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Abstract. In this work we study a class of affine maximal surfaces with
singularities that we called affine maximal maps. Our main goal is the
classification of the complete affine maximal maps with one or two em-
bedded regular ends. In particular, we obtain a new characterization of
the elliptic paraboloid and a large family of global examples.
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1. Introduction

In the classical work [B], Blaschke showed that the Euler-Lagrange equation
of the equiaffine area functional is of fourth-order and nonlinear. To be more
precise, the affine invariant area functional is given by

A(φ) =

∫ (
det
(
∇2φ

))1/4
dxdy =

∫
K1/4
e dσ, (1.1)

where Ke is the Euclidean Gauss curvature of the graph of φ(x, y) and dσ its
volume element, and its Euler-Lagrange equation becomes

L[φ] := φyyρxx − 2φxyρxy + φxxρyy = 0, ρ =
(
det
(
∇2φ

))−3/4
, (1.2)

∇2φ > 0 being the positive definite Hessian matrix of φ.
Blaschke also showed that Equation (1.2) is equivalent to the vanish-

ing of the affine mean curvature, which along with the fact that, for locally
strongly convex surfaces, the second variation formula is always negative (see
[5]) led to the notion of affine maximal surfaces.

Equation (1.2) has been widely studied from a global point of view, see
the recent book [17]. For instance, Trudinger and Wang [22, 23] proved that
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the entire convex solution of (1.2) are quadratic polynomials, answering in
this way the so called Affine Bernstein Problem conjectured by Chern [8] in
1978. Another celebrated global result is the one characterizing the elliptic
paraboloid as the only affine complete affine maximal surface (see [16, 20, 24])

Motivated by the lack of global examples, as becomes clear in view of the
results above, the study of singularities of Equation (1.2) has lately received
many contributions [1, 2, 3, 4, 11, 13, 19] which has revealed an interesting
global theory for this class of surfaces.

The aim of this work is to study in a global way affine maximal sur-
faces with some admissible singularities. We call such surfaces affine maximal
maps.

The paper is organized as follows. In Section 2 we revise some fundamen-
tal facts about affine surfaces and introduce the concept of affine maximal
map. We pay special attention to the notion of completeness of an affine
maximal map and define the ends of such maps.

Section 3 is devoted to study when the regular ends of a complete affine
maximal map are embedded.

Finally, in Section 4 we classify the complete affine maximal maps with
only one or two embedded regular ends. To be more precise, we see that the
elliptic paraboloid is the only complete affine maximal map with a unique
embedded regular end. Regarding to complete affine maximal maps with
two embedded regular ends, we show that they are contained in a family of
canonical examples that we describe in detail.

2. Affine Maximal Maps

In order to motivate the notion of affine maximal maps, we will revise some
basic facts about affine surfaces. We refer the reader to [18, 21] for more
detailed discussions about this topic.

Let ψ : Σ −→ R3 be a locally strongly convex immersion of a surface
Σ, oriented so that its second fundamental form, σe, is positive definite ev-
erywhere. Denote by Ke and dAe its Gaussian curvature and the element

of Euclidean area, respectively. Then, the positive density dA := K
1
4
e dAe,

the positive quadratic form g := K
− 1

4
e σe and the transversal vector field

ξ := 1
2∆gψ, where ∆g is the Laplace-Beltrami operator associated to g, are

the most elementary unimodular affine invariants of the immersion and they
are called the equiaffine area element, the Berwald-Blaschke metric, and the
Blaschke normal or affine normal, respectively.

On Σ we have a canonical Riemann surface structure such that g is
Hermitian. Moreover, the equiaffine normalization of ψ is given by the affine

normal ξ and the affine co-normal vector field N := K
−1/4
e Ne, where Ne is
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the unit normal vector field to the immersion. With this normalization

1 = 〈N, ξ〉, 〈N, dψ〉 = 0,

g = −〈dψ, dN〉 = det[N, ∗dN, dN ], (2.1)

dψ = −N ∧ ∗dN, (2.2)

ξ =
∗dN ∧ dN

det[N, ∗dN, dN ]
,

where 〈., .〉 is the usual inner product in R3, ∧ denotes the cross product in
R3 and ∗ is the standard conjugation operator acting on 1-forms.

The Euler Lagrange equation (1.2) for the affine invariant area func-
tional (1.1) is equivalent to the system of PDE’s

∆gN = 0.

So, when Σ is simply-connected, 1
2N is locally the real part of a holomorphic

curve Φ : Σ −→ C3 determined by ψ up to a real translation which satisfies

N = Φ + Φ, (2.3)

g = −2 i det
[
Φ + Φ, dΦ, dΦ

]
, (2.4)

2 dΦ = dN + i ∗dN. (2.5)

Conversely, (2.2) allows us to recover ψ from its affine co-normal and
the conformal class of g, ([15]), as

ψ = −
∫
N ∧ ∗dN, (2.6)

which, along with (2.4) and (2.5), says that ψ is uniquely determined, up to a
real translation, by a holomorphic curve Φ satisfying that −2 i det

[
Φ + Φ, dΦ, dΦ

]
is a Riemannian metric (see also [6]). To be precise,

ψ = 2<
∫

i
(
Φ + Φ

)
∧ dΦ = − i

(
Φ ∧ Φ−

∫
Φ ∧ dΦ +

∫
Φ ∧ dΦ

)
. (2.7)

Remark 1. Calabi [7] calls torsion-free affine maximal surfaces to those ob-
tained from a holomorphic curve Φ = (Φ1,Φ2,Φ3) satisfying that

c1Φ1 + c2Φ2 + c3Φ3 = c4

for cj ∈ C, j = 1, 2, 3, 4. Furthermore if cj , j = 1, 2, 3, are real constants,
then such surfaces belong to the special class of improper affine spheres and,
up to an eqquiaffine tranformation, one can assume that Φ3 is constant.

From (2.6) and (2.7) we have a recipe that lets us obtain affine maximal
immersions from either harmonic vector fields or holomorphic curves. But
when the expressions in (2.1) and (2.4) fail to be Riemannian metrics, it
appears a natural set of singularities of ψ that motivates the study of affine
maximal surfaces with some admissible singularities.

Definition 2. Let Σ be a Riemann surface. We say that a map ψ : Σ −→ R3

is an affine maximal map if there exists a harmonic vector field N : Σ −→ R3

such that det[N, ∗dN, dN ] does not vanish identically and ψ is given as in
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(2.6). We shall say that N is the affine co-normal vector field of the affine
maximal map.

Remark 3. Our definition extends the notion of improper affine map intro-
duced in [19]. In fact, when the affine co-normal vector field N = (N1, N2, N3)
is such that N(p) is contained in a plane π for all p ∈ Σ, up to an equiaffine
transformation we can assume that N3 is constant and ψ becomes an im-
proper affine map (see Remark 1). Besides, in this case, it is proved in [9],
[?] and [19] that there exist holomorphic functions Φ1 and Φ2 globally defined
on Σ (even although Σ is not simply-connected) such that

N = (Φ1 + Φ1,Φ2 + Φ2, 1).

The singular set Sψ of an affine maximal map ψ is the set of points
where the quadratic form

g = det[N, ∗dN, dN ] (2.8)

vanishes. It is clear that Σ \ Sψ is dense in Σ.
Although the affine metric is not well defined on Sψ, we can define

completeness of affine maximal maps in a similar way as Kokubu, Umehara
and Yamada have done for other kind of surfaces with singularities (see, for
instance, [14, 25]).

Definition 4. Let ψ : Σ −→ R3 be an affine maximal map. We say that ψ is
complete if there exist compacts sets K, K ′, K ⊂ K ′ ⊂ Σ, and a symmetric
2-tensor T with compact support in Σ such that if µ : Σ −→ [0, 1] is a
differentiable function satisfying

µ(p) =

{
0 if p ∈ K
1 if p ∈ Σ \K ′

then

g̃ = (1− µ)T + µ|g|
is a complete metric on Σ.

Using a Theorem by Hubber (see [12][Th 13]), one can prove

Theorem 5. Let ψ : Σ −→ R3 be a complete affine maximal map with affine
co-normal vector field N . Then Σ is conformally equivalent to the complement
of a finite point set {p1, . . . , pn} in a compact Riemann surface Σ.

The points {p1, . . . , pn} will be called ends of ψ. We will say that an end
p is regular if dN + i ∗dN extends meromorphically to p; otherwise the end
will be called irregular.

Remark 6. The ends of a complete improper affine map (see [19]) are always
regular.

A regular end is particularly interesting because around it we can as-
sume that it comes as in (2.6) from a harmonic map N : D? −→ R3 well-
defined on the unit punctured disk D? and such that dN + i ∗dN extends
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meromorphically to the origin. Under this assumption N admits a series de-
velopment (see Section 3) which will allow us to determine when the end is
embedded.

3. Embedded Ends of Affine Maximal Maps

Let ψ : D? −→ R3 be an affine maximal regular complete end with affine
co-normal vector field N . Let us take (u, v) conformal parameters in D? for
the affine metric g. Note that it must be [N,Nu, Nv] > 0 in D?.

Under our assumptions, there exist meromorphic functions F,G,H :
D −→ C (which are holomorphic in D?) and real constants a, b and c such
that the affine conormal N = (N1, N2, N3) of the affine maximal map ψ can
be written as

N1(z) = <(F1(z)) + b log |z|,
N2(z) = <(F2(z)) + c log |z|, (3.1)

N3(z) = <(F3(z)) + a log |z|,
where z = u + i v. Observe that, up to an equiaffine transformation, we can
assume that b = c = 0.

Let us take polar coordinates (R, t) in D such that u = R cos t and
v = R sin t. Since F , G and H are meromorphic functions in D, near the
origin we can write

N = (
∑
m≥p

RmA1m(t),
∑
m≥q

RmA2m(t),
∑
m≥k

RmA3m(t) + a log(R)), (3.2)

where p, q, k are integers and

Ajm(t) = ajm cos(mt) + bjm sin(mt), j = 1, 2, 3,

A1p(t) 6= 0, A2q(t) 6= 0,
A3k(t) 6= 0 or a 6= 0,

being possible that the third coordinate is simply a log(R) or
∑
m≥k R

mA3m(t)

(a = 0).
The case were p, q, k ≥ 0 was studied in [AMM1]. Under those conditions

the type of singularity at the origin is not an end. Hence, we will assume that
at least one the integers p, q, k is negative. Actually, we are interested in
studying the embedded ends.

We must bear in mind the following considerations regarding the inte-
gers p, q, k.

Remark 7. First, observe that we can assume that the three integers p, q, k
are not equal. In fact, if that was the case, we would be able by means of a
suitable reparametrization of the parameter t and an equiaffine transforma-
tion to rewrite N so that no more than two of the integers p, q, k were equal.
Even more, when two of the integers p, q, k are equal, let us say for instance
p and q, we can assume that the vectors (a1p, b1p) and (a2q, b2q) are not pro-
portional because in such a case, again up to an equiaffine transformation,
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we can rewrite N so that p < q. Furthermore, being p = q (and (a1p, b1p) and
(a2q, b2q) not proportional), we can take A1p = cos(pt) and A2q = sin(qt).

Reasoning in a similar way, we can also assume that no more than one
of the integers p, q, k is zero. Furthermore, if for instance p = 0 we can take
A1p(t) = 1.

Finally, up to a reparametrization of the parameter t and an equiaffine
transformation, we can assume in general that one of the coefficients A1p(t), A2q(t)
or A3k(t), let us say, for instance, the first one, can be simplified to A1p(t) =
cos(pt).

In order to determine how the integers p, q, k must be for the affine
maximal map has a well-defined end at the origin, we will use that the de-
terminant

[N,Nu, Nv] =
1

R
[N,NR, Nt] (3.3)

cannot change signs. Note that the sign of this determinant is determined by
the coefficient of the lowest power of R. In addition, we will use the following
technical result

Lemma 8. Let φ1, . . . , φn, λ1, . . . , λn, µ1, . . . , µn be integers such that:

- φi 6= 0, for i = 1, . . . , n.
- At least one of the integers λ1, . . . , λn, µ1, . . . , µn is not zero.

Then there exist real numbers t1, t2 such that the function

f(t) =

n∑
i=1

(λi cos(φit) + µi sin(φit))

verifies that f(t1) < 0 and f(t2) > 0.

Proof. The function

F (t) = −
n∑
i=1

(
1

φ2i
λi cos(φit) +

1

φ2i
µi sin(φit)

)
is a periodic function such that F ′′(t) = f(t). Observe that if f(t) did not
change signs, then F (t) would be a concave (or convex) function, which is
impossible because it is periodic. This proves the claim of the lemma. �

We will study separately the cases a = 0 and a 6= 0.

Proposition 9. Let ψ : D? −→ R3 be an affine maximal regular complete end
with affine co-normal vector field N given by (3.2). If a = 0, then either

i) two of the integers p, q, k are equal and different from zero, and the other
one is zero.

or

ii) the three integers p, q, k are pairwise different and, assuming without loss
of generality that p < q < k, one of the following situations happens:
• p = q + k and q = µk for a certain integer µ, µ ≥ 2.
• q = p + k and either p = µk or k = µp for a certain integer µ,
µ ≤ −2.
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Moreover, the end is embedded only when two of the integers p, q, k are equal
to -1 and the other one is zero.

Proof. From Remark 7, we can assume that the three integers p, q, k are not
all equal and no more than one of them is zero.

It is a straightforward computation to check that the coefficient of the
lowest power of R, R−1+p+q+k, is given by

C(t) = (p−k)A1p(t)A3k(t)A′2q(t)+A2q(t)
(
(k − q)A3k(t)A′1p(t) + (q − p)A1p(t)A

′
3k(t)

)
(3.4)

with

A1p = a1p cos(pt) + b1p sin(pt),

A2q = a2q cos(qt) + b2q sin(qt), (3.5)

A3k = a3k cos(kt) + b3k sin(kt).

Let us start studying the case when two of the integers p, q, k are equal;
let us say, for instance, p = q. As we have already pointed out in Remark 7,
it must be p 6= 0, we can assume that the vectors (a1p, b1p) and (a2q, b2q) are
not proportional and

A1p = cos(pt), A2q = sin(pt).

Then the coefficient (3.4) becomes

C(t) = p(p− k) (a3k cos(kt) + b3k sin(kt)) . (3.6)

When A3k is not a constant (i.e. k 6= 0), this coefficient changes signs de-
pending on the angle t and so this case is not possible. Consequently the only
possibility is that p = q < 0 and k = 0, and i) is proved.

In order to analyze when, being p = q < 0 and k = 0, the end is
embedded, we will recover the affine maximal map ψ from N . Given a local
parameter (u, v) on D? around the origin, we have that ψu = N × Nv and
ψv = −N × Nu. Equivalently, if we take polar coordinates (R, t) such that
u = R cos t and v = R sin t, then ψR = (1/R)N ×Nt and ψt = −RN ×NR.

Hence, from (3.2) and bearing in mind that a = 0, p = q and k = 0, we
get

ψR = (−pRp−1 cos(pt) + o(p),−pRp−1 sin(pt) + o(p), pR2p−1 + o(2p))

ψt = (pRp sin(pt) + o(p+ 1),−pRp cos(pt) + o(p+ 1), o(2p+ 1))

where o(l), l ∈ Z, stands for a function depending on R and t which can
be written as o(l) = Rlf(R, t) for a certain function f(R, t) bounded in a
neighborhood of the origin. Thus, we obtain by integrating the expressions
above

ψ = (−Rp cos(pt)+o(p+1),−Rp sin(pt)+o(p+1), R2p/2+o(2p+1)). (3.7)

From this expression becomes clear that ψ is an embedding around the origin
only when p = −1.
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Now, let us focus on the case when the integers p, q, k are pairwise
different. We can assume without loss of generality that p < q < k and
A1p = cos(pt).

We can write

C(t) = λ1k(p− q) cos(αt) + λ2q(k − p) cos(βt) + λ3p(k − q) cos(γt)

+λ4k(p− q) sin(αt) + λ5q(k − p) sin(βt) + λ6p(k − q) sin(γt),

where

α = k − q − p, β = k + p− q, γ = k − p+ q,

and
λ1 = (1/2)(a2qb3k − b2qa3k),
λ2 = (1/2)(b2qa3k − a2qb3k),
λ3 = (1/2)(b2qa3k + a2qb3k),
λ4 = −(1/2)(a2qa3k + b2qb3k),
λ5 = (1/2)(a2qa3k + b2qb3k),
λ6 = (1/2)(b2qb3k − a2qa3k).

Observe that at least one of the integers λi must be not zero. Otherwise
it is easy to see that either A2q or A3k would be zero, which is a contradiction.

If α, β and γ are not zero, from Lemma 8 we deduce that C(t) changes
signs, which is not possible.

Hence we must study this particular case when one of the integers α, β, γ
is zero.

First, observe that if more than one of the integers α, β, γ were zero,
then the integers p, q, k would not be pairwise different, which is not possible.

Since p < q < k, α = k − q − p cannot be zero. In fact, since p < 0, if
α = 0 then q = k− p > k which is a contradiction. So, only β or γ (nor both
of them simultaneously) can be zero.

Let us analyze the case when γ = 0, that is, p = q + k. Observe that,
since p < q < k, it must be k < 0.

We can rewrite C(t) as

C(t) = k2Cq(t)− q2Ck(t),

where

Cq(t) = ν1 cos(qt)2 + ν4 sin(qt)2 + (ν2 + ν3) cos(qt) sin(qt)
Ck(t) = ν4 cos(kt)2 + ν1 sin(kt)2 + (ν2 + ν3) cos(kt) sin(kt)

with

ν1 = a2qb3k, ν2 = a2qa3k, ν3 = b2qb3k, ν4 = a3kb2q.

We can relate Cq(t) and Ck(t) with the quadrics defined by the matrices

Cq =

(
ν1

ν2+ν3
2

ν2+ν3
2 ν4

)
, Ck =

(
ν4

ν2+ν3
2

ν2+ν3
2 ν1

)
respectively. Both matrices have the same trace and determinant, and so
the same eigenvalues κ1 and κ2. These eigenvalues are the minimum and
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maximum values, respectively, which attain the quadrics Cq and Ck on the
set of unitary vectors. Moreover, since

det(Cq) = det(Ck) = − (ν2 − ν3)2

4
≤ 0

it follows that κ1 ≤ 0 ≤ κ2. Let t1, t2 be real numbers such that

Ck(t1) = κ1 ≤ Cq(t1),
Ck(t2) = κ2 ≥ Cq(t2).

Then, bearing in mind that q < k < 0, we have

C(t1) ≥ (k2 − q2)κ1 ≥ 0,
C(t2) ≤ (k2 − q2)κ2 ≤ 0

and so C(t) changes signs whenever det(Cq) 6= 0.
On the other hand, if det(Cq) = 0, we can put a2q = λb3k and b2q = λa3k

for a certain λ ∈ R, λ 6= 0 because A2q 6= 0. Hence

Cq(t) = λ(b3k cos(qt) + a3k sin(qt))2

Ck(t) = λ(a3k cos(kt) + b3k sin(kt))2

and

C(t) = λ
(
k2(b3k cos(qt) + a3k sin(qt))2 − q2(a3k cos(kt) + b3k sin(kt))2

)
.

If there exist tq, tk ∈ R such that Cq(tq) = 0, Cq(tk) 6= 0, Ck(tq) 6= 0
and Ck(tk) = 0, then C(tq) and C(tk) have different sign, and so the affine
maximal map have not a well-defined end under that assumption. Otherwise,
it must exist t0 ∈ R such that Cq(t0) = 0 = Ck(t0) and, since a3k and b3k
cannot be both zero, we have

0 = cos(qt0) cos(kt0)− sin(qt0) sin(kt0) = cos((q + k)t0). (3.8)

Let us assume, without loss of generality, that a3k 6= 0.
Observe that if cos(qt0) = 0, it follows from (3.8) that sin(kt0) = 0. But

then Ck(t0) 6= 0, which is a contradiction. Hence we can put

b3k
a3k

= tan(−qt0) = cot(−kt0).

Then, after a straightforward computation we can write

A1p = cos((k + q)t),

A2q = λa3k sec(qt0) sin(q(t− t0)), (3.9)

A3k = −a3k csc(kt0) sin(k(t− t0)).

Now, by means of the reparametrization s = t− t0 (we will continue calling
t to the new parameter) and a suitable equiaffine transformation, we can
rewrite the coefficients in (3.9) as

A1p = cos((k + q)t),

A2q = sin(qt), (3.10)

A3k = sin(kt),
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and so C(t) becomes

C(t) = −q2 sin(kt)2 + k2 sin(qt)2.

Finally, observe that C(t) changes signs except in the case when q = µk for
a certain integer µ, µ ≥ 2, where we are using that q < k < 0.

In order to see that under these assumptions the affine maximal map
is not embedded, we obtain from (3.10) and reasoning as in i) that ψR =
(ψ1
R, ψ

2
R, ψ

3
R) and ψt = (ψ1

t , ψ
2
t , ψ

3
t ) are given by

ψ1
R = R(µ+1)k−1 (k sin(µkt) cos(kt)− µk sin(kt) cos(µkt))

+o((µ+ 1)k)

ψ2
R = R(µ+2)k−1 ((µ+ 1)k sin(kt) cos((µ+ 1)kt)− k sin((µ+ 1)kt) cos(kt))

+o((µ+ 2)k)

ψ3
R = R(2µ+1)k−1 (µk sin((µ+ 1)kt) cos(µkt)− (µ+ 1)k sin(µkt) cos((µ+ 1)kt))

+o((2µ+ 1)k)

ψ1
t = −R(µ+1)k (k sin(µkt) sin(kt)− µk sin(kt) sin(µkt))

+o((µ+ 1)k + 1)

ψ2
t = −R(µ+2)k ((µ+ 1)k sin(kt) sin((µ+ 1)kt)− k sin((µ+ 1)kt) sin(kt))

+o((µ+ 2)k + 1)

ψ3
t = −R(2µ+1)k (µk sin((µ+ 1)kt) sin(µkt)− (µ+ 1)k sin(µkt) sin((µ+ 1)kt))

+o((2µ+ 1)k + 1)

and so

ψ1 =
R(µ+1)k

(µ+ 1)k
(k sin(µkt) cos(kt)− µk sin(kt) cos(µkt))

+o((µ+ 1)k + 1)

ψ2 =
R(µ+2)k

(µ+ 2)k
((µ+ 1)k sin(kt) cos((µ+ 1)kt)− k sin((µ+ 1)kt) cos(kt))

+o((µ+ 2)k + 1)

ψ3 =
R(2µ+1)k

(2µ+ 1)k
(µk sin((µ+ 1)kt) cos(µkt)− (µ+ 1)k sin(µkt) cos((µ+ 1)kt))

+o((2µ+ 1)k + 1)

Now, it is not difficult to check that ψ is not embedded whichever the values
of the integers k < 0 and µ ≥ 2.

The case β = 0 is quite similar, although we must make some consider-
ations. First, since now q = p + k and p < 0, it could be q = 0 and k = −p.
In this case we can take (see Remark 7)

A1p = cos(pt)

A2q = 1

A3k = a3k cos(pt) + b3k sin(pt)
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and C(t) becomes

C(t) = −p2(b3k cos(2pt) + a3k sin(2pt))

which changes signs by Lemma 8. On the other hand, as long as β = 0 and
q 6= 0 it must be k > 0. In this case we can reasoning as in the case γ = 0 to
conclude that either p = µk or k = µp for a certain integer µ, µ ≤ −2.

None of these examples are embedded, which can be reasoning as above.
�

Regarding the case a 6= 0, we have the following:

Proposition 10. Let ψ : D? −→ R3 be an affine maximal regular complete end
with affine co-normal vector field N given by (3.2). If a 6= 0, then one of the
following situations happens:

i) The third coordinate is a log(R) or k ≥ 0, and p = q 6= 0. Under these
assumptions the end is embedded if, and only if, p = q = −1.

ii) k ≤ −1 and either
iia) p = k (resp. q = k) and q = 0 (resp. p = 0) or
iib) the three integers p, q, k are pairwise different and, assuming with-

out loss of generality that p < q, either
• p < q < k, p = q + k and q = µk for a certain µ ∈ Z, or
• p < k < q, p = q + k and k = µq for a certain µ ∈ Z, or
• p < k < q, k = p + q and either p = µq or q = µp for a

certain µ ∈ Z, or
• k < p < q, k = p+ q and p = µq for a certain µ ∈ Z, or
• k < p < q, p = q + k and either q = µk or k = µq for a

certain µ ∈ Z.
Under these assumptions, the end is embedded only when p = k = −1
(resp. q = k = −1) and q = 0 (resp. p = 0).

Proof. Let us start studying jointly the case when the third coordinate is
a log(R) and the case k ≥ 0. If we take A1p = cos(pt) and A2q = a2q cos(qt)+
b2q sin(qt), then in both cases the sign of [N,NR, Nt] near the origin depends
on the coefficient of R−1+p+q log(R) which is given by

C(t) = −apq(b2q cos((p− q)t) + a2q sin((p− q)t).

Hence, if p 6= q, p 6= 0 and q 6= 0, it follows from Lemma 8 that C(t) changes
signs. On the other hand, if one of the integers p, q is equal to zero (note
that from Remark 7 we can assume that only one of them is zero), let us say
p = 0, then we can take

A1p = 1, A2q = cos(qt).

Since it must be q < 0, now the sign of [N,NR, Nt] near the origin depends
on the coefficient of R−1+q which is given by

C(t) = aq sin(qt).

Again, C(t) changes signs depending of the parameter t and i) is proved.
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If k ≤ −1, the sign of [N,NR, Nt] near the origin depends on the coef-
ficient of R−1+p+q+k. Thus we can follow the sketch of proof of Proposition
9 to prove ii).

The reasoning regarding the embedding of the end is totally analogous
to the one in Proposition 9. �

As an immediate consequence of Propositions 9 and 10 we have

Theorem 11. Let p be an embedded regular end of a complete affine maximal
map with affine co-normal vector field N . Then p is a pole of order 2 of
dN + i ∗ dN and there exists j ∈ {1, 2, 3} such that p is a pole of order less
than 2 of dNj + i ∗ dNj.

4. Main results and Examples

Let ψ : Σ −→ R3 be a complete affine maximal map defined from its harmonic
affine co-normal vector field N = (N1, N2, N3) : Σ −→ R3. As we have seen in
Section 2, from Theorem 5, the Riemann surface Σ is conformally equivalent
to

Σ− {p1, ..., pn}
for a compact Riemann surface Σ, {p1, ..., pn} being the ends of ψ that we
will assume to be regular. In particular, the 1-form dN + i ∗ dN extends
meromorphically to the ends.

Next, we obtain the following extension of the affine Bernstein problem:

Theorem 12. The elliptic paraboloid is the only complete affine maximal map
with a unique embedded regular end.

Proof. Let ψ : Σ −→ R3 be a complete affine maximal map with a unique
embedded regular end p.

Since p is the only pole of dN + i ∗ dN in the compact Riemann surface
Σ, from the Residue Theorem we get that

Resp(dN + i ∗ dN) = 0

and so, from Theorem 11, there exists j ∈ {1, 2, 3} such that Nj is harmonic

on the compact Riemann surface Σ. Then, by the maximum principle, Nj is
constant and ψ : Σ −→ R3 is an improper affine map.

In this case, see Remark 3, there are holomorphic maps

Φ1,Φ2 : Σ −→ C ∪ {∞} = S2

such that
N = (Φ1 + Φ1,Φ2 + Φ2, 1)

and deg(Φ1) = 1 = deg(Φ2), since p is their unique simple pole. Thus, Φ1 and
Φ2 are two biholomorphisms from Σ into S2 and Σ is conformally equivalent
to S2 − {p} = C. So we can take without loss of generality

Φ1(z) = z, Φ2(z) = −iz, N3(z) = 1,

with z ∈ C, which are the data of an elliptic paraboloid. �
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Remark 13. We must point out that for whichever Riemann surface Σ and
whichever holomorphic function F : Σ −→ C,

Φ1 = F, Φ2 = −iF, Φ3 = 1,

are the data of an elliptic paraboloid.

In contrast to this uniqueness for the case of one end, we are able to
construct and characterize a wide family of complete affine maximal map
with two embedded regular ends.

4.1. Canonical Examples

Let us take Σ = C \ {0} and N as in (3.1), F1, F2, F3 being holomorphic
functions on C \ {0} and meromorphic on C ∪∞ = S2. Observe that, up to
an equiaffine transformation, we can assume that b = c = 0.

We will call canonical examples (of genus 0) to the affine maximal maps
such that

0 ≤ deg(Fj) ≤ 2, deg(F1) + deg(F2) + deg(F3) = 4, j = 1, 2, 3.

Remark 14. In [19] it is proved that a complete improper affine map with
exactly two embedded ends is affinely equivalent to a canonical example with
a = 0 and deg(F3) = 0.

Moreover when deg(Fj) = 0 for any j ∈ {1, 2}, ψ also becomes an
improper affine map. In this case, from Remark 3 we know that a = 0.

Of course, besides the improper affine maps described in the remark
above, our family of canonical examples contains many others complete affine
maximal maps with exactly two embedded ends. In essence, we can classify
them into the following three types:

1. 220-type: If deg(F1) = 2 = deg(F2), F3 is constant and a ∈ R then,
from Section 3, the affine co-normal is given by

N1 =
cos(t)

R
+ c1 + d1R cos(t) + e1R sin(t),

N2 =
sin(t)

R
+ c2 + d2R cos(t) + e2R sin(t), (4.1)

N3 = c3 + a log(R)

and straightforward computations show that the corresponding affine
maximal map is single-valued if the real coefficients in (4.1) verify

ac1 = 0 = ac2 = −d2 + e1.

Therefore either a = 0 and ψ is an improper affine map (see Remark
14) or a 6= 0 and we have a family of new examples of affine maximal
maps (see Figure 1).

2. 211/121-type: In the same way, if deg(F1) = 2, deg(F2) = 1 = deg(F3),
(resp. deg(F2) = 2, deg(F1) = 1 = deg(F3)) and a ∈ R, we also have
a family of new examples of affine maximal maps (see Figure 2). Note
that the two types of affine maximal maps described in this family are
affinely equivalent.
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Figure 1. 220-affine maximal map.

Figure 2. 211-affine maximal map.

3. 112-type: For deg(F1) = 1 = deg(F2), deg(F3) = 2 and a ∈ R \ {0},
we have another family of new examples of complete affine maximal
maps (see Figure 3). Observe that if a = 0, these surfaces are affinely
equivalent to the ones of 211-type.

Similarly, we could describe the canonical examples with arbitrary genus. In
fact, for any compact Riemann surface Σ and two different points p1, p2 on
Σ, if we take local coordinates zj vanishing at pj , j = 1, 2, then there exist

on Σ real-valued functions u1, v1, u2, v2, L such that

1. uj , vj are harmonic on Σ− {pj}, j = 1, 2,
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Figure 3. 112-affine maximal map.

2. uj−<z−1j and vj−=z−1j are harmonic in a neighborhood of pj , j = 1, 2,

3. L is harmonic on Σ− {p1, p2},
4. L− log |z1| is harmonic in a neighborhood of p1 and
5. L+ log |z2| is harmonic in a neighborhood of p2.

Again, besides the improper affine maps, the family of canonical examples
contains the above three types. In particular, the 220-type is given by the
following affine co-normal

N1 = u1 + c1 + d1u2 + e1v2,

N2 = v1 + c2 + d2u2 + e2v2, (4.2)

N3 = c3 + aL

and in general

N = Au1 +Bv1 + C +Du2 + Ev2 + (0, 0, a)L,

for some A,B,C,D,E ∈ R3 and a ∈ R which must be chosen satisfying∫
γ

N ∧ ∗dN = 0, (4.3)

for any loop γ in Σ. The important fact is that any complete affine maximal
maps with two embedded regular ends can be described in this way:

Theorem 15. A complete affine maximal map ψ : Σ −→ R3 with exactly two
embedded regular ends is a canonical example.

Proof. Let p1, p2 the ends of ψ. Up to an affine transformation, we can assume

Resp1(dNj + i ∗ dNj) = 0, j = 1, 2.
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Then, from the Residue Theorem we get

0 = Resp1(dNj + i ∗ dNj) +Resp2(dNj + i ∗ dNj) = Resp2(dNj + i ∗ dNj)
and so, from Theorem 11, there exist constant vectors A,B,D,E ∈ R3 such
that

N −Au1 −Bv1 −Du2 − Ev2 − (0, 0, a)L

is harmonic on the compact Riemann surface Σ. Thus, we conclude that it is
a constant vector C ∈ R3 and the theorem is proved. �
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Departamento de Geometŕıa y Topoloǵıa, Facultad de Ciencias, Universidad de
Granada
E-18071 Granada, Spain
e-mail: amartine@ugr.es

Francisco Milán
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