A class of Weingarten surfaces in the hyperbolic 3-space.

Abstract

We study a large class of Weingarten surfaces which includes the constant mean curvature one surfaces and flat sur-
faces in the hyperbolic 3-space. We show that these surfaces can be parametrized by holomorphic data like minimal

surfaces in the Euclidean 3-space and we use it to study their completeness. We also establish some existence and
uniqueness theorems by studing the Plateau problem at infinity: when is a given curve on the ideal boundary the
asymptotic boundary of a complete surface in our family? and, how many embedded solutions are there?

1. BLW-Surfaces.

Let S be a surface, an immersion v : S—H?, with Gauss map 7, is called a linear Weingarten immersion of Bryant
type, (in short, BLW-surface), if the mean curvature H and the Gauss curvature K; satisfy

20 (H —1)+bK; =0, (1)

forsome a,b € R, a+ b # 0.

Remark 1..1 This family includes the Bryant surfaces (H = 1) and the flat surfaces.
The case a + b = 0 1s studied 1n [1]. O

2. The hyperbolic 3-space.
In the Lorentz-Minkowski model, L, the hyperbolic 3-space and the positive null cone are given by

H? = {(330,32’1,32’2,333) c R* - —ZE(2) —I—QZ% —|—ZC§ —l—ﬂjg = —1, ¢ > O}
Ni = {(:1:0,:131,:1:2,:1:3) cRY: —xi+ai+as+a3=0, 30> O}
and N? /R is the ideal boundary S, of H".

If we regard LL* as the space of 2 x 2 Hermitian matrices, Herm(2), by identifying

Ty — X3 x1+ix2>
Y

(X07X17X27X3) E 7 .
Tr{ — 11Xy To+ T3

then H® = {m € Herm(2)|det(m) = 1} and the action of SL(2, C) defined by

g-m=gmg*, ¢ =13,

preserves the inner product and leaves H° invariant. Moreover the map

wtw—>[<w17 w2>] = (CIP)17 W = (wla UJ2> < C27

let us identify S to CP' and the action of SL(2, C) on S2_ is the action on CP' by Mobius transformations.

3. Conformal representation.

Lema 3..1 Let v : S—H’ be a BLW-surface, with Gauss map n. Then, we can consider that |a +b| = 1,
2a(H—1)+b(K—1) =0 (2)

and o = al + bll is a positive definite metric, where K is the Gauss-Kronecker curvature, I = (dvy,dy) and
I = {dy, —dn), the first and second fundamental form of the immersion, respectively.

From now on, we shall regard S as a Riemann surface with the conformal structure induced by o =al +011.

Theorem 3..2 Let v : S—H? be a BLW-surface, with Gauss map n. Then )+ n is a conformal map with respect to

the metrico = al + bll and )

A% (i +m) = py

where A° denotes the Laplacian of . In particular, its hyperbolic Gauss map G := [1) + n| is conformal.
Moreover, the immersion lies in a horosphere or (d(y> + n),d(y + n)) Is a pseudometric of constant curvature —.

(H—1)¢ + (K — H)n}, (3)

Remark 3..3 From the above Theorem, the two 2-forms Q; = (1.,.)dz* and Q7 = (1., —n.)dz* are holomorphic on S,
for any conformal parameter z for o.

If S is a topological sphere then, (); and (Q;; vanish identically and «(S) is a totally umbilical round sphere. O

Theorem 3..4 (Conformal representation)

i) Let S be a non compact, simply connected surface and ) : S—H?* a BLW-surface. Then, there exist a meromor-
phic curve g : S—SIL(2,C) and a pair (h,w) consisting of a meromorphic function h and a holomorphic 1-form w on
S, such that the immersion and its Gauss map can be recovered as

W =gQg* and 1= gQg", (4)
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where

14+£2|h2 . _ 1—2|h|? 7
) = [ 1+elh? —¢h and Q= [ 1+elrP eh , (5)
—eh 1+ ¢|h|? eh —1—c¢lh)?

with e = - and 1 + |h|* > 0. Moreover, the curve g satisfies

The induced metricand o = a I + 011 are given, respectively, by

I =(1—¢)wdh + (&ifﬁf)ﬁgf +(1+ elh!2)2\wl2) + (1 — e)wdh (7)
and
2 2
o= (a+b) (el - O ®)

ii) Conversely, let S be a Riemann surface, g : S—SIL(2,C) a meromorphic curve and (h,w) a pair as above sat-
isfying (6) and such that (8) is a positive definite metric. Then ¢ = ¢Qg* : S—H?, (O as in (5)), is a BLW-surface
satisfying (2) with induced metric and o given by (7) and (8).

Remark 3..5 Following the same notation as in [2] and [4], the pair (h,w) given by the above theorem will be called
the Weierstrass data. BLW-surfaces with the same Weierstrass data are congruent.

Remark 3..6 If v : S—H?’ is an immersion with H = 1 then ¢ = 1,
0 — 0 =2
= (—i z’h) (2 —z’h)

0 —1
F—g(_i ih) e SL(2,C),

andy = ¢QQg* = FF*, where

that is, the conformal representation becomes the Bryant’s representation (see [2], [9]).

Moreover, if the immersion does not lie in a horosphere and we denote by G its hyperbolic Gauss map then one
gets

1G9 Ld (G %)
9= . dh ) dh
g @l (\/ @)

and we recover the Small’s formula for surfaces with constant mean curvature one (see [6], [8]).

Remark 3..7 If S is non compact then, from (4), (5), (7) and (8), its Gaussian curvature K; = K —1 can be calculated
as
—4 e |dh|?
Ky =
(1 +¢elh[?)* lw]* = (1 — ¢)*[dh[?

(9)
and its mean curvature is given by

2(1—¢)|dh|?

H=1 .
T B P — (1 — 22 [dh]?

In particular, a point p € S is umbilical if and only if dh(p) = 0 or w(p) = 0.

4. Completeness of the immersions.

4.1. Completeness with non negative Gauss curvature.

Theorem 4..1 Let ¢ : S—H® be a complete BLW-surface with non negative Gauss curvature K;. Then {(S) is a
totally umbilical round sphere, a horosphere or a hyperbolic cylinder.

4.2. Completeness with negative Gauss curvature and = > (.

If (h,w) are the Weierstrass data for a BLW-surface v, with K; < 0 and € > 0, we obtain a new associated immersion
Y, with constant mean curvature one and Weierstrass data (1/ch, w).

Thus, the study of complete BLW-surfaces with K; < 0 and € > 0 can be reduced to the study of complete immer-
sions with constant mean curvature one. Many things are known in this case and some very interesting results
were proved in [2], [3] and [9].
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4.3. Completeness with negative Gauss curvature and = < 0.

The geometry of the surface is very different when the immersion lies in the case Rs, thatis, K; < 0and e < 0. For
instance

Lema 4..2 Let v : S—H’ be a complete BLW-surface in R; with Weierstrass data (h,w). Then, S is conformally
equivalent to the unit disk D and h is a global diffeomorphism ontoD. = {z € C: |z|* < —1/¢e}.

From the above lemma, given a complete BLW-surface vy : S—H’ with Weierstrass data (h,w) we can consider,
up to a change of parameter, S =D and h(z) = z/y/—¢.

Moreover, from (8), o is positive definite if and only if

l—e |d7
v—e (1—|z[)*

w| < z € D. (10)

The Schwarzian derivative of G satisfies
d (G..\ 1 [(G..\> 2G.G...—3G2 -2 w
{G,z} = — — = = =
dz \ G, 2 \ G, 2G2 V—e dz
201—¢) 1

—e  (1—|z))*

Consequently, GG is a local diffeomorphism with bounded Schwarzian derivative.

and

{G, 2} < z €D, (11)

Theorem 4..3 Conversely, let G : D—C U {oo} be a meromorphic map. Then, if G satisfies (11) one has a BLW-
surface in Ry with hyperbolic Gauss map G and Weierstrass data (z/v/—¢, —3/—¢ {G, z} dz). Moreover, if

H{G, 2z} < z e D, (12)

(1= 1]2%)?

2(1—¢)

with by <

, then the immersion is complete.

5. A Plateau problem at infinity.

From the above Theorem there are a lot of complete BLW-surfaces in the case Rj, thatis, K; < 0 and ¢ < 0. More-
over, they give geometric meaning to classical families of complex functions which have been studied in connection
with the Schwarzian derivative (see [7]). We use this relation in order to study the following Plateau problem at
infinity:

Given ¢y, < 0 and a Jordan curve I’ on S?, = 11U {oo}, find a complete BLW-surface v : S—H? satisfying
2(—60)([‘[ — 1) + (50 — 1>K] =0

with I" as its asymptotic boundary.

Here we identify the hyperbolic space H* C L* with the upper half space of R®. The ideal boundary S? is identified
with the one point compactification of the plane 11 = {x3 = 0}. We will assume that, up to a Mdbius transformation,
the Jordan curve I' lies on II.

Theorem 5..1 (Convex case) Let I be a convex Jordan curve on 1l = {x3 = 0} C R’. Then for any ¢ < 0 there
exists a unique embedded solution to the Plateau problem for I" with hyperbolic normal pointing downwards at its
(Euclidean) highest point.

Moreover if —1/2 < € < 0, then there are exactly two embedded solutions to the Plateau problem forT'.

Theorem 5..2 (General case) Let " be a Jordan curve onll = {x3 = 0} C R*. Then for any ¢ €] — 1/2,0] there exist
at least two solutions to the Plateau problem for I'. Moreover, if —1/4 < € < 0 then there only exist two embedded
solutions to this Plateau problem.
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