL MARTÍN, RAFAEL PAYÁ

DEFINITIONS

X Banach space.

• X is a CL-space iff $B_X = \operatorname{aco}(F)$ for every maximal convex subset F of S_X

(Fullerton, 1961)

X is a almost-CL-space iff B_X = aco(F) for every maximal convex subset F of S_X

(Lindenstrauss, 1964; Lima, 1978)

$$CL$$
-espacio \implies casi- CL -espacio

ALREADY KNOWN EXAMPLES

- Real $L_1(\mu)$ spaces are CL-spaces
- In the real case, if $X^* \equiv L_1(\mu)$, then X is a CL-space
- In particular, real C(K) spaces are CL-spaces
- If $dim(X) < \infty$, then X is a CL-space iff

 $|x^*(x)| = 1 \quad \forall x^* \in \operatorname{ex}(B_{X^*}) \quad \forall x \in \operatorname{ex}(B_X)$

QUESTION

Is there any real almost-CL-space which is not a CL-space ?

NEW EXAMPLES

- Complex *C*(*K*) spaces are CL-spaces
- Complex $L_1(\mu)$ spaces are almost-CL-spaces
- The complex spaces ℓ_1 and $L_1[0,1]$ are not CL-spaces

Some isomorphic results

 \Box X Banach space, then every maximal convex subset of S_X has the form

$$F(x^*) = \{ x \in S_X : x^*(x) = 1 \}$$

for a suitable extreme point x^* of B_{X^*}

□ Write

 $\max(B_{X^*}) = \{x^* \in \exp(B_{X^*}) : F(x^*) \text{ is maximal}\}\$

LEMMA

X almost-CL-space. Then

 $|x^{**}(x^{*})| = 1 \quad \forall x^{**} \in \operatorname{ex}(B_{X^{**}}), \ \forall x^{*} \in \operatorname{mex}(B_{X^{*}})$

PROPOSITION

X real Banach space, $\exists A \subset S_X$ with $\#A = \infty$ and

$$|x^*(a)| = 1 \quad \forall x^* \in \operatorname{ex}(B_{X^*}), \ \forall a \in A.$$

Then, $X \supset c_0$ or $X \supset \ell_1$

(López-Martín-Payá, 1999)

THEOREM

X real almost-CL-space, $\dim(X) = \infty \implies X^* \supset \ell_1$. If in adition X^* is separable $\implies X \supset c_0$

QUESTION

X real almost-CL-space, $\dim(X) = \infty$

$$\stackrel{?}{\Longrightarrow} \begin{cases} X \supset \ell_1 \\ \text{or} \\ X \supset c_0 \end{cases}$$

Some stability results

□ Sums of Banach spaces

PROPOSITION

- c_0 and ℓ_1 sums of almost-CL-spaces are almost-CL-spaces
- A c₀ sum of CL-spaces is a CL-space
- In the real case, an ℓ_1 sum of CL-spaces is a CL-space
- In the complex case, only finite ℓ_1 sums of CL-spaces are CL-spaces

COROLLARY

The complex space $L_1(\mu)$ is a CL-space iff $\dim (L_1(\mu)) < \infty$

□ Vector-valued function spaces

PROPOSITION

K compact Hausdorff space, X Banach space.

- C(K, X) is an almost-CL-space iff X is
- If C(K, X) is a CL-space, then X is a CL-space

QUESTION

C(K, X) is a CL-space whenever X is ?