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Abstract
We present the resolution of the problem of existence and uniqueness of affine
maximal surfaces containing a regular analytic curve and with a given affine nor-
mal along it, see [1]. As applications we give results about symmetries, character-
ize when a curve in R3 can be a geodesic of a such surface and study helicoidal
affine maximal surfaces, that is, surfaces invariant under a one-parametric group
of equiaffine transformations. We obtain new examples with an analytic curve in
its singular set, which have been studied in [2].

1. Affine Maximal Surfaces
The equiaffine area functional∫

dA =

∫
|Ke|

1
4dAe,

with Ke the euclidean Gauss curvature and dAe the element of euclidean area,
has attracted to many geometers since the beginning of the last century.
Well-known Facts:

• Blaschke (1923): the associated fourth order Euler-Lagrange equation is
equivalent to the vanishing of the affine mean curvature.

• Calabi (1982): locally strongly convex surfaces have always a negative sec-
ond variation (affine maximal surfaces).

1.1. Recent developments
• Affine Weierstrass formulas that have provided an important tool in their

study, (Calabi, Li, 1990).

• Entire solutions of the fourth order affine maximal surface equation

φyyωxx − 2φxyωxy + φxxωyy = 0, ω =
(
det
(
∇2φ

))−3/4
, (1..1)

are always quadratic polynomials (Trudinger-Wang, 2000).

• Every Affine complete affine maximal surface is an elliptic paraboloid, (Li-Jia,
2001, Trudinger-Wang, 2002).

• The Affine Plateau Problem (Trudinger-Wang, 2005).

• Their extension to different nonlinear fourth order equations (Li-Jia,
2003,Trudinger-Wang, 2002).

• The validity of the results in affine maximal surfaces with some natural singu-
larities that may arise (Aledo, Chaves, Gálvez, Martı́nez, Milán, Mira, 2005-
2008).

1.2. Basic Notations

Let ψ : Σ → R3 be a l.s.c immersion, with second fundamental form σe definite
positive,

g = K
−1

4
e σe, Berwald-Blaschke metric

ξ =
1

2
∆gψ, affine normal

with ∆g:= Laplace-Beltrami operator associated to g.

The affine conormal field N := K
−1/4
e Ne, satisfies

〈N, ξ〉 = 1, 〈N, dψ(v)〉 = 0, v ∈ TpΣ, (1..2)

and the Euler-Lagrange equation:= ∆gN = 0.

1.3. Weierstrass-type Representation Formulas

In the simply-connected case ψ can be recovered from N and the conformal
class of the Blaschke metric:
Lelieuvre formula

ψ = 2 Re

∫
ı N ×Nzdz

Calabi’s Representation ψ determine a holomorphic curve Φ : Ω ⊂ Σ → C3

s.t.
N = Φ + Φ, g = −ıDet

[
Φ + Φ,Φz,Φz

]
dzdz. (1..3)

ψ is determined, up to real translation, by a holomorphic curve Φ satisfying
−ıDet

[
Φ + Φ,Φz,Φz

]
> 0. To be precise,

ψ = 2 Re

∫
ı
(
Φ + Φ

)
× Φzdz = −ı ( Φ× Φ−

∫
Φ× dΦ +

∫
Φ× dΦ ).

2. The Affine Björling Problem
Let β : I → Σ be a regular analytic curve. α = ψ ◦ β, Y = ξ ◦ β and U = N ◦ β,
then, along the curve α

0 = 〈α′(s), U(s)〉,
1 = 〈Y (s), U(s)〉,
0 = 〈Y ′(s), U(s)〉,
0 < λ(s) = −〈α′(s), U ′(s)〉 = 〈α′′(s), U(s)〉,

 (2..1)

where by prime we indicate derivation respect to s, for all s ∈ I.
Definition Given Y, U, α : I −→ R3 regular analytic curves.
{Y, U} is an analytic equiaffine normalization of α if there is an analytic positive
function λ : I → R+ such that all the equations in (2..1) hold on I.
Theorem Let {Y, U} be an analytic equiaffine normalization of α, then there ex-
ists a unique affine maximal surface ψ containing α(I), with conormal field and
Blaschke normal along α, U and Y respectively.
(ψ:= a.m.s. along α generated by {Y, U}).
Outline of the Proof

• By the Inverse Function Theorem ∃z : s + ıt, s ∈ I
• Identity Principle: Nz = 1

2 (Uz + ıY × αz) , z ∈ Ω

• Via Calabi’s representation.

ψ = α(s0) + 2 Re

∫ z

s0

ı(Φ + Φ)× Φζdζ, (2..2)

where, Φ(z) = 1
2

(
U + ı

∫ z
s0
Y × αζdζ

)
, z ∈ Ω, s0 ∈ I, on a complex do-

main Ω containing I.

Corollary Let α, Y : I → R3 be two regular analytic curves

Det[ Y ′, α′, Y ]Det[ Y ′, α′, α′′ ] > 0, on I. (2..3)

⇒ ∃1 ψ containing α(I) with Y as Blaschke normal along α.
Proof ∃1 U and λ,

U =
Y ′ × α′

Det[ Y ′, α′, Y ]
, 0 < λ =

Det[ Y ′, α′, α′′ ]

Det[ Y ′, α′, Y ]

s.t. {Y, U} is an a.e.n. of α. The result follows from above Theorem, taking in
Calabi’s representation,

Φ(z) =
Yz × αz

2Det[ Yz, αz, Y ]
+

i

2

∫ z

s0

Y × αζdζ, z ∈ Ω, s0 ∈ I.

Corollary α, Y : I → R3 regular analytic curves

[ Y, α′, α′′ ] 6= 0, Y ′ × α′ = 0, on I. (2..4)

Given λ : I → R+, ∃1 ψ containing α(I), such that its Blaschke normal along α
is Y and g(α′, α′) = λ.

3. Applications

3.1. The Cauchy Problem

If ψ : Ω −→ R3 is the graph of a l.s.c. function φ(x, y), (x, y) ∈ Ω. The Euler-
Lagrange equation for the affine area functional is

φyyωxx − 2φxyωxy + φxxωyy = 0, ω =
(
det
(
∇2φ

))−3/4
.

In this situation

gφ = 3
√
ω
(
φxx dx

2 + 2φxy dx dy + φyy dy
2
)
,

N = 3
√
ω (−φx,−φy, 1) , (3..1)

ξ =

(
ϕy,−ϕx,

1
3
√
ω
− φyϕx + φxϕy

)
,

where ϕx = 1
3 (φxyωx − φxxωy) and ϕy = 1

3 (φyyωx − φxyωy) .
The Cauchy Problem

φyyωxx − 2φxyωxy + φxxωyy = 0, ω =
(
det
(
∇2φ

))−3/4

φ(x, 0) = a(x),

φy(x, 0) = b(x),

φyy(x, 0) = c(x),

φyyy(x, 0) = d(x),

c(x)a′′(x)− b′(x)2 > 0

where a, b, c, d are analytic functions on I, φ is defined on Ω containing I × {0},
has solution

(x, y, φ(x, y)) = (s0, 0, a(s0)) + 2 Re

∫ z=s+i t

s0

(
Φ + Φ

)
× Φζ dζ,

with

Φ(z) =
1

2

(
U(z) + ı

∫ z

s0

Y (ζ)× A(ζ) dζ

)
,

U(s) =
(
c(s)a′′(s)− b′(s)2

)−1/4
(−a′(s),−b(s), 1),

A(s) = (1, 0, a′(s)),

Y (s) =
1

4

(
c(s)a′′(s)− b′(s)2

)−7/4 (
b′(da′′ + 3cb′′)− 2b′2c′ − c(c′a′′ + ca′′′),

b′(3c′a′′ + ca′′′)− 2b′2b′′ − a′′(da′′ + cb′′),

+4b′4 − 2b′2(a′c′ + 4ca′′ + bb′′)− a′′((−4c2 + bd)a′′ + bcb′′)

− ca′(c′a′′ + ca′′′) + b′ (a′(da′′ + 3cb′′) + b(3c′a′′ + ca′′′))) .

3.2. Symmetry and Geodesics

Consider T : R3 → R3, the equiaffine transformation given by T (v) = Av + b

and {Y, U} an analytic equiaffine normalization of α : I → R3. We say T

is a symmetry of {Y, U} if ∃ Γ : I → I analytic diffeomorphism such that
α ◦ Γ = T ◦ α, Y ◦ Γ = AY, U ◦ Γ = (At)−1U.

Theorem. (Generalized symmetry principle). Any symmetry of an analytic
equiaffine normalization induces a global symmetry of the affine maximal sur-
face generated by the equiaffine normalization.
If β : I → Σ is a regular curve s.t., α = ψ ◦ β, Y = ξ ◦ β and U = N ◦ β are
analytic⇒ α is a pre-geodesic for the Blaschke metric if and only if

[α′, α′′, Y ] + [U,U ′, U ′′] = 0 on I. (3..2)

Then a regular analytic curve α : I → R3 is the geodesic of some affine maximal
surface if and only if there exists an affine equiaffine normalization {Y, U} of α
satisfying (3..2) and 〈α′′, U〉 = c for a positive constant c.
Thus, we can obtain that every planar analytic curve whose curvature does not
vanish at any point is pre-geodesic of an affine maximal surface which has the
plane containing the curve as a symmetry plane. Also, every analytic helix, (k/τ
constant), is pre-geodesic of an affine maximal surface.

4. Helicoidal affine maximal surfaces
Consider Ts(v) = Asv + bs a one-parametric subgroup of equiaffine transforma-
tions. From our existence Theorem and generalized symmetry Principle, an
affine maximal surface invariant under Ts, s ∈ R, is locally given as the sur-
face generated by the following {Ts}-symmetric a.e.n {Y, U}, along the orbit
αp(s) = Ts(p) of a fixed point p = (p1, p2, p3),

Y (s) = AsYp, U(s) = (At
s)
−1Up

and Yp, Up ∈ R3 satisfy the necessary conditions for (2..1) holds. In particular,
the Berwald-Blaschke metric must be constant along αp.
We apply our representation to classify the affine maximal surfaces invariant
under these groups.

4.1. Some G1,a-invariant affine maximal surfaces

For this one-parametric group the orbit of a point p is given by αp(s) =(
p1 + p2as + p3a

s2

2 + as
3

6 , p2 + p3s + s2

2 , p3 + s
)

.

4.2. Some G2,a-invariant affine maximal surfaces

In this case αp(s) = (p1 cos(s) + p2 sin(s),−p1 sin(s) + p2 cos(s), p3 + as) .

Rotational affine maximal surfaces:

Rotational improper affine spheres:

Non rotational G2,a-invariant affine maximal surface:

5. Affine maximal maps

Some Helicoidal affine maximal surfaces:

• Are glued by analytic curves where the affine metric is degenerated but the
affine normal and the affine conormal are well defined.

• Can be represented as in (2..2), where Φ is a well-defined holomorphic reg-
ular curve on the Riemann surface Σ.

Definition If a map ψ : Σ −→ R3 admits a representation as in (2..2) for a cer-
tain holomorphic curve Φ which satisfies that [Φ + Φ,Φz,Φz]|dz|2 does not vanish
identically, we say that ψ is an affine maximal map

Theorem α : I −→ R3 a regular analytic curve with non-vanishing curvature.
Then, for any non-vanishing regular analytic function h : I −→ R there exists a
unique affine maximal map ψh containing α(I) in its set of singularities.
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