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The geometry of convex affine maximal graphs

Abstract. Locally strongly convex surfaces which are extremal for the first variation of the
equiaffine area integral have been investigated on several occasions. Here we are interested
in the description on their behaviour at infinity. We consider an affine maximal annular
end which is a graph of vertical flux and give a detailed representation of it when its affine
conormal map has a good behaviour at infinity.

1 Introduction

In the beginning of the century Blaschke, see [B], studied the first variation of the
equiaffine area integral. He found that the Euler-Lagrange equation is of fourth order
and nonlinear, but it is equivalent to the vanishing of the affine mean curvature.

When Calabi discovered in 1982 that for extremal locally strongly convex surfaces, the
second variation is negative, he proposed to call this class of surfaces affine maximal
surfaces.

Although the elliptic paraboloid is still the only known example which is Euclidean
complete, there are many properly embedded affine maximal annular ends. In fact,
the improper affine spheres are an important class of affine maximal surfaces that, up
an equiaffine transformation, are, locally, graphs of solutions of the following Monge-
Ampère equation

Det(∇2f) = 1, on Ω.(1)

In [FMM1] and [FMM2], was proved that the graph of a solution of (1) on Ω = {ζ ∈
C | |ζ| > 1}, has always a properly embedded affine maximal end whose behaviour at
infinity depends on five real numbers. Affine maximal surfaces of rotation, which were
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described in [K], have also Euclidean complete annular ends.

Our aim in this paper is to study affine maximal graphs in a neighborhood of its end.
We shall see that if xf ≡ (x1, x2, f(x1, x2)) with f proper is a affine maximal annular
end of vertical flux and such that its affine conormal map is, locally, a vertical graph,
then the end of xf resembles to the end of an affine maximal surface of revolution.

The paper is organized as follows. In §2 we give a (brief) description about affine
maximal surfaces, their fundamental equations and properties. The interested reader
may consult [C3] and [LSZ] for a deep discussion.

In §3 we introduce the concept of regular-balanced ends and see that a well-defined
improper affine sphere at infinity can be associated with them. After to give some
examples of affine maximal annular ends we prove the elliptic paraboloid is the only
Euclidean complete affine maximal surface with a regular-balanced end (Theorem 1)
and obtain a general representation of regular-balanced ends (Theorem 2).

2 Affine maximal surfaces

Let S be a smooth surface and x : S−→R3 be an immersion with positive Gauss
curvature K. Since S is orientable (the mean curvature vector field orientates it) we
have an unit normal vector field ~n on S such that the Blaschke metric, g,

gp(v, w) = −K−1/4 < d~np(v), w >, p ∈ S, v, w ∈ TpS,

is a Riemannian metric, where <,> denotes the usual inner product in R3. Since
g is invariant under the equiaffine transformation group, we also call it equiaffine
metric. From now on, S will be considered as a Riemann surface with the conformal
structure induced by g.

By considering the first variation of the equiaffine area integral of x one can find (see [B],
[C2], [C3]) that the Euler-Lagrange equation for this variational problem is equivalent
to the following system of differential equations

4g(K
−1/4~n) = 0,(2)

where 4g is the Laplace-Beltrami operator associated to g.

The immersion U = K−1/4~n : S −→ R3 is called the affine conormal map of x.

From (2), x(S) is affine maximal if and only if U is a harmonic immersion. Associated
to the affine conormal map U we also have the conjugate affine conormal map U∗

which is well-defined only on some covering S̃ of S. The relation dU∗ = −dU ◦ Rotπ/2

shows that U and U∗ are locally immersions and Z = U + iU∗ is holomorphic (where
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Rotπ/2 denotes the operator on vector fields which rotates π/2 each tangent plane in
the positive direction).

The equiaffine invariant vector field,

ξ =
1

2
4g x,(3)

is always transversal to the immersion and it is called the affine normal vector field of
x. The pair {U, ξ} is a relative normalization invariant under equiaffine transformations
(see [LSZ]), it is called the equiaffine normalization of x.

Choose ζ = u + iv a conformal parameter such that g = E|dζ|2. Then a straight
computation gives:

E2 = Det(xu, xv, xuu) = Det(xu, xv, xvv), Det(xu, xv, xuv) = 0,(4)

E = Det(Uu, Uv, U) = Det(xu, xv, ξ),(5)

< U, xu >= 0, < Uu, xu >= −E, < Uv, xu >= 0,
< U, xv >= 0, < Uu, xv >= 0, < Uv, xv >= −E,
< U, ξ >= 1, < Uu, ξ >= 0, < Uv, ξ >= 0,

(6)

and
dx = −U ∧ dU∗, dU∗ = ξ ∧ dx,(7)

where ∧ denotes the cross product, Det(., ., .) is the usual determinant form, (.)u and
(.)v are, respectively, partial derivatives respect to u and v.

From (2), (6) and (7), if x(S) is affine maximal, then ξ ∧ dx is a closed one-form on S
and for closed curves γ on S, ∫

γ
ξ ∧ ds

is an homology-invariant vector.

Definition 1 The flux along γ is defined as the vector quantity

Flux([γ]) =
∫

γ
ξ ∧ ds.(8)

From (7), U∗ is well-defined if and only if Flux([γ]) = 0 for any closed curve γ.

When the affine normal ξ is a constant vector field the immersion is called improper
affine sphere. From (5), (6) and (7) x is an improper affine sphere if and only if it
is affine maximal and U(S) lies on a plane. It is clear from (8) that improper affine
spheres have vanishing flux.
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3 Regular-balanced affine maximal graphs

We will follow the same notation that in §2.

Let x : S−→R3 be a locally strongly convex affine maximal immersion and Σ ⊆ S such
that x(Σ) is an annular end of x(S) with compact boundary x(γ).

Definition 2 x(Σ) is called a regular-balanced end (in short, RB-end) if there exists
a plane Π in R3 with unit normal vector A such that the immersions x and U satisfy:

(R1) x(Σ) is a graph on a domain in Π and < x,A >: Σ−→R is a proper map.
(Regularity condition).

(R2) The orthogonal projection of U(Σ) on Π is a local diffeomorphism. (Regularity
condition)

(B) A ∧ F = 0, where F is the flux of x(Σ) along γ. (Balanced condition).

Remark 1 If x : S−→R3 is an Euclidean complete affine maximal immersion, then,
from Hadamard Theorem (see [W]), the conditions (R1) and (B) are always satisfied.

Proposition 1 Let x(Σ) be a RB-end of x. Then Σ is conformally a punctured disk
and Y : Σ−→R3,

Y = U∗ ∧ A+ < x, A > A,(9)

is a well-defined improper affine sphere with end on the boundary of a convex set in R3

(that is, Y is regular at infinity in the sense of [FMM1]).

Proof : From (7), (8) and (B), it is clear that Y is well-defined.

Let ζ = u + iv be a conformal parameter of x such that g = E|dζ|2. From (9),

Yu = −Uv ∧ A+ < xu, A > A, Yv = Uu ∧ A+ < xv, A > A.(10)

Thus, < Yu ∧ Yv, A >= Det(Uu, Uv, A) that, from (R2), does not vanish on Σ and Y is
an immersion with transversal vector A.

From (5), (6), (7) and (10), we obtain,

Det(Yu, Yv, Yuu) = Det(Yu, Yv, Yvv) = Det(Uu, Uv, A)2,

Det(Yu, Yv, Yuv) = 0.

It is not a restriction to assume Det(Uu, Uv, A) > 0. Then, from (4), (5), (6) and the
above expressions, we have Y is a locally strongly convex immersion with Blaschke
metric,

h = Det(Uu, Uv, A)|dζ|2 =< ξ,A > E|dζ|2.(11)
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Since Yuu + Yvv =< xuu + xvv, A > A, from (3), (10) and (11) we conclude that Y is
an improper affine sphere with affine normal A.

By using that x is a graph and < x, A > a proper map, the level curves x(γc) =
x(Σ) ∩ {< x, A >= c} must be strictly convex Jordan curves for c large enough.
Moreover from (7), (9) and (10), if T is a tangent vector along x(γc), < ξ,A > T is
a tangent vector along Y (γc). Thus, the end of Y (Σ) is also fibred by strictly convex
Jordan curves.

Since from (11), the affine metric h of Y and g are conformal metrics and Y is regular
at infinity we conclude, see [FMM1], that Σ must be conformally a punctured disk. 2

Definition 3 The improper affine sphere Y given by (9) is called the tangent im-
proper affine sphere at infinity of x(Σ).

3.1 Some examples

Let us consider f a solution of

det(∇2f) = 1 on Ω̃ = {ζ ∈ C| |ζ| > 1}.

We also use the notation Ω̃R = RΩ̃. Then the graph xf of f is an improper affine
sphere and its end is a RB-end conformal to Ω̃. Moreover, see [FMM2], it can be
represented as

xf ≡
(

G + F

2
,
1

8
|G|2 − 1

8
|F |2 +

1

4
<(GF )− 1

2
<

∫
FdG

)
, on Ω̃R,(12)

for some R > 1, with

G(ζ) = ζ, F (ζ) = µζ + ν +
∞∑

n=1

an

ζn , ζ ∈ Ω̃R,(13)

where by < we denote the real part and µ, ν, an ∈ C, for n ≥ 2, a1 ∈ R and |µ| < 1.

The affine metric and the affine conormal map of xf are given, respectively, by

hf =
1

4

(
|dG|2 − |dF |2

)
,(14)

Uf =

(
F −G

2
, 1

)
.(15)

Now, let a : Ω̃R −→ R be a bounded harmonic function and a∗ : Ω̃R −→ R be a
conjugated harmonic of a (which always exists because a is bounded). Assume that
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Residue[a + ia∗,∞] = 0. If we consider the following harmonic immersion,

N(ζ) =

(
F (ζ)− ζ

2
, a(ζ) + b log |ζ|

)
,(16)

with b ∈ R, b ≥ 0 and lim|ζ |→∞ a(ζ) > 0 if b = 0, then from (16) one has

4Det(N, Nu, Nv) = (a(u, v) + b log(u2 + v2))(1− |F ′|2) +

(au +
2bu

u2 + v2
)((1 + F2v)(F1 − u)− (v + F2)F1v) +

(av +
2bv

u2 + v2
)((v + F2)(F1u − 1)− F2u(F1 − u)),

where F = F1+iF2 and ζ = u+iv ∈ Ω̃R. Hence, it is clear, from the above assumptions,
that there exists R1 > R, such that

Det(N, Nu, Nv) > 0

for all ζ = u + iv ∈ Ω̃R1 . Consequently, using (7),

X(ζ) = −
∫ ζ

ζ0

N ∧ dN∗, ζ ∈ Ω̃R1 ,(17)

is an affine maximal surface.

Proposition 2 X is a well-defined affine maximal surface with a RB-end. Moreover,

X(ζ) =

(
F (ζ) + ζ

2
(a(ζ) + b log |ζ|2)− bζ + 2

∫ ζ

ζ0

γ(w)dw + 2
∫ ζ

ζ0

ρ(w)dw,(18)

1

8
|ζ|2 − 1

8
|F (ζ)|2 +

1

4
<(ζF (ζ))− 1

2
<(

∫ ζ

ζ0

F (w)dw)

)

ζ = u + iv ∈ Ω̃R2, for some R2 > R1, and

γ(ζ) = −ζ

2

∂a

∂ζ
, ρ(ζ) = −F (ζ)

2

∂a

∂ζ
− b

2

F (ζ)

ζ
,

being ∂

∂ζ = 1
2

(
∂
∂u
− i∂

∂v

)
.
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Proof : Since F is an holomorphic function, from (16) and (17), we obtain that the
coordinate functions, (X1, X2, X3), of X satisfy,

∂

∂ζ

(
X1 − F1 + u

2
(a + b log |ζ|2) + bu

)
= −F + ζ

2
aζ −

b

2

F

ζ
= γ + ρ.

∂

∂ζ

(
X2 +

F2 − v

2
(a + b log |ζ|2) + bv

)
= −i

F − ζ

2
aζ − i

b

2

F

ζ
= i(−γ + ρ).

Consequently,

X1 =
F1 + u

2
(a + b log |ζ|2)− bu +

∫
(γ + ρ)dw +

∫
(γ + ρ)dw,

X2 =
v − F2

2
(a + b log |ζ|2)− bv + i

∫
(−γ + ρ)dw + i

∫
(γ − ρ)dw,

and

X1 + iX2 =
F + ζ

2
(a + b log |ζ|2)− bζ + 2

∫
γdw + 2

∫
ρdw.

A straight computation gives that X1uX2v−X1vX2u is of order like (a+b log |ζ|2)(−2b+
a + b log |ζ|2). Thus, when R3 is large enough, X1 + iX2 is a local diffeomorphism on
Ω̃R3 and also a covering map.
Now, using that

F

2
(a + b log |ζ|2) + 2

∫
γdw + 2

∫
ρdw

is bounded on Ω̃R3 by a constant C and the fact that for |ζ| = R4, with R4 large,

g(ζ) =

(
a + b log |ζ|2

2
− b

)
ζ

winds around the origin once and |g(ζ)| > C, we conclude that X1 + iX2 is one-to-one
on Ω̃R4 and X(Ω̃R4) must be a graph on Π ≡ x3 = 0.
Analogously, from (16) and (17),

∂

∂u

(
X3 +

|F |2
8

− u2

8

)
=

1

4
(uF1u − vF2u − F1),

∂

∂v

(
X3 +

|F |2
8

− v2

8

)
=

1

4
(uF1v − vF2v + F2),

and,

X3 =
1

8
|ζ|2 − 1

8
|F (ζ)|2 +

1

4
<(ζF (ζ))− 1

2
<(

∫
F (w)dw).
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From (6) and having in mind that

lim
|(u,v)|→∞

Nu(u, v) = (−1, 0, 0), lim
|(u,v)|→∞

Nv(u, v) = (0,−1, 0),(19)

we can choose R2 > R4 large enough in order to get that < ξ, (0, 0, 1) >> 0, that is
(R2) also is satisfied.
Finally from (8) and (16), F = (0, 0, 2πb) and the end of X is a RB-end. 2

Remark 2 The tangent improper affine sphere at infinity of (18) is the graph xf given
by (12).

Remark 3 Every end of an elliptic revolution affine maximal surface can be repre-
sented as in (18) by taking a ≡ constant and F (ζ) = c/ζ for some c ∈ R.

Remark 4 There exists R > 1 such that the immersion x : Ω̃R−→R3 given by

x(ζ) = (4ζ(1− log(|ζ|), 2|ζ|2 + 8<(ζ)(1− log(|ζ|))(20)

is a well-defined affine maximal vertical graph which has not a RB-end because the
condition (B) fails.

3.2 On the affine Bernstein problem

Theorem 1 Let x : S−→R3 be an Euclidean complete affine maximal surface with a
RB-end. Then x(S) is an elliptic paraboloid.

Proof : From the Euclidean completeness x(S) is the boundary of a unbounded convex
set in R3 and using (R1) we have that it must be a global graph on a convex domain
Ω in Π.

Since x has a RB-end x(Σ), then, from Proposition 1, Σ is conformally a punctured
disk and consequently S must be conformally C. Now, as x is a graph, then one can
assume that < U,A > is a positive harmonic function on C. Thus, < U,A > must be
constant and x is an improper affine sphere. The result follows from Jörgens Theorem,
see [J]. 2

3.3 The general case

Theorem 2 Let x : S−→R3 be a affine maximal surface with a RB-end. Then, there
exists a representation of its end as in (18).
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Proof : It is not restriction to assume that Π ≡ x3 = 0 and A = (0, 0, 1).

Let Y : Σ−→R3 be the tangent improper affine sphere at infinity of x. From Proposition
1, Σ is conformally equivalent to Ω̃R = {ζ ∈ C| |ζ| > R}. Moreover, see [FMM1], there
exists a conformal representation of Y as

Y (ζ) =

(
ζ + F (ζ)

2
,
1

8
|ζ|2 − 1

8
|F (ζ|2 +

1

4
<(ζF (ζ))− 1

2
<

∫
F (ζ)dz

)
,(21)

with

F (ζ) = µζ + ν +
∞∑

n=1

an

ζn , ζ ∈ Ω̃R.

By using (9) and (21), we can obtain that the affine conormal map of x : Σ−→R3 is
given by,

U(ζ) =

(
F (ζ)− ζ

2
, U3

)
,(22)

where U3 =< U,A > is a positive harmonic function on Ω̃R because of x is a graph.

So, H = U3− < F,A > log(|ζ|2) is the real part of an holomorphic function well-defined
on Ω̃R. Since H is harmonic, we have the following Laurent expansion at infinity,

0 < U3(ζ) =< F, A > log(|ζ|2) + a(ζ) + Γ(ζ),

where a(ζ) is harmonic and bounded on Ω̃R and Γ(ζ) is harmonic in the finite plane
C. If n is any positive entire number greater than < F, A >, it follows that for
|ζ| > R1 > R,

1 ≤ M

∣∣∣∣ζn expG(ζ)

∣∣∣∣ ,

where M is a suitable constant and G(ζ) is an entire function with real part Γ(ζ).

Thus, the entire function ζn expG(ζ) has not a essential singularity at infinity and it is
a polinomial. Hence, G(ζ) must be constant and from (22), the affine conormal map
of the end of x is given as in (16), which concludes the proof. 2

Remark 5 From (19) and Theorem 2, we have that if an annular affine maximal end
x(Σ) is a RB-end, then

I) It is conformally a punctured disk and the affine Gauss map ξ
|ξ| extends to the

puncture as the unit vector A.

II) The affine conormal map U(Σ) lies in a half-space of R3.

III) F ∧ A = 0, where F is the flux of x.

Conversely one can prove that if x(Σ) satisfies I), II) and III), then x(Σ) is a RB-end.
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