A class of Weingarten surfaces in the hyperbolic 3-space.

José Antonio Gálvez, Antonio Martínez and Francisco Milán
Departamento de Geometría y Topología. Universidad de Granada (Spain).

1. BLW-Surfaces.

Let S be a surface, an immersion $\psi: S \rightarrow \mathbb{H}^{3}$, with Gauss map η, is called a linear Weingarten immersion of Bryant ype, (in short, BLW-surface), if the mean curvature H and the Gauss curvature K_{I} satisfy

$$
2 a(H-1)+b K_{I}=0,
$$

for some $a, b \in \mathbb{R}, a+b \neq 0$.
Remark 1..1 This family includes the Bryant surfaces $(H=1)$ and the flat surfaces.
The case $a+b=0$ is studied in [1].
2. The hyperbolic 3-space.

In the Lorentz-Minkowski model, \mathbb{L}^{4}, the hyperbolic 3 -space and the positive null cone are given by
$\mathbb{H}^{3}=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{4}:-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=-1, x_{0}>0\right\}$

$$
\mathbb{H I}=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}-x_{0}+x_{1}+u_{2}+u_{3}=-1, x_{0}>0\right.
$$

and $\mathbb{N}_{+}^{3} / \mathbb{R}^{+}$is the ideal boundary \mathbb{S}_{∞}^{2} of \mathbb{H}^{3}.
If we regard \mathbb{L}^{4} as the space of 2×2 Hermitian matrices, Herm(2), by identitying

$$
\left(\mathrm{x}_{0}, \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right) \longleftrightarrow\left(\begin{array}{c}
x_{0}-x_{3} x_{1}+i x_{2} \\
x_{1}-i x_{2}
\end{array} x_{0}+x_{3}\right)
$$

hen $\mathbb{H}^{3}=\{m \in \operatorname{Herm}(2) \mid \operatorname{det}(m)=1\}$ and the action of SLL $(2, \mathbb{C})$ defined by

$$
g \cdot m=g m g^{*}, \quad g^{*}=t_{\bar{g}},
$$

preserves the inner product and leaves \mathbb{H}^{3} invariant. Moreover the map

$$
w^{t} \bar{w} \longrightarrow\left[\left(w_{1}, w_{2}\right)\right] \in \mathbb{C}^{1},{ }^{t} \bar{w}=\left(w_{1}, w_{2}\right) \in \mathbb{C}^{2},
$$

let us identify \mathbb{S}_{∞}^{2} to $\mathbb{C P} \mathbb{P}^{1}$ and the action of $\mathbb{S L}(2, \mathbb{C})$ on S_{∞}^{2} is the action on $\mathbb{C P}^{1}$ by Möbius transformations.

3. Conformal representation.

Lema 3..1 Let $\psi: S \rightarrow \mathbb{H}^{3}$ be a BLW-surface, with Gauss map η. Then, we can consider that $|a+b|=1$,

$$
2 a(H-1)+b(K-1)=0
$$

and $\sigma=a I+b I I$ is a positive definite metric, where K is the Gauss-Kronecker curvature, $I=\langle d \psi, d \psi\rangle$ and From now on, we shall regard S as a Riemann surface with the conformal structure induced by $\sigma=a I+b I I$. Theorem 3..2 Let $\psi: S \rightarrow \mathbb{H}^{3}$ be a BLW-surface, with Gauss map η. Then $\psi+\eta$ is a conformal map with respect to the metric $\sigma=a I+b I I$ and

$$
\Delta^{\sigma}(\psi+\eta)=\frac{2}{a+b}\{(H-1) \psi+(K-H) \eta\},
$$ for any contormal parameter z for σ.

Theorem 3.4 (Conformal representation)
i) Let S be a non compact, simply connected surface and $\psi: S \rightarrow \mathbb{H}^{3}$ a BLW-surface. Then, there exist a meromorphic curve g : $S \longrightarrow \mathbb{S L}(2, \mathbb{C})$ and a pair (h, ω) consisting of a meromorphic function h and a holomorphic 1 -form ω on
$\psi=g \Omega g^{*} \quad$ and $\eta=g \tilde{\Omega} g^{*}$,
(4)

$$
\Omega=\left(\begin{array}{cc}
\frac{1+\left.\varepsilon^{2}| |\right|^{2}}{1+\varepsilon \epsilon \mid} & -\varepsilon \bar{h} \\
-\varepsilon h & 1+\varepsilon|h|^{2}
\end{array}\right) \quad \text { and } \tilde{\Omega}=\left(\begin{array}{cc}
\frac{1-\varepsilon^{2} \mid h h^{2}}{1+1+\left.h\right|^{2}} & \varepsilon \bar{h} \\
\varepsilon h & -1-\varepsilon|h|^{2}
\end{array}\right) \text {, }
$$

with $\varepsilon=\frac{a}{a+b}$ and $1+\varepsilon|h|^{2}>0$. Moreover, the curve g satisfies

$$
g^{-1} d g=\left(\begin{array}{cc}
0 & \omega \\
d h & 0
\end{array}\right) \text {. }
$$

The induced metric and $\sigma=a I+b I I$ are given, respectively, by

$$
I=(1-\varepsilon) \omega d h+\left(\frac{(1-\varepsilon)|d h|^{2}}{\left(1+\left.\varepsilon| |\right|^{2}\right)^{2}}+\left(1+\left.\varepsilon| |\right|^{2}\right)^{2}|\omega|^{2}\right)+(1-\varepsilon) \bar{\omega} d \bar{h}
$$

and

$$
\begin{equation*}
\sigma=(a+b)\left(\left(1+\varepsilon|h|^{2}\right)^{2}|\omega|^{2}-\frac{(1-\varepsilon)^{2}|d h|^{2}}{\left.(1+\varepsilon|h|)^{2}\right)^{2}}\right) \tag{}
\end{equation*}
$$

ii) Conversely, let S be a Riemann surface, g : S —SLL $(2, \mathbb{C})$ a meromorphic curve and (h, ω) a pair as above satisfying (6) and such that (8) is a positive definite metric. Then $\psi=g \Omega g^{*}: S \longrightarrow \mathbb{H}^{3},(\Omega$ as in (5)), is a BLW-surfac
satisfying (2) with induced metric and σ given by (7) and (8).

Remark 3.5 Following the same notation as in [2] and [4], the pair (h, ω) given by the above theorem will be called
Remark $3 . .6$ If $\psi: S \longrightarrow \mathbb{H}^{3}$ is an immersion with $H=1$ then $\varepsilon=1$,

$$
\Omega=\left(\begin{array}{cc}
0 & -i \\
-i & i h
\end{array}\right)\left(\begin{array}{cc}
0 & i \\
i & -i \bar{h}
\end{array}\right)
$$

and $\psi=g \Omega g^{*}=F F^{*}$, where

$$
F=g\left(\begin{array}{cc}
0 & -i \\
-i & i h
\end{array}\right) \in \mathbb{S L}(2, \mathbb{C}),
$$

that is, the conformal representation becomes the Bryant's representation (see [2], [9]).
Moreover, if the immersion does not lie in a horosphere and we denote by G its hyperbolic Gauss map then one

$$
g=\left(\begin{array}{cc}
i G \sqrt{\frac{d h}{d G}} \frac{i}{d h} d & \left(G \sqrt{\frac{d t}{d G}}\right. \\
i \sqrt{\frac{d h}{d G}} & \frac{i}{d h} d \\
\frac{d i t}{\frac{d i}{d G}}
\end{array}\right)
$$

and we recover the Small's formula for surfaces with constant mean curvature one (see [6], [8]).
Remark 3.7 IfS is non compact then, from (4), (5), (7) and (8), its Gaussian curvature $K_{I}=K-1$ can be calculated as

$$
\begin{equation*}
K_{I}=\frac{-\left.4 \varepsilon| | h\right|^{2}}{\left(1+\varepsilon|h|^{2}\right)^{4}|\omega|^{2}-(1-\varepsilon)^{2}|d h|^{2}} \tag{}
\end{equation*}
$$

and its mean curvature is given by

$$
H=1+\frac{2(1-\varepsilon) \mid d h h^{2}}{\left(1+\left.\left.\varepsilon|h|\right|^{2}| | \omega\right|^{2}-(1-\varepsilon)^{2}|d h|^{2}\right.}
$$

In particular, a point $p \in S$ is umbilical if and only if $\operatorname{dh}(p)=0$ or $\omega(p)=0$.

4. Completeness of the immersions.

4.1. Completeness with non negative Gauss curvature.

Theorem 4..1 1 Let $\psi: S \rightarrow \mathbb{H}^{3}$ be a complete BLW-surface with non negative Gauss curvature K_{I}. Then $\psi(S)$ is a Otally umbilical round sphere, a horosphere or a hyperbolic cylinder.
4.2. Completeness with negative Gauss curvature and $\varepsilon>0$.

If (h, ω) are the Weierstrass data for a BLW-surface ψ_{0} with $K_{I}<0$ and $\varepsilon>0$, we obtain a new associated immersion with constant mean curvature one and Weierstrass data $(\sqrt{\varepsilon} h, \omega)$.
hus, the study of complete BLW-surfaces with $K_{I}<0$ and $\varepsilon>0$ can be reduced to the study of complete immer
sions with constant mean curvature one. Many things are known in this case and some very interesting resulis were proved in [2], [3] and [9].
4.3. Completeness with negative Gauss curvature and $\varepsilon<0$

The geometry of the surface is very different when the immersion lies in the case R_{3}, that is, $K_{I}<0$ and $\varepsilon<0$. For
Lema $4 . .2$ Let ψ : $S \rightarrow \mathbb{H}^{3}$ be a complete BLW-surface in R_{3} with Weierstrass data (h, ω). Then, S is conformally equivalent to the unit disk \mathbb{D} and h is a global diffeomorphism onto $\mathbb{D}_{\varepsilon}=\left\{z \in \mathbb{C}:|z|^{2}<-1 / \varepsilon\right\}$.
From the above lemma, given a complete BLW-surface $\psi: S \rightarrow \mathbb{H}^{ో}$ with Weierstrass data (h, ω) we can conside up to a change of parameter, $S=\mathbb{D}$ and $h(z)=z / \sqrt{ }$ Moreover, from (8), σ is positive definite if and only

$$
|\omega|<\frac{1-\varepsilon}{\sqrt{-\varepsilon}} \frac{|d z|}{\left.(1-|z|)^{2}\right)^{2}}, \quad z \in \mathbb{D} .
$$

The Schwarzian derivative of G satisfies

$$
\{G, z\}:=\frac{d}{d z}\left(\frac{G_{z z}}{G_{z}}\right)-\frac{1}{2}\left(\frac{G_{z z}}{G_{z}}\right)^{2}=\frac{2 G_{z} G_{z z}-3 G_{z z}^{2}}{2 G_{z}^{2}}=\frac{-2}{\sqrt{-\varepsilon}} \frac{\omega}{d z}
$$

and

$$
\begin{equation*}
|\{G, z\}|<\frac{2(1-\varepsilon)}{-\varepsilon} \frac{1}{\left.(1-|z|)^{2}\right)^{2}}, \quad z \in \mathbb{D}, \tag{11}
\end{equation*}
$$

.
heorem $4 . .3$ Conversely, let $G: \mathbb{D} \longrightarrow \mathbb{C} \cup\{\infty\}$ be a meromorohic map. Then, if G satisfies (11) one has a $B L W$ surface in R_{3} with hyperbolic Gauss map G and Weierstrass data $\left(z / \sqrt{-\varepsilon},-\frac{1}{2} V-\varepsilon\{G, z\} d z\right)$. Moreover, if
$|\{G, z\}| \leq \frac{b_{0}}{\left.(1-|z|)^{2}\right)^{2}} \quad z \in \mathbb{D}$,
with $b_{0}<\frac{2(1-\varepsilon)}{-\varepsilon}$, then the immersion is complete
5. A Plateau problem at infinity.

From the above Theorem there are a lot of complete BLW-surfaces in the case R_{3}, that is, $K_{I}<0$ and $\varepsilon<0$. More over, they give geometric meaning to classical families of complex functions which have been studied in connection with the Schwarzian derivative (see [7]). We use this relation in order to study the following Plateau problem a nfinity
Given $\varepsilon_{0}<0$ and a Jordan curve Γ on $\mathbb{S}_{\infty}^{2} \equiv \Pi \cup\{\infty\}$, find a complete $B L W$-surface ψ : $S \rightarrow \mathbb{H}^{\sharp}$ satisfying

$$
2\left(-\varepsilon_{0}\right)(H-1)+\left(\varepsilon_{0}-1\right) K_{I}=0
$$

with Γ as its asymptotic boundary.
Here we identify the hyperbolic space $\mathbb{H}^{3} \subset \mathbb{L}^{4}$ with the upper half space of \mathbb{R}^{3}. The ideal boundary \mathbb{S}_{∞}^{2} is identified with the one point compactification of the plane $\Pi \equiv\left\{x_{3}=0\right\}$. We will assume that, up to a Möbius transtormation Jordan curve Γ lies on Π.
exists a unique embed case) Let Γ be a convex Jordan curve on $\Pi \equiv\left\{x_{3}=0\right\} \subset \mathbb{R}^{3}$. Then for any $\varepsilon<0$ ther Euclidean) highest point.
Moreover if $-1 / 2<\varepsilon<0$, then there are exactly two embedded solutions to the Plateau problem for Γ.
Theorem 5.2 (General case) Let Γ be a Jordan curve on $\Pi \equiv\left\{x_{3}=0\right\} \subset \mathbb{R}^{3}$. Then for any $\left.\varepsilon \in\right]-1 / 2,0 \mid$ there exist least two solution to the Plateau problem for Γ. Moreover it $-1 / 1<\varepsilon<0$ the thene only exist solutions to this Plateau problem.

References

[1] J. A. Aledo and J. A. Gálvez, Complete Surfaces in the Hyperbolic Space with a Constant Principa
Curvature, to appear in Math. Nachr.
12] P. Collinant, L. Hauswirth and H. Rosenberg, The geometry of finite topology Bryant surfaces, Ann. of Math
153 (2001), 623-659.
4] J. A. Gals 4 . 435 .
IJ. A G.
problem at infinity, Trans. Am. Math. Soc. (2004).
Kokubu, M. Umehara and K. Yamada, An elementary proof of Small's formula for null curves in
PSL(2,C) and an analogue for Legendrian curves in PSL(2,C), to appear in Osaka J. Math.
[7] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Am. Math. Soc. 55 (1949), $545-551$
A. J. Small, Surfaces of constant mean curvature 1 in H^{3} and algebraic curves on a quadric. P. Am. Math.

Soc. 122 (1994), 1211-1220.
Ann. of Math. 137 (1993), $611-638$.

