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Abstract

In this paper we study a large class of Weingarten surfaces which includes the constant
mean curvature one surfaces and flat surfaces in the hyperbolic 3-space. We show that
these surfaces can be parametrized by holomorphic data like minimal surfaces in the
Euclidean 3-space and we use it to study their completeness. We also establish some
existence and uniqueness theorems by studing the Plateau problem at infinity: when is a
given curve on the ideal boundary the asymptotic boundary of a complete surface in our
family? and, how many embedded solutions are there?

Key words and phrases: Hyperbolic 3-space, Weingarten surfaces, Plateau problem, Weier-
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1 Introduction.

During the last two decades there has been a renewed interest in the geometry of surfaces
in hyperbolic manifolds. Basic problems such as existence, symmetry, behaviour at infinity,
global structure and classification of complete surfaces of constant curvature in the hyperbolic
3-space H

3 have called the attention of several authors (see for example, [5], [11], [12], [18]).
Concerning constant mean curvature one surfaces in H

3, also called Bryant surfaces,
it was crucial the paper of R. Bryant [2], who showed how to parametrize these surfaces
by meromorphic data and began the study of their geometry. Since Bryant’s work many
properties and examples have been discovered in [3], [15], [22], [25], [26] among others. By
considering the complex structure determined by the second fundamental form, the authors
proved in [6] that a “holomorphic resolution” like the Bryant representation also holds for
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flat surfaces in H
3 and used it to the study of some examples and the behaviour at infinity

of complete ends. The most important tool in these representations is that both kinds of
surfaces have a conformal hyperbolic Gauss map with respect to a natural complex structure
determined by either the first, I, or the second, II, fundamental form.

In this paper we extend the two above mentioned Weierstrass type representations through
the investigation of Weingarten surfaces. We shall study surfaces in H

3 whose mean curvature
H and Gauss curvature KI satisfy a linear relation of the form

2a(H − 1) + bKI = 0,

for some a, b ∈ R, of elliptic type, i. e. a+ b 6= 0. We call them linear Weingarten surfaces
of Bryant type, in short, BLW-surfaces. These surfaces are a particular case of the special
surfaces studied by Sa Earp and Toubiana in [21] (see also [17], [19] and [20]).

A BLW-surface Σ may be considered lying on a straight half-line λab in the (H,KI)-plane,
starting at the point (1, 0): λab = {(1 − tb, 2ta) : t ≥ 0}, see Figure 1 and Remark 3. The
geometry of Σ is rather different depending on whether Σ is in one of the following regions,

R1 = {(H,KI) : 1 ≤ H, 0 ≤ KI}, R2 = {(H,KI ) : 0 ≤ KI , 2(H − 1) ≤ KI},
R3 = {(H,KI) : 2(H − 1) ≤ KI ≤ 0}, R4 = {(H,KI ) : 2(H − 1) ≥ KI , 0 ≥ KI}.

If Σ is in λab, we shall see that
σ = aI + bII

is a Riemannian metric which induces a natural complex structure on Σ such that its hy-
perbolic Gauss map is a conformal map. We shall prove that the complex representations of
Bryant [2] and the authors [6] extend to BLW-surfaces (see Theorem 2).

The previous complex resolution is applied to the study of completeness. Thus, we shall
start by proving (Theorem 3) that a complete BLW-surface in R1 ∪R2 is a totally umbilical
round sphere, a horosphere or a hyperbolic cylinder.

The regions R3 and R4 are much richer in global examples. Every complete BLW-surface
Σ in λab ⊂ R4, with meromorphic data (h, ω) has an associated complete constant mean
curvature one surface, Σ0, with geometry as Σ and with meromorphic data (

√
a/(a+ b)h, ω).

Concerning R3, we shall see that complete BLW-surfaces in λab ⊂ R3, are conformally
equivalent to the unit disk, D, and we shall prove (Theorem 4) that they are, up to conformal
transformations of D, in correspondence with the set of meromorphic maps G : D −→ C∪{∞}
with bounded Schwarzian derivative. In that way the hyperbolic Gauss map and the standard
Euclidean Gauss map of complete BLW-surfaces in the half space model of H

3 lying on R3

give geometric meaning to classical families of complex functions which have been studied in
connection with the Schwarzian derivative (see, for example, [9], [13], [14], [16]).

We also establish some existence and uniqueness theorems for complete BLW-surfaces in
R3. Our main interest shall be the Plateau problem at infinity: when is a given curve on the
ideal boundary S

2
∞ of H

3 the asymptotic boundary of a complete BLW-surface?
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If λab ⊂ R3, we shall prove (Theorem 5) that a convex Jordan curve Γ ⊂ S
2
∞ is the

asymptotic boundary of a unique embedded complete BLW-surface in λab with an “inner”
hyperbolic normal. Moreover if −1/2 < a/(a + b) < 0 there are exactly two embedded
complete BLW-surfaces on λab with asymptotic boundary Γ.

Finally, we shall deal with the general case and shall prove (Theorem 6) that if −1/2 <
a/(a+ b) < 0, a Jordan curve Γ on S

2
∞ is the asymptotic boundary of at least two complete

BLW-surfaces on λab. If −1/4 < a/(a+ b) < 0, then there only exist two embedded complete
BLW-surfaces on λab with asymptotic boundary Γ.

2 Conformal representation.

In the Lorentz-Minkowski model, L
4, the hyperbolic 3-space is described by one connected

component of a two-sheeted hyperboloid. More precisely,

H
3 =

{
(x0, x1, x2, x3) ∈ R

4 : −x2
0 + x2

1 + x2
2 + x2

3 = −1, x0 > 0
}

endowed with the induced metric of L
4 given by the quadratic form −x2

0 + x2
1 + x2

2 + x2
3.

Associated with that metric we shall denote by ∧ the usual exterior product in H
3, that

is,
u ∧ v = p× u× v,(1)

for any tangent vectors u, v at a point p ∈ H
3, where p×u×v is the unique vector in L

4 such
that 〈p× u× v, w〉 = det(p, u, v, w), for any w ∈ L

4. Here 〈., .〉 denotes the inner product in
L

4 and det the usual determinant.
If we consider

N
3
+ =

{
(x0, x1, x2, x3) ∈ R

4 : −x2
0 + x2

1 + x2
2 + x2

3 = 0, x0 > 0
}

the positive null cone in L
4, then N

3
+/R

+ inherits a natural conformal structure and it can
be regarded as the ideal boundary S

2
∞ of H

3.
We shall regard L

4 as the space of 2 × 2 Hermitian matrices, Herm(2), in the standard
way (see [2], [6]), by identifying (x0, x1, x2, x3) ∈ L

4 with the matrix

(
x0 − x3 x1 + ix2

x1 − ix2 x0 + x3

)
.

Under this identification one has 〈m,m〉 = −det(m) for all m ∈ Herm(2). Then H
3 is the

set of m ∈ Herm(2) with det(m) = 1. The action of SL(2,C) on these Hermitian matrices
defined by

g ·m = gmg∗,

where g ∈SL(2,C), g∗ = tg, preserves the inner product and leaves H
3 invariant.
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The space N
3
+ is seen as the space of positive semi-definite 2 × 2 Hermitian matrices of

determinant 0 and its elements can be written as w tw, where tw = (w1, w2) is a non zero
vector in C

2 uniquely defined up to multiplication by a unimodular complex number. The
map w tw−→[(w1, w2)] ∈ CP

1 becomes the quotient map of N
3
+ on S

2
∞ and identifies S

2
∞ to

CP
1. Thus, the natural action of SL(2,C) on S

2
∞ is the action of SL(2,C) on CP

1 by Möbius
transformations.

Now, let S be a surface and ψ : S−→H
3 an immersion with Gauss map η. Then, ψ is

called a linear Weingarten immersion of Bryant type, (in short, BLW-surface) if the mean
curvature H and the Gauss curvature KI satisfy a linear relation of the form,

2 a (H − 1) + bKI = 0,(2)

for some a, b ∈ R, a+ b 6= 0.

Remark 1 This particular kind of linear Weingarten immersions includes the Bryant sur-
faces and the flat surfaces.

The immersions satisfying (2) with a+ b = 0, that is, the non elliptic case, are the ones
with a constant principal curvature equal to 1. They are studied in [1]. 2

Lemma 1 Let ψ : S−→H
3 be a BLW-surface. Then, we can consider that |a+ b| = 1,

2 a (H − 1) + b (K − 1) = 0(3)

and σ = a I + b II is a positive definite metric, where K is the Gauss-Kronecker curvature,
I = 〈dψ, dψ〉 and II = 〈dψ,−dη〉, the first and second fundamental form of the immersion,
respectively.

Proof : Since KI = K − 1, by scaling a and b in (2), we can assume that (3) is satisfied, with
a+ b = 1.

Let {e1, e2} be an orthonormal basis at a point p which diagonalizes dη, that is, dη(ei) =
−kiei, i = 1, 2. Then,

σ(e1, e1)σ(e2, e2) − σ(e1, e2)
2 = (a+ bk1) (a+ bk2) =

= a2 + b (2aH + bK) = (a+ b)2 = 1
(4)

and so σ is definite. Now, by changing the sign of a and b if necessary, we obtain that σ is
positive definite and |a+ b| = 1, which concludes the proof. 2

From now on, we will suppose that every BLW-surface satisfies the above lemma and we
shall regard S as a Riemann surface with the conformal structure induced by σ = a I + b II.
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Lemma 2 Let ψ : S−→H
3 be a BLW-surface and z be a conformal parameter for σ. Then

aψz − bηz = −iη ∧ ψz,(5)

where, for instance, ψz denotes the derivative of ψ with respect to z.

Proof : Let z be a conformal parameter such that σ = 2ρ|dz|2. From (4),

〈ψz ∧ ψz, η〉 = iρ.(6)

Since aψz − bηz is a tangent vector field, it can be written as

aψz − bηz = αη ∧ ψz + βη ∧ ψz

for some local complex functions α and β.
Now, using that z is conformal and (6),

0 = σ(ψz , ψz) = 〈aψz − bηz, ψz〉 = β〈η ∧ ψz , ψz〉 = −iβρ,
ρ = σ(ψz, ψz) = 〈aψz − bηz, ψz〉 = α〈η ∧ ψz, ψz〉 = iαρ

and we are done. 2

As in Bryant’s paper [2], we consider for any immersion ψ : S−→H
3 with associated

Gauss map η its hyperbolic Gauss map as the map given by G := [ψ + η]. That is, for any
p ∈ S, the oriented geodesic emanating from p meets the ideal boundary S

2
∞ of H

3 at G(p).

Theorem 1 Let ψ : S−→H
3 be a BLW-surface. Then ψ+η is a conformal map with respect

to the metric σ = aI + bII and

∆σ(ψ + η) =
2

a+ b
{(H − 1)ψ + (K −H)η},(7)

where ∆σ denotes the Laplacian of σ. In particular, its hyperbolic Gauss map G is conformal.
Moreover, the immersion lies in a horosphere or 〈d(ψ + η), d(ψ + η)〉 is a pseudometric

of constant curvature a
a+b .

Proof : Let z be a conformal parameter such that σ = 2ρ|dz|2. Then we can write

ηz = −Λψz + Υψz,

ηz = Υψz − Λψz

for a local real function Λ and a complex function Υ.
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Thus, H = Λ and K = Λ2 − |Υ|2 = H2 − |Υ|2, that is,

ηz = −Hψz + Υψz.(8)

Therefore, using (3)

(a+ bH)2 − b2|Υ|2 = a2 + 2abH + b2K = (a+ b)2 = 1.

The cross product of (5) and (8) with ψz and ψz̄ gives

{ −bηz ∧ ψz = −i(η ∧ ψz) ∧ ψz = i〈ψz , ψz〉η,
−bηz ∧ ψz = −bΥψz ∧ ψz,

{
(aψz − bηz) ∧ ψz = −i(η ∧ ψz) ∧ ψz = i〈ψz , ψz〉η,
(aψz − bηz) ∧ ψz = aψz ∧ ψz + b(Hψz − Υψz) ∧ ψz = (a+ bH)ψz ∧ ψz,

and by taking the inner product with η one has from (6)

〈ψz , ψz〉 = bΥρ,
〈ψz , ψz̄〉 = (a+ bH)ρ.

(9)

In that way, from (5),
b(ψ + η)z = (a+ b)ψz + iη ∧ ψz(10)

and, using (9), one obtains 〈(ψ+η)z , (ψ+η)z〉 = 0 when b 6= 0. Moreover, if b = 0 then, from
(3) and (8), we have that H = 1, (ψ + η)z = Υψz̄ and, using (9), 〈(ψ + η)z, (ψ + η)z〉 = 0.
Therefore, ψ + η is a conformal map in any case.

Now, bearing in mind (1) and (6), if we take the derivative of (5) with respect to z̄, then

aψzz̄ − bηzz̄ = ρψ − iHψz ∧ ψz̄ − iψ × η × ψzz̄.

As the above equality has imaginary part 0 = ψ × η × ψzz̄, we have

aψzz̄ − bηzz̄ = ρ(ψ +Hη).(11)

On the other hand, (5) also gives (aψz − bηz)∧ η = −iψz and by deriving with respect to
z̄ we obtain

ψzz̄ = ρ{(a+ bH)ψ + (aH + bK)η}.(12)

If b 6= 0, then (12) minus (11) (respectively, (12) plus (11)) and (6) give the expression
(7) when a+ b = 1 (respectively, when a+ b = −1).

If b = 0, then H = 1, σ = I, 〈ψz , ψz〉 = 0 and 〈ψz , ψz〉 = ρ, hence

ψzz =
ρz
ρ
ψz − Υρη, ψzz = ρη, ηz = −ψz + Υψz.
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Since (ψzz)z = (ψzz)z, we have (ρΥ)z = 0 and, consequently,

(ψ + η)zz̄ = (Υψz̄)z̄ = −|Υ|2ρη = ρ(K − 1)η.

In order to determine the singular points of ψ + η, we have from (6), (9) and (10) that

b2〈(ψ + η)z, (ψ + η)z̄〉 = 〈(a+ b)ψz + iη ∧ ψz, (a+ b)ψz − iη ∧ ψz〉 =

= 2(〈ψz , ψz̄〉 − (a+ b)ρ) = 2b(H − 1)ρ.
(13)

And we conclude that if b 6= 0, ψ + η has a singular point at z0 if and only if H(z0) = 1.
Moreover, from (3) and (9), if H(z0) = 1 and b 6= 0 then K(z0) = 1 and a + b = 1. When
b = 0 the same conclusion is clear from (8), (with a = 1 because σ is positive definite).

Now, from (2) and (7), ψ can be written as

ψ =
a+ b

ρ(2H −K − 1)
(ψ + η)zz̄ +

2a+ b

2(a+ b)
(ψ + η),(14)

at the regular points of ψ + η.
Using that ψ+η is conformal, we have that there exist holomorphic functions, A, B, such

that [ψ + η] is represented as [(A,B)] ∈ CP
1 ≡ S

2
∞ and

ψ + η = λ

(
A
B

)(
A,B

)
= λ

(
AA AB
AB BB

)
,(15)

for some positive regular function λ. Thus, (14) gives

ψ = gΩg∗ and η = gΩ̃g∗,

with

g =

(
A Az
B Bz

)
, Ω =

(
δλzz̄ − βλ δλz

δλz̄ δλ

)
, Ω̃ =

(
(1 + β)λ− δλzz̄ −δλz

−δλz̄ −δλ

)
,

β = − 2a+b
2(a+b) and δ = a+b

ρ(2H−K−1) . From these expressions one gets

2 = 〈η, η〉 − 〈ψ,ψ〉 = −det(η) + det(ψ) = δλ2|det(g)|2,

1 = −〈ψ,ψ〉 = det(ψ) = −2β +
4

λ4|det(g)|2 (λλzz̄ − λzλz̄)

and, consequently,

(log(λ2|det(g)|2))zz̄ =
1 + 2β

2
λ2|det(g)|2 =

−a
2(a+ b)

λ2|det(g)|2.
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That is, 〈d(ψ + η), d(ψ + η)〉 = λ2|det(g)|2|dz|2 has constant Gauss curvature ε = a
a+b at

the regular points of ψ + η.
From (7) and (12), the two 2-forms QI = 〈ψz, ψz〉dz2 and QII = 〈ψz,−ηz〉dz2 are holo-

morphic on S. And, since ψ has an umbilical point at z0 if and only if QI(z0) = 0 = QII(z0),
then ψ is totally umbilical or has isolated umbilical points. Hence, either ψ is totally umbilical
with H = 1 = K, that is, ψ(S) lies on a horosphere or 〈d(ψ+ η), d(ψ+ η)〉 is a pseudometric
of constant curvature ε. 2

Remark 2 If ψ : S−→H
3 is a BLW-surface and S is a topological sphere then, using that

QI and QII are holomorphic, they vanish identically and we obtain that ψ(S) is a totally
umbilical round sphere. 2

Remark 3 The regions R1, R2, R3 and R4 given in the introduction separate into four
parts the exterior of the domain H2 − (KI + 1) < 0 in the (H,KI)-plane according to the
sign of a+ b and ε = a/(a+ b), see Figure 1.

In fact, if b 6= 0, from (7) and (13) we obtain

2

b
(H − 1) =

1

ρ
〈(ψ + η)z, (ψ + η)z〉 = −1

ρ
〈(ψ + η)zz , ψ + η〉 =

2(H − 1) −KI

a+ b
.

When a+ b = 1, from (3),

2(H − 1) ≥ KI = (a+ b)KI = aKI − 2a(H − 1) = a(KI − 2(H − 1)),

that is,

1. if a ≥ 0 then 2(H − 1) ≥ KI , KI ≤ 0 and we are in the region R4,

2. if a ≤ 0 then 2(H − 1) ≥ KI ≥ 0 and we are in the region R1.

In a similar way, when a+ b = −1 we are either in R2 or in R3.
Moreover, from (13), if b ≥ 0 it is satisfied that H ≥ 1 and if b ≤ 0 then H ≤ 1.

Consequently, from (3), if a ≥ 0 one gets KI ≤ 0 and if a ≤ 0 then KI ≥ 0. 2

Theorem 2 (Conformal representation)

i) Let S be a non compact, simply connected surface and ψ : S−→H
3 a BLW-surface. Then,

there exist a meromorphic curve g : S−→SL(2,C) and a pair (h, ω) consisting of a meromor-
phic function h and a holomorphic 1-form ω on S, such that the immersion and its Gauss
map can be recovered as

ψ = gΩg∗ and η = gΩ̃g∗,(16)

where

Ω =

(
1+ε2|h|2
1+ε|h|2 −εh̄
−εh 1 + ε|h|2

)
and Ω̃ =

(
1−ε2|h|2
1+ε|h|2 εh̄

εh −1 − ε|h|2

)
,(17)
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with ε = a
a+b and 1 + ε|h|2 > 0. Moreover, the curve g satisfies

g−1dg =

(
0 ω
dh 0

)
.(18)

The induced metric and σ = a I + b II are given, respectively, by

I = (1 − ε)ωdh +

(
(1 − ε)2|dh|2
(1 + ε|h|2)2 + (1 + ε|h|2)2|ω|2

)
+ (1 − ε)ω̄dh̄(19)

and

σ = (a+ b)

(
(1 + ε|h|2)2|ω|2 − (1 − ε)2|dh|2

(1 + ε|h|2)2

)
.(20)

ii) Conversely, let S be a Riemann surface, g : S−→SL(2,C) a meromorphic curve and
(h, ω) a pair as above satisfying (18) and such that (20) is a positive definite metric. Then
ψ = gΩg∗ : S−→H

3, (Ω as in (17)), is a BLW-surface satisfying (3) with induced metric and
σ given by (19) and (20).

Proof : Let us assume that ψ(S) is not a piece of a horosphere, otherwise the result is easily
obtained with h constant. Since S is non compact and simply connected there exist a global
conformal parameter z and as 〈d(ψ + η), d(ψ + η)〉 is a pseudometric on S of constant Gauss
curvature ε then, from the Frobenius theorem, there exists a meromorphic function h on S
(holomorphic if ε ≤ 0) such that

1 + ε|h|2 > 0 and 〈d(ψ + η), d(ψ + η)〉 = λ2|det(g)|2|dz|2 =
4|dh|2

(1 + ε|h|2)2 ,

where we follow the same notation as above.
From this expression, if h has a pole of order m, then dh has a pole of order m + 1

and det(g) has a zero of order m − 1. Hence, there exists a meromorphic function R on S
(holomorphic if ε ≤ 0) with

R2 =
dh

det(g)dz
6= 0 and (AR)(BR)z − (BR)(AR)z = hz.(21)

Now, if we replace A and B by AR and BR, respectively, in (15) and choose the matrix

g =

(
A 1

hz

Az
B 1

hz

Bz

)
(22)

with meromorphic coefficients and det(g)=1 on S, then the new λ2 is 4/(1+ε|h|2)2. Moreover,

g−1 dg =

(
0 1

h2
z

(AzzBz −AzBzz)

hz 0

)
dz
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and we obtain (18) for ω = AzzBz−AzBzz

h2
z

dz.

From (14) one has that (16) is satisfied for

Ω =

(
δλzz̄ − βλ δλzhz
δλz̄hz δλ|hz |2

)
and Ω̃ =

(
(1 + β)λ− δλzz̄ −δλzhz

−δλz̄hz −δλ|hz |2
)

where 2 = 〈η, η〉 − 〈ψ,ψ〉 = δλ2|hz|2. Therefore, (16) and (17) are satisfied.
Besides,

dψ = d(gΩg∗) = g

((
0 ω
dh 0

)
Ω + dΩ + Ω

(
0 dh
ω 0

))
g∗ =

= g

(
? (1 + ε|h|2)ω + 1−ε

1+ε|h|2 dh

(1 + ε|h|2)ω + 1−ε
1+ε|h|2 dh 0

)
g∗,

dη = d(gΩ̃g∗) = g

((
0 ω
dh 0

)
Ω̃ + dΩ̃ + Ω̃

(
0 dh
ω 0

))
g∗ =

= g

(
? −(1 + ε|h|2)ω + 1+ε

1+ε|h|2 dh

−(1 + ε|h|2)ω + 1+ε
1+ε|h|2 dh 0

)
g∗

and

d(ψ + η) = g


 ? 2dh

1+ε|h|2
2dh

1+ε|h|2 0


 g∗.

Hence, one calculates the induced metric I, (19), and the metric σ = aI + bII, (20), from

I = 〈dψ, dψ〉 = −det(dψ)

and

II = 〈dψ,−dη〉 =
1

2
(det(d(ψ + η)) − det(dψ) − det(dη)) .

In particular, (1 + ε|h|2)2|ω|2 is a real expression on S and consequently ω must be
holomorphic. 2

Following the same notation as in [2] and [6] the pair (h, ω) given by the above theo-
rem will be called the Weierstrass data associated with the conformal representation of the
BLW-surface ψ. However, from (18) it is clear that the pair (h, g) could be also called the
Weierstrass data of the immersion.
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Remark 4 If S is a non compact, simply connected surface and ψ1, ψ2 : S−→H
3 are two

BLW-surfaces satisfying (3) with the same Weierstrass data (h, ω), then ψ1 and ψ2 are the
same immersion, up to a rigid motion in H

3. Indeed, ψ1 = g1Ωg
∗
1 and ψ2 = g2Ωg

∗
2 where

g−1
1 dg1 =

(
0 ω
dh 0

)
= g−1

2 dg2

for some meromorphic curves g1, g2 : S−→SL(2,C).
Thus, one has

d(g1 g
−1
2 ) = dg1 g

−1
2 + g1 d(g

−1
2 ) = g1

(
0 ω
dh 0

)
g−1
2 + g1

(
0 −ω

−dh 0

)
g−1
2 = 0

and there exists a constant matrix g0∈ SL(2,C) such that g1 = g0 g2. Consequently, ψ1 =
g0 ψ2 g

∗
0 as we wanted to prove. 2

It is interesting to observe that if ψ : S−→H
3 is an immersion with H = 1 then ε = 1,

Ω =

(
0 −i
−i ih

)(
0 i
i −ih̄

)

and ψ = gΩg∗ = FF ∗, where

F = g

(
0 −i
−i ih

)
∈ SL(2,C),

that is, the conformal representation becomes the Bryant’s representation (see [2], [25]).
Moreover, if the immersion does not lie in a horosphere and we denote by G its hyperbolic

Gauss map then taking A = G and B = 1 in (15) one gets from (21) and (22)

g =



iG
√

dh
dG

i
dhd

(
G
√

dh
dG

)

i
√

dh
dG

i
dhd

(√
dh
dG

)


 .

Thus, by considering the new parameter ζ = h where that is possible, one has

F =
1

2G
3/2
ζ

(
2G2

ζ −GGζζ 2Gζ (G− ζGζ) + ζ GGζζ
−Gζζ 2Gζ + ζ Gζζ

)
,

that is, we recover the Small’s formula for surfaces with constant mean curvature one (see
[10], [23]).
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3 Completeness of the immersions.

From Remark 3 it is clear that the Gauss curvature KI of a BLW-surface ψ : S−→H
3 is non

negative on S or non positive everywhere.
Moreover, if S is non compact then, from (16), (17), (19) and (20), its Gaussian curvature

KI = K − 1 can be calculated as

KI =
−4 ε |dh|2

(1 + ε|h|2)4 |ω|2 − (1 − ε)2 |dh|2(23)

and its mean curvature is given by

H = 1 +
2 (1 − ε) |dh|2

(1 + ε|h|2)4 |ω|2 − (1 − ε)2 |dh|2 .

In particular, a point p ∈ S is umbilical if and only if dh(p) = 0 or ω(p) = 0.
We shall study separately the cases of complete immersions with non positive and non

negative Gauss curvature.

3.1 Completeness with non negative Gauss curvature.

First, we give some examples of complete BLW-surfaces and then we classify them as the
only non totally umbilical complete BLW-surfaces with non negative Gauss curvature.

Let us consider S = C, h(z) = z+ c0 and ω(z) = c1 dz for some complex constants c0 and
c1:

1. If we take a = 0 and b = 1 then, from Theorem 2, one obtains the flat immersion

ψ(u, v) =

(
1+r2

2r e−u 1−r2
2r e−iv

1−r2
2r eiv 1+r2

2r eu

)
,(24)

with r =
√
|c1|, u+ iv = 2

√
c1 z and σ = (|c1|2 − 1)|dz|2 positive definite when |c1| > 1.

Moreover, the induced metric I = c1 dz
2 + (1 + |c1|2)|dz|2 + c1 dz̄

2 ≥ (|c1| − 1)2|dz|2 is
complete.

2. If we put a = 0 and b = −1 then (24) is a complete flat immersion with 0 < |c1| < 1.

In any case, the immersion given by (24) may be regarded as the set of points at a fixed
distance from the geodesic

γ(t) =

(
e−t 0
0 et

)
,

namely, a hyperbolic cylinder.
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Theorem 3 Let ψ : S−→H
3 be a complete BLW-surface with non negative Gauss curvature

KI . Then ψ(S) is a totally umbilical round sphere, a horosphere or a hyperbolic cylinder.

Proof : We can assume that S is simply connected, otherwise we would pass to the universal
covering surface of S. Moreover, if S is compact then, from Remark 2, ψ(S) is a totally
umbilical round sphere.

First, let us suppose that ψ is a non flat immersion, that is, there exists a point on S such
that KI > 0 (in particular, from Remark 3, a < 0).

If a+b = −1 then from (3) and since H2 ≥ K, we have that KI ≥ −4a/b2 > 0. Therefore,
from Bonnet’s theorem, S must be compact.

If a+ b = 1, ε < 0 and from (19)

1

2
I ≤ τ =

(1 − ε)2|dh|2
(1 + ε|h|2)2 + (1 + ε|h|2)2|ω|2

and τ must be a complete metric on S. Besides, using that σ is a positive definite metric
and that the bounded holomorphic function h satisfies that 1 + ε|h|2 < 1 we obtain τ ≤
2(1 + ε|h|2)2|ω|2 ≤ 2|ω|2. Therefore, 2|ω|2 is a flat complete metric conformal to σ. Thus, S
is conformally equivalent to the complex plane C and h must be constant, that is, ψ(S) is a
horosphere.

On the other hand, if ψ is a flat immersion then a = 0 = ε and from (19)

τ = |dh|2 + |ω|2

is a complete metric. Since σ is a positive definite metric one has that if b = 1 (respectively,
b = −1) then τ ≤ 2|ω|2 (resp. τ ≤ 2|dh|2) and, hence, there exists a complete conformal
flat metric on S. Thus, S is conformally equivalent to C and the function dh/ω (or ω/dh) is
constant with modulus less than one when b = 1 (or b = −1).

Therefore, ψ(S) is a horosphere or ω = c1dh for a complex constant c1 6= 0 with |c1| 6= 1.
Thus, in the second case dh 6= 0 everywhere because σ is non degenerate and we can take
the new conformal parameter ζ such that dζ = dh. Then one obtains h(ζ) = ζ + c0 and
ω(ζ) = c1dζ for a constant c0 ∈ C and ψ lies on a hyperbolic cylinder. 2

3.2 Completeness with non positive Gauss curvature. A Plateau problem

at infinity.

Now, we focus our attention on the study of the completeness of the immersions with non
positive Gauss curvature. We remark that given a simply connected surface S and a non flat
BLW-surface ψ : S−→H

3 with non positive Gauss curvature then S cannot be compact and
a > 0. Therefore, the immersion lies in the set R3 or R4.

In the last case, the geometry of the surface is similar to the one of a surface with constant
mean curvature H = 1. In fact, if (h, ω) are the Weierstrass data for a BLW-surface ψ0 in

13



R4 then ε > 0 and (1 + ε|h|2)|ω|2 is a positive definite metric because so is σ. Moreover,
we obtain a new associated immersion ψ1 with constant mean curvature one and Weierstrass
data (

√
εh, ω). If ψ0 is a complete immersion then, from (19) and (20), (1 + ε|h|2)|ω|2 is

also a complete metric, that is, ψ1 is a complete immersion. Thus, the study of complete
BLW-surfaces in R4 can be reduced to the study of complete immersions with constant mean
curvature one. Many things are known in this case and some very interesting results were
proved in [2], [3] and [25].

However, the geometry of the surface is very different when the immersion lies in R3. For
instance,

Lemma 3 Let ψ : S−→H
3 be a complete BLW-surface in R3 with Weierstrass data (h, ω).

Then, S is conformally equivalent to the unit disk D and h is a global diffeomorphism onto
Dε = {z ∈ C : |z|2 < −1/ε}.

Proof : Since the induced metric is complete and σ is positive definite, from (19) and (20)

1

2
I ≤ (1 − ε)2|dh|2

(1 + ε|h|2)2 + (1 + ε|h|2)2|ω|2 ≤ 2
(1 − ε)2|dh|2
(1 + ε|h|2)2

and the metric 4 |dh|2/(1 + ε|h|2)2 must be complete. Therefore, h : S−→Dε is bijective and
S is conformally equivalent to the unit disk. 2

From the above lemma, given a complete BLW-surface ψ : S−→H
3 with Weierstrass data

(h, ω) we can consider, up to a change of parameter, S = D and h(z) = z/
√−ε.

Moreover, from (20), σ is positive definite if and only if

|ω| < 1 − ε√−ε
|dz|

(1 − |z|2)2 , z ∈ D.(25)

On the other hand, if we consider the hyperbolic Gauss map of the immersion G and take
A = G, B = 1 in (15) one gets from (21) and (22)

g =



iG
√

dh
dG

i
dhd

(
G
√

dh
dG

)

i
√

dh
dG

i
dhd

(√
dh
dG

)


 =




iG
4
√−ε√Gz

i 4
√
−ε
(

G√
Gz

)

z
i

4
√−ε√Gz

i 4
√
−ε
(

1√
Gz

)

z


 .(26)

Thus,

g−1 dg =




0
√
−ε 3G2

zz − 2GzGzzz
4G2

z
1√−ε 0


 dz,
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and from (18) and (25), the Schwarzian derivative of G satisfies

{G, z} :=
d

dz

(
Gzz
Gz

)
− 1

2

(
Gzz
Gz

)2

=
2GzGzzz − 3G2

zz

2G2
z

=
−2√−ε

ω

dz

and

|{G, z}| < 2(1 − ε)

−ε
1

(1 − |z|2)2 z ∈ D.

Consequently, G is a local diffeomorphism with bounded Schwarzian derivative. Otherwise,
there would exist a point z0 such that G is not locally one to one and we could write Gz in
a neighbourhood of z0 as

Gz = (z − z0)
k

∞∑

n=0

cn(z − z0)
n

with c0 6= 0 and an integer k 6= 0. Hence

{G, z} = −k(k + 2)

2

1

(z − z0)2
− k c1

2 c0

1

z − z0
+ h̃(z)

where h̃ is a holomorphic function in a neighbourhood of z0. But, either {G, z} = ∞ at z0
which contradicts the above inequality or k = −2 and G has a pole of order one at z0, that
is, G is locally one to one.

The above considerations are summarized in the following result:

Theorem 4 Let S be a simply connected surface and ψ : S−→H
3 a complete BLW-surface

in R3. Then one has

(i) S can be identified with D and its Weierstrass data h can be taken as h(z) = z/
√−ε,

(ii) the hyperbolic Gauss map G : D−→C ∪ {∞} is a local diffeomorphism satisfying

|{G, z}| < 2(1 − ε)

−ε
1

(1 − |z|2)2 , z ∈ D,(27)

(iii) the immersion can be recover as

1√−ε |Gz |(1 − |z|2)

(
|G|2 − ε

∣∣−GA +Gz(1 − |z|2)
∣∣2 (1 − ε|A|2)G + εGz(1 − |z|2)A

(1 − ε|A|2)G+ εGz(1 − |z|2)A 1 − ε|A|2
)

(28)

and its Gauss map η as

1√−ε |Gz |(1 − |z|2)

(
|G|2 + ε

∣∣−GA +Gz(1 − |z|2)
∣∣2 (1 + ε|A|2)G − εGz(1 − |z|2)A

(1 + ε|A|2)G− εGz(1 − |z|2)A 1 + ε|A|2
)

(29)

with

A =
Gzz
2Gz

(1 − |z|2) − z̄.
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Conversely, let G : D−→C ∪ {∞} be a meromorphic map. Then, if G satisfies (27) one
has that (28) is a BLW-surface in R3 with hyperbolic Gauss map G and Weierstrass data
(z/

√−ε,−1
2

√−ε {G, z} dz). Moreover, if

|{G, z}| ≤ b0
(1 − |z|2)2 z ∈ D,(30)

with b0 <
2(1−ε)
−ε , then the immersion is complete.

Proof : Let ψ : S−→H
3 be a complete BLW-surface in R3 and S simply connected. Then, we

can assume that (i) and (ii) are satisfied and, following Theorem 2, the immersion and its
Gauss map can be recover as in (16) and (17) where g is given as in (22) for some meromorphic
functions A and B.

Thus,

ψ =
1

1 − |z|2

(
|A|2 − εA1A1 AB − εA1A2

AB − εA1A2 |B|2 − εA2A2

)
,

where
A1 = Az̄ +Az(1 − |z|2), A2 = Bz̄ +Bz(1 − |z|2).

Now, using that G = A/B, g ∈ SL(2,C), that is,
√−ε(ABz −BAz) = 1 and

Gz =
−1√−εB2

,
Gzz
Gz

= −2
Bz
B
,(31)

one has

A2 = B

(
z̄ +

Bz
B

(1 − |z|2)
)

= −BA,

A1 = GA2 −
1√−εB (1 − |z|2) = B(−GA +Gz(1 − |z|2)),

and bearing in mind that
√−ε |B|2|Gz| = 1 from (31), one obtains (28). Analogously, one

can compute (29).
From Theorem 2, the converse part is a straightforward computation taking g as in (26).

Moreover, if G satisfies (30), the induced metric I can be estimated as follows

I =

∣∣∣∣
(1 − ε) dh

1 + ε |h|2 + (1 + ε |h|2)ω
∣∣∣∣
2

≥
(

(1 − ε) |dh|
1 + ε |h|2 − (1 + ε |h|2) |ω|

)2

=

(
1 − ε√−ε (1 − |z|2) − (1 − |z|2)

√−ε
2

|{G, z}|
)2

|dz|2 ≥
(

1 − ε√−ε −
√−ε

2
b0

)2 |dz|2
(1 − |z|2)2 .

Since b0 <
2(1−ε)
−ε , then 1−ε√

−ε −
√
−ε
2 b0 is a positive number and the induced metric is, up to a

constant, greater than or equal to the Poincaré metric on the unit disk. Hence, the immersion
is complete. 2
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Remark 5 Let ψ0 : D−→H
3 be a BLW-surface in R3 with Weierstrass data h0(z) = z/

√−ε
and hyperbolic Gauss map G0. If we consider the new immersion ψ1 : D−→H

3 with h1(ζ) =
ζ/

√−ε and G1(ζ) = G0(ϕ(ζ)) where ϕ : D−→D is a conformal equivalence, then ψ0(ϕ(ζ)) =
ψ1(ζ).

Indeed, since ϕ is a biholomorphic map onto the unit disk

ϕ(ζ) = eiθ
ζ + ζ0

ζ0ζ + 1
, ζ ∈ D,

for some ζ0 ∈ D, θ ∈ R and

ϕζ(ζ)

1 − |ϕ(ζ)|2 = eiθ
1 + ζ0ζ

1 + ζ0ζ

1

1 − |ζ|2 .

Thus, one has

G1 ζ(ζ) (1 − |ζ|2) = eiθ
1 + ζ0ζ

1 + ζ0ζ
G0 z(ϕ(ζ)) (1 − |ϕ(ζ)|2)

Aψ1
(ζ) = eiθ

1 + ζ0ζ

1 + ζ0ζ
Aψ0

(ϕ(ζ))

and the above equality is clear from (28). 2

Now, for the representation of some surfaces and the study of its geometric behaviour,
we will identify the hyperbolic space H

3 ⊂ L
4 with the upper half space of R

3 given by
{(x1, x2, x3) ∈ R

3 : x3 > 0} by considering the map

(x0, x1, x2, x3) −→ 1

x0 + x3
(x1, x2, 1).(32)

Under this identification the hyperbolic metric is given by

ds2 =
1

x2
3

(dx2
1 + dx2

2 + dx2
3)(33)

and its ideal boundary S
2
∞ is identified with the one point compactification of the plane

Π ≡ {x3 = 0}, that is, S
2
∞ = Π ∪ {∞}. Thus, the asymptotic boundary of a set Σ ⊂ H

3 is

∂∞(Σ) = cl(Σ) ∩ S
2
∞

where cl(Σ) is the closure of Σ in {x3 ≥ 0} ∪ {∞}, that is, in the one point compactification
of H

3 ∪ Π.
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Example 1 Let ψ : D−→H
3 be a complete totally umbilical BLW-surface with ε < 0. From

the comments at the beginning of Section §3 and from Lemma 3, we have that the Weierstrass
data of the immersion are (z/

√−ε, 0), z ∈ D. In that case G(z) = rz, r > 0 is a holomorphic
solution of {G, z} = 0. Consequently, from Theorem 4 and (32) the immersion is isometric
to the following one:

ψ1(u, v) =
r

1 − ε(u2 + v2)
{(1 − ε)u, (1 − ε)v,

√
−ε(1 − u2 − v2)},

z = u+ iv ∈ D. It is clear that the asymptotic boundary of ψ1 is a circle in Π∪{∞} of radius
r, see Figure 2. 2

Example 2 For ε = −1/4, let ψ : D−→H
3 be the BLW-surface associated with the Weier-

strass data
(
2z, 3dz/(8(1 − z2))

)
, z ∈ D. Since a solution of the equation 2{G, z} = −3/(1 −

z2) is the holomorphic map G(z) = (1− z)2/4, z ∈ D, we conclude from Theorem 4 and (32)
that the immersion ψ is regular.

Consider the new conformal parameter x+iy = ϕ(z) = 2i/(1−z) and take τ the isometry
of H

3 given by the Euclidean inversion with respect to the unit sphere centered at (0, 0, 0).
Then τ ◦ ψ is parametrized as ψ2 ◦ ϕ, where

ψ2(x, y) = {1 − 4 y + 8 y3 + 8x2 − 5x4 + y2
(
5 − 3x2

)

D
,

−2x
(
6 y2 + 2 y3 + 2x2 + 3 y

(−1 + x2
))

D
,
8 (−1 + y)

(
y2 + x2

) 3

2

D
},

andD := 1−12 y5+8 y6+11x2−x4+5x6+y3
(
16 − 24x2

)
+3 y4

(
3 + 7x2

)
+2

(
y + 3 y x2

)2−
4 y

(
1 + 3x4

)
.

It is clear, see Figure 3, that the immersion τ ◦ ψ is regular but its asymptotic boundary
is a non regular Jordan curve. 2

Example 3 Let ε = −1/(4n2 + 4n), with n a positive integer and ψ : D−→H
3 be the BLW-

surface associated with the Weierstrass data
(
z/

√−ε,−n+1
2n

√−εdz/(1 − z2)2
)
, z ∈ D. Since

a solution of the equation n{G, z} = −(n+ 1)/(1 − z2)2 is the meromorphic map

G(z) = tan




(1 + 2n)
(
−π + 2 i log( 1+z

1−z )
)

4


 ,

z ∈ D, it is not difficult to see that the immersion is not embedded and has as asymptotic
boundary the set {(0, x2, 0) : x2 ∈ R} ∪ {∞} in Π ∪ {∞}.

In fact, for n = 1 if we consider τ the isometry of H
3 given by the Euclidean inversion with

respect to the unit sphere centered at (1, 1, 0), then the asymptotic boundary of τ ◦ ψ is the
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circle of radius 1/2 centered at 1/2 + i on Π ∪ {∞}. Moreover, by taking the new conformal

parameter x+ iy = ϕ(z) = log
(

1+z
1−z

)
, the immersion τ ◦ ψ is parametrized as ψ3 ◦ ϕ, where

ψ3(x, y) =
1

B
{4 cos(y) − 4 cos(3 y) + cos(5 y) + 2 (13 + 4 cos(2 y)) (cosh(3x) − sinh(3x)) ,

2 (4 cos(y) − 4 cos(3 y) + cos(5 y)) + (13 + 4 cos(2 y)) (2 cosh(3x) − sinh(3x)) ,

12
√

2 cos(y)},

and B = 8 cos(y)−8 cos(3 y)+2 cos(5 y)+3 (13 + 4 cos(2 y)) cosh(3x)−4 sin(y)+4 sin(3 y)−
sin(5 y) − 2 (13 + 4 cos(2 y)) sinh(3x), see Figure 4. 2

Example 4 We fix ε = −1/8 and take the BLW-surface ψ : D−→H
3 associated with the

Weierstrass data
(
2
√

2z,−5/(2
√

2(1 − z2)2)dz
)
, z ∈ D. Since a solution of the equation

{G, z} = 10/(1 − z2)2 is the holomorphic map

G(z) = tan(log(
z + 1

z − 1
)),

z ∈ D, from Theorem 4 and (32) ψ is a regular immersion and its asymptotic boundary are
two disjoint circles in Π ∪ {∞}.

By taking the new conformal parameter x + iy = ϕ(z) = log
(
z+1
z−1

)
, the immersion ψ is

parametrized as ψ4 ◦ ϕ, where

ψ4(x, y) = { (−13 + 5 cos(2 y)) sin(2x)

cos(2x) (−13 + 5 cos(2 y)) − 3 (7 + cos(2 y)) cosh(2 y) − 4 sin(2 y) sinh(2 y)
,

4 cosh(2 y) sin(2 y) + 3 (7 + cos(2 y)) sinh(2 y)

cos(2x) (13 − 5 cos(2 y)) + 3 (7 + cos(2 y)) cosh(2 y) + 4 sin(2 y) sinh(2 y)
,

16
√

2 cos(y)

cos(2x) (−13 + 5 cos(2 y)) − 3 (7 + cos(2 y)) cosh(2 y) − 4 sin(2 y) sinh(2 y)
},

It is clear that the immersion can be considered as a embedding of a cylinder with two
disjoint circles in Π ∪ {∞} as its asymptotic boundary, see Figure 5. 2

For the study of these surfaces at infinity we pose the following Plateau problem:

Given ε0 < 0 and a Jordan curve Γ on S
2
∞ ≡ Π ∪ {∞}, find a complete BLW-

surface ψ : S−→H
3 satisfying

2(−ε0)(H − 1) + (ε0 − 1)KI = 0

with Γ as its asymptotic boundary.
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Since every preserving orientation isometry of H
3 induces a Möbius transformation on S

2
∞

(see, for instance, [24]) then we will assume that, up to a Möbius transformation, the Jordan
curve Γ lies on Π.

Proposition 1 Let Γ be a Jordan curve on Π ≡ {x3 = 0} ⊂ R
3, int(Γ) the bounded compo-

nent of Π\Γ and G : D−→ IΓ a conformal equivalence where IΓ = {x1+ix2 ∈ C : (x1, x2, 0) ∈
int(Γ)}. Then, if G satisfies (27) for a fixed ε < 0, the immersion ψ : D−→H

3 associated
with G by Theorem 4 lies in the region R3 and it is a solution to the Plateau problem for the
Jordan curve Γ.

Moreover,

1. ψ has a continuous extension ψ̃ to the closure D of D, such that ψ̃|∂D : ∂D−→Γ is a

homeomorphism. If Γ is a C∞ smooth Jordan curve then ψ and its derivatives have
continuous extensions to D,

2. if ψ is an embedding and Γ is a differentiable curve such that each tangent line to Γ does
not pass through a fixed point p ∈ int(Γ) then the bounded domain by ψ̃(D)∪ int(Γ), O,
is starshaped from p in R

3.

Proof : First, we observe that G has an extension to a homeomorphism G̃ of the closed disk D

onto the closure of IΓ [8, Theorem II.3.4]. Moreover, if Γ is differentiable the above extension
is a diffeomorphism [8, Theorem II.3.5].

On the other hand, from (28) and (32), the immersion can be written as

ψ(z) =

(
G+ εGz(1 − |z|2) A

1 − ε|A|2 ,
√
−ε |Gz|(1 − |z|2)

1 − ε|A|2

)
.(34)

Thus, if we consider the extension ψ̃ of ψ in R
3 such that ψ̃(z) = (G̃(z), 0) when |z| = 1, ψ̃

is a continuous map on D since

1 − ε|A|2 ≥ 1,
|A|

1 − ε|A|2 is bounded

and |Gz |(1 − |z|2) → 0 when |z| → 1 (see, [4, Lemma 14.2.8]). In particular, ψ is a solution
to the Plateau problem for the Jordan curve Γ.

Moreover, if Γ is differentiable then G̃ is also differentiable and G̃z 6= 0 for |z| = 1, so A
is well defined on D and ψ̃ is a smooth extension of ψ in R

3.
Now, let us assume that ψ is an embedding and that Γ is a differentiable curve such that

each tangent line to Γ does not pass through a fixed point p ∈ int(Γ). We consider,

B−
t = {q ∈ R

3 : ‖ q − p ‖≤ t} ∩ {x3 ≥ 0}, B+
t = {q ∈ R

3 : ‖ q − p ‖≥ t} ∩ {x3 ≥ 0}
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where ‖ . ‖ denotes the usual Euclidean norm and Ht = B−
t ∩ B+

t the closed Euclidean
hemisphere with radius t and centered at p.

The Euclidean inversion It with respect toHt is a hyperbolic reflection when It is restricted
to H

3 and so we can use the Alexandrov reflection principle. That is, let

Σ−
t = ψ̃(D) ∩B−

t , Σ+
t = It

(
ψ̃(D) ∩B+

t

)
.

Since ψ̃(D) is compact there exists t0 such that ψ̃(D) ⊂ B−
t0 . Therefore, in a standard way, if

O was not starshaped from p then, when the radius decreases from t0 to 0, there would exist
a first time t1 such that either Σ−

t1 and Σ+
t1 are tangent at a point in their boundaries or they

meet at a interior point.
These situations cannot happen for a point of Γ because ψ̃ is differentiable and all tangent

lines to Γ do not pass through p. Then, by using that (3) is an elliptic equation we have that
Σ−
t1 and Σ+

t1 would be the same surface which is a contradiction. 2

Remark 6 From Remark 5, the solution to the Plateau problem associated with a Jordan
curve Γ given by the above proposition does not depend on the selected conformal equivalence
G from D onto IΓ.

Moreover, if ψ is an embedding, the hyperbolic normal to the immersion points towards O.
Otherwise, the hyperbolic normal would point upwards at the (Euclidean) highest point p0 of
the immersion, but the vertical straight half lines are hyperbolic geodesics and so G(p0) = ∞
which contradicts that G(D) ⊂ IΓ. 2

First, we solve the Plateau problem at infinity when the Jordan curve is convex.

Theorem 5 Let Γ be a convex Jordan curve on Π ≡ {x3 = 0} ⊂ R
3. Then for any ε < 0

there exists a unique embedded solution to the Plateau problem for Γ with hyperbolic normal
pointing downwards at its (Euclidean) highest point.

Moreover if −1/2 < ε < 0, then there are exactly two embedded solutions to the Plateau
problem for Γ.

Proof : Let us consider the bounded component int(Γ) of Π \ Γ and a conformal equivalence
G from D onto IΓ = {x1 + ix2 ∈ C : (x1, x2, 0) ∈ int(Γ)}. Then, from [14] or [9, Corollary
3], we obtain |{G, z}| ≤ 2/(1 − |z|2)2 < 2(1 − ε)/(−ε(1 − |z|2)2), ∀ε < 0. Therefore, from
Proposition 1, the immersion ψ associated with ε and G is a solution of the Plateau problem
for Γ.

Now, we shall prove that ψ is an embedding. We observe that the induced metric I of
the immersion ψ is conformal to its usual metric I0 as an immersion into R

3, in fact, from
(33), I0 = ψ2

3I where ψ3 > 0 denotes the third coordinate immersion. Hence, the Euclidean
curvature K0 of ψ can be calculated as

ψ2
3 K0 = KI − ∆I(logψ3),
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here ∆I denotes the Laplacian associated with the induced metric I.
Since the Weierstrass data of the immersion ψ are given by h(z) = z/

√−ε and ω =
−1/2

√−ε{G, z}dz we obtain from (19), (23), (34) and by a straightforward computation of
the above Laplacian that

KI =
−16ε

ε2|{G, z}|2(1 − |z|2)4 − 4(1 − ε)2

and

K0 =
−4ε

(
4(1 − |A|2)2 − |{G, z}|2(1 − |z|2)4)

|Gz|2(1 − |z|2)2 (4(1 − ε)2 − ε2(1 − |z|2)4) .

Thus, by using [9, Corollary 3], one has 4(1 − |A|2)2 − |{G, z}|2(1 − |z|2)4 ≥ 0 and ψ is
an immersion with non negative Euclidean curvature and planar boundary, that is, ψ is an
embedding (see, for instance, [7] or [27]).

From Remark 6, the hyperbolic normal of the immersion ψ points downwards at its
(Euclidean) highest point. Let us assume χ : S−→H

3 ⊂ R
3 is another solution to the Plateau

problem for a fixed ε0 < 0 and the convex Jordan curve Γ, with hyperbolic normal pointing
downwards at its highest point, or equivalently, pointing towards the enclosed Euclidean
domain by cl(χ(S)) ∪ int(Γ).

Without loss of generality we may assume the origin belongs to int(Γ). Let C0 and C2 be
two circles on Π centered at the origin and bounding a closed annulus A in Π containing Γ
in its interior. Choose C0 and C2 so that the totally umbilical BLW-surfaces (spherical caps,
with hyperbolic normal pointing downwards), S0 and S2 associated with ε0 and asymptotic
boundary C0 and C2, respectively, satisfy S0 is below χ(S) and χ(S) is below S2 (see Example
1).

Then, we consider Γt, 0 ≤ t ≤ 2, a foliation of the annulus A such that Γt is convex for
all t ∈ [0, 2], Γ0 = C0, Γ1 = Γ and Γ2 = C2. Let Gt be the conformal equivalence from D

onto {x1 + ix2 ∈ C : (x1, x2, 0) ∈ int(Γt)} such that Gt(0) = 0 and (Gt)z(0) is a positive
real number. Since Γt is also convex we have |{Gt, z}| ≤ 2/(1 − |z|2)2 (see [14]) and we
can consider, from Proposition 1, the BLW-surface ψt : D−→H

3 ⊂ R
3 associated with ε0

and hyperbolic Gauss map Gt. In particular, ψ0(D) = S0, ψ1(D) = ψ(D) and ψ2(D) = S2.
Moreover, ψt is an embedding as it was proved for ψ.

We want to show that χ(S) = ψ1(D). First, we observe that if tn ∈ [0, 2] and {tn} is a
sequence converging to t0 then {G̃tn} converges uniformly to G̃t0 (see [8, Theorem II.5.2]),
where G̃t is the extension of Gt to D.

Let us prove that if 0 ≤ t < 1 then ψt(D) is below χ(S). If J = {t ∈ [0, 1[: ψt(D) ∩
χ(S) 6= ∅} is non empty then we see that J has a minimum; indeed we observe that given
a sequence {tn} ⊂ J converging to the infimum t0 of J , there would exist pn ∈ D such
that ψtn(pn) ∈ cl(χ(S)) and a subsequence {pm} would converge to a point p0 ∈ D and,
since {ψtm} converges uniformly to ψt0 then ψt0(p0) ∈ cl(χ(S)). But, p0 /∈ ∂D because of
Γt0 ∩ Γ1 = ∅, that is, t0 ∈ J .
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Assume J 6= ∅ then, using the uniform convergence for any t ∈ [0, t0[, one has that ψt and
ψt0 are below χ(S). Thus, since ψt0(D) and χ(S) are tangent at some point with the same
hyperbolic normal and ψt0(D) is below χ(S) we have that ψt0(D) and χ(S) agree, but this is
not possible because they have different asymptotic boundary.

Consequently, J = ∅ and using another time the uniform convergence one has ψ1(D) is
below χ(S). Analogously, it can be showed that χ(S) is below ψ1(D) reasoning for the interval
[1, 2] and it yields ψ1(D) = χ(S).

Let us now consider ε0 ∈]− 1/2, 0[, we want to prove that there exists another embedded
solution to the Plateau problem for ε0 and for the convex Jordan curve Γ. Let Γt, 0 ≤ t ≤ 1,
be a foliation of the topological annulus bounded by the circle C0 and Γ in Π such that Γt is
smooth for any t ∈ [0, 1[, Γ0 = C0 and Γ1 = Γ.

Let f : R
3 \ {(0, 0, 0)}−→R

3 \ {(0, 0, 0)} be the map given by

f(x1, x2, x3) =

(
x1

x2
1 + x2

2 + x2
3

,
−x2

x2
1 + x2

2 + x2
3

,
x3

x2
1 + x2

2 + x2
3

)
,(35)

f is a preserving orientation hyperbolic isometry when it is restricted to H
3.

Bearing in mind that the origin belongs to int(Γt) for any t ∈ [0, 1], we take the Jordan
curves ϕt = f(Γt) ⊂ Π (non necessarily convex). And we also call Gt to the conformal
equivalence from D onto {x1 + ix2 : (x1, x2, 0) ∈ int(ϕt)} such that Gt(0) = 0 and (Gt)z(0)
is a positive real number. Then, from [13], one has |{Gt, z}| ≤ 6/(1 − |z|2)2 and, using that
−1/2 < ε0 and Proposition 1, the immersion ψt : D−→H

3 associated with ε0 is well defined
and ψt is a solution to the Plateau problem for the Jordan curve ϕt, or equivalently, f ◦ ψt
is a solution to the Plateau problem for Γt (since f ◦ f is the identity). Moreover, if ψt is an
embedding with hyperbolic normal pointing downwards at its highest point then f ◦ψt is an
embedding with hyperbolic normal pointing upwards at its highest point because the origin
is in int(ϕt).

We want to prove that ψ1 is an embedding. If we define the interval L = {t ∈ [0, 1] : ψs
is an embedding for all s ∈ [0, t]}, we know that 0 ∈ L and only need to prove that L is open
and closed in [0, 1].

We claim L must be open. Otherwise, since L is an interval, L = [0, t0] with t0 6= 1 and
there would exist a sequence {tn} ⊂]t0, 1[ converging to t0 such that ψtn is not an embedding.
Hence, there would exist pn, qn ∈ D, pn 6= qn, satisfying ψtn(pn) = ψtn(qn). But a subsequence
{pm} of {pn} must converge to a point p0 ∈ D and a subsequence {qr} of {qm} converges to
a point q0 ∈ D.

Reasoning as above, {ψ̃tr} converges uniformly to ψ̃t0 , where ψ̃t denotes the differentiable
extension of ψt to D. In that way, ψ̃t0(p0) = ψ̃t0(q0), but ψ̃t0 is an embedding, that is, p0 = q0.

From the uniform convergence, there exists a neighbourhood U of p0 = q0 in D and r0
such that ψ̃tr (U) is a graph on the tangent plane to the immersion ψ̃t0 at p0 = q0 for all
r ≥ r0, which contradicts that ψ̃tr (pr) = ψ̃tr(qr) with pr 6= qr for r big enough such that
pr, qr ∈ U .
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L must be closed. We observe that the origin is a point in int(ϕt) for any t ∈ [0, 1] and
the tangent line l to ϕt at a point p does not pass through the origin, otherwise, we would
obtain that the tangent line to Γt = f(ϕt) at f(p) is f(l) = l which is a contradiction because
Γt is convex and the origin is in int(Γt).

Consequently, if the interval L is not closed then L = [0, t0[ and one has, from Proposition
1, that the bounded Euclidean domain Ot enclosed by ψ̃t(D)∪ int(Γt) is starshaped from the
origin for all t ∈ L. Using again the uniform convergence of ψ̃t for t ≤ t0, the domain Ot0

enclosed by ψ̃t0(D) ∪ int(Γt0) is also starshaped from the origin and then ψt0 must be an
embedding. Hence, L = [0, 1] and ψ1 is an embedding.

The uniqueness of f ◦ ψ1 as the only embedding with asymptotic boundary Γ and hy-
perbolic normal pointing upwards at its highest point can be proven in a similar way to the
above case. 2

Remark 7 Notice that the Euclidean homotheties with center at a point of Π are preserving
orientation hyperbolic isometries when they are restricted to H

3 ⊂ R
3 (see [24]) and then the

uniqueness part of the above theorem could be proven in an easier way changing the above
foliation and considering the foliation given by the image of ψ(D) using the homotheties with
center at a point in int(Γ).

Though this easier proof can be applied when int(Γ) is starshaped, it does not work for
a general Jordan curve as it will be needed in Theorem 6. 2

Finally, we shall consider the case of a general Jordan curve Γ.

Theorem 6 Let Γ be a Jordan curve on Π ≡ {x3 = 0} ⊂ R
3. Then for any ε ∈] − 1/2, 0[

there exist at least two solutions to the Plateau problem for Γ. Moreover, if −1/4 < ε < 0
then there only exist two embedded solutions to this Plateau problem.

Proof : Without loss of generality we can assume the origin belongs to int(Γ), thus reasoning
as in Theorem 5, if we take ϕ = f(Γ), where f is given by (35), and

G1 : D−→{x1 + ix2 : (x1, x2, 0) ∈ int(Γ)} G2 : D−→{x1 + ix2 : (x1, x2, 0) ∈ int(ϕ)}

are two conformal equivalences then, from [13], |{Gi, z}| ≤ 6/(1 − |z|2)2, for i = 1, 2 and,
using ε ∈]− 1/2, 0[ and Proposition 1, we can consider the immersions ψ1, ψ2 : D−→H

3 ⊂ R
3

with associated hyperbolic Gauss map G1 and G2, respectively. Therefore, ψ1 and f ◦ψ2 are
two solutions to the Plateau problem for Γ.

On the other hand, if −1/4 < ε < 0 then ψ1 and ψ2 must be embedded. In fact, we shall
prove that ψ1 is a graph on the plane Π and analogously could be done for ψ2.

From (29) and (32), the hyperbolic normal η of ψ1 is given by

η =

(
−2ε (G1)z(1 − |z|2) A

(1 − ε|A|2)2 ,−
√
−ε |(G1)z|(1 − |z|2) 1 + ε|A|2

(1 − ε|A|2)2

)
.
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And, since from (33), the induced metrics on ψ1 from R
3 and H

3 are conformal then the
standard Euclidean normal N to ψ1 is

N =

(
2
√
−ε (G1)z

|(G1)z|
A

1 − ε|A|2 ,−
1 + ε|A|2
1 − ε|A|2

)
.

On the other hand, |A| ≤ 2 because of |{G1, z}| ≤ 6/(1 − |z|2)2 (see [16, Folgerung 2.3])
and the third coordinate of N is negative. Consequently, the projection p : ψ1(D)−→int(Γ)
given by p(x1, x2, x3) = (x1, x2) is a local diffeomorphism and it is proper, therefore, p is a
global diffeomorphism and ψ1(D) is a graph on the plane Π.

By considering a foliation Γt, 0 ≤ t ≤ 2, of an annulus A centered at a point in int(Γ)
such that Γ0 is a small enough circle in int(Γ), Γ1 = Γ and Γ2 is a big enough circle containing
Γ in its interior, one can prove the uniqueness part in a similar way to Theorem 5, bearing
in mind that any immersion ψt associated with Γt is an embedding. 2

Remark 8 A solution to the Plateau problem for a non regular Jordan curve can be found
in Example 2. Moreover, from Example 3, we can see that the condition of embeddedness in
Theorems 5 and 6 is essential. 2
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Figure 1.
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Figure 2: Totally umbilical BLW-surfaces.

Figure 3: BLW-surface with non regular asymptotic boundary.
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Figure 4: Non embedded BLW-surface with embedded asymptotic boundary.

Figure 5: BLW-surface with a non connected embedded asymptotic boundary.
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