UNIVERSIDAD DE GRANADA

Departamento de Análisis Matemático

An alternative Daugavet Property

Miguel Martín

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Daugavet equation

X espacio de Banach, $T\in L(X)$

$$||Id + T|| = 1 + ||T||$$
 (DE)

 \Box Daugavet, 1963 : $T \in K(C[0,1])$ satisfies (DE)

 \Box Lozanoskii, 1966 : $T \in K(L_1[0,1])$ satisfies (DE)

\Box Abramovich, Holub and more, 80's :

X = C(K), K perfect compact space or $X = L_1(\mu)$, μ atomless positive measure, then every weakly compact $T \in L(X)$ satisfies (DE).

• Daugavet Property

A Banach space X has the *Daugavet Property* if every rank-one operator $T \in L(X)$ satisfies (DE)

(Kadets-Shvidkoy-Sirotkin-Werner, 2000)

 \Box K perfect compact space, μ atomless positive measure \Rightarrow C(K) and $L_1(\mu)$ have the Daugavet property

 \Box A C^* -algebra has the Daugavet property if and only if it is nonatomic.

The predual of a nonatomic von Neumann algebra has the Daugavet property

(Oikhberg, 200?)

 \Box More examples: $A(\mathbb{D})$ and H^{∞}

(Werner, 1997)

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

THEOREM

If X has the Daugavet property then every weakly compact operator on X satisfies (DE)

(Kadets-Shvidkoy-Sirotkin-Werner, 2000)

CONSEQUENCES

 \boldsymbol{X} with the Daugavet property, then

- X does not have the RNP and it is not an Asplund space
- $\Box \quad X \supset l_1$
- $\Box X^* \supset L_1[0,1]$ isometrically
- \Box X does not embed into any space having an unconditional basis

Some results

 $\diamond C(K, X)$ has the Daugavet property iff X has or K is perfect

(Kadets, 1996 — Martín-Payá, 2000)

 $\diamond \ L_1(\mu, X) \text{ has the Daugavet property iff} \\ X \text{ has or } \mu \text{ is atomless}$

(many authors, 80's and 90's)

 $\diamond \ L_{\infty}(\mu, X) \text{ has the Daugavet property iff} \\ X \text{ has or } \mu \text{ is atomless}$

(Martín-Villena, preprint)

• The numerical index 1

X has numerical index 1 if the numerical radius and the norm coincide on L(X), that is,

 $||T|| = \sup\{|x^*(Tx)| : ||x^*|| = ||x|| = x^*(x) = 1\}$

for every $T \in L(X)$.

Equivalently, \boldsymbol{X} has numerical index 1 iff

 $\max_{|\lambda|=1} \|Id + \lambda T\| = 1 + \|T\|$ (aDE)

for every $T \in L(X)$

(Lumer, 1968)

EXAMPLES

 $\Box \quad K \text{ compact, } \mu \text{ positive measure} \\ \Rightarrow C(K) \text{ and } L_1(\mu) \text{ has numerical index 1}$

(Duncan-McGregor-Pryce-White, 1970)

 \Box A $C^*\mbox{-algebra}$ is commutative iff it has numerical index 1

(Crab-Duncan-McGregor, 1974)

 $\Box \ C(K,X)$ (resp. $L_1(\mu,X)$ and $L_{\infty}(\mu,X)$) has numerical index 1 iff X has

(Martín-Payá, 2000 — Martín-Villena, preprint)

• An "alternative" Daugavet property

□ Daugavet property:

 $||Id + T|| = 1 + ||T|| \quad \forall T \in K(X)$

 \Box Numerical index 1:

 $\max_{|\lambda|=1} \|Id + \lambda T\| = 1 + \|T\| \qquad \forall \ T \in L(X)$

□ An alternative Daugavet property:

 $\max_{|\lambda|=1} \|Id + \lambda T\| = 1 + \|T\| \qquad \forall \ T \in K(X)$

EXAMPLES

- \Box $l_1 \oplus_{\infty} C([0,1], l_2)$ has the alternative Daugavet property but it does not have numerical index 1 and it does not have the Daugavet property
- \Box C(K, X) has the alternative Daugavet property iff X has or K is perfect
- $\Box \ L_1(\mu, X) \text{ has the alternative Daugavet property iff} \\ X \text{ has or } \mu \text{ is atomless}$
- $\Box \ L_{\infty}(\mu, X) \text{ has the alternative Daugavet property iff} \\ X \text{ has or } \mu \text{ is atomless}$
- □ Tensor products:

 $l_1^4 \widetilde{\otimes}_{\varepsilon} l_1^4$ and $l_{\infty}^4 \widetilde{\otimes}_{\pi} l_{\infty}^4$ does not have the alternative Daugavet property

(Lima, 1981 — Martín-Payá, 2000)

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

THEOREM

 \boldsymbol{X} real Banach space with the alternative Daugavet property. Then:

- (i) If $\sharp \text{dent}(B_X) = \infty \implies X \supset c_0 \text{ o } X \supset l_1$
- (*ii*) If $\sharp w^* \operatorname{dent} (B_{X^*}) = \infty \implies X^* \supset l_1$

OPEN PROBLEMS

- \diamond Characterize the $C^*\mbox{-algebras}$ which have the alternative Daugavet property
- $\diamond \quad \text{If } X \text{ has the alternative Daugavet property,} \\ \Rightarrow X \supset c_0 \quad \text{or} \quad X \supset l_1 \quad ?$