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1 Introduction

Surfaces with either constant mean curvature H, H-surfaces, or constant Gauss curvature
K, K-surfaces, in the Euclidean 3-space, R3, arise as critical points of a functional which
involves a linear combination of either the area or the total mean curvature, respectively,
with the volume bounded by the immersion.

In 1853, Bonnet remarked that the study of K-surfaces could be as difficult as the
study of H-surfaces. This is because any K-surface, K > 0, has a parallel surface of
constant mean curvature H =

√
K/2 to a distance 1/

√
K, which may have singularities.

In this paper we shall consider any parallel surface to either a K-surface or a H-surface.
In fact, we are going to study linear Weingarten surfaces in R3, namely, those immersions
ψ from a surface S in R3 such that a linear combination of its mean curvature and Gauss
curvature is constant, that is,

2 aH + bK = c,
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for some real numbers a, b, c, not all zero. These surfaces are critical points of a natural
functional: a linear combination (with constant coefficients depending on a, b and c) of the
area of ψ(S), the volume bounded by ψ(S), and the total mean curvature of ψ(S). They
have been studied when S is closed by Chern, [3], Hopf, [8] and Hartman and Wintner, [6].
In [15], Rosenberg-Earp considered properly immersed (noncompact in general) surfaces.
They extended the results of Meeks, [13], and Korevaar-Kusner-Solomon, [11], to surfaces
M(a, c) satisfying aH + K = c, a ≥ 0, c > 0. Here, the surfaces in which we are interesed
have non-empty boundary.

The aim of this paper is to understand some geometric aspects of linear Weingarten
surfaces, particularly those related with its Gauss map N , its natural conformal structure
and some optimal estimates about the height and curvatures.

In §2 we treat the case of elliptic linear Weingarten (ELW) surfaces, this means that
a2 + bc > 0. By using the conformal structure induced by aψ − bN , we derive two
fundamental elliptic partial differential equations which involve the immersion and the
Gauss map (Theorem 1). The result let us to recover the immersion from a harmonic
local diffeomorphism into the unit sphere: its Gauss map, (Corollary 1).

In §3 we extend the results of Heinz [7] and Rosenberg-Earp, [15] and give optimal
estimates of the height that a compact elliptic linear Weingarten surface can rise above a
plane, (Theorem 2). We also prove optimal estimates for 2aH +bK of a linear Weingarten
surface (Theorem 3) and of a general graph with planar boundary, (Theorem 4).

2 Elliptic Linear Weingarten Surfaces

Let S be an orientable surface (possibly with boundary) and ψ : S−→R3 an immersion
with Gauss map N : S−→S2. It is said that ψ is a linear Weingarten immersion if a linear
combination of its mean curvature H and its Gauss curvature K is constant on S, that
is, there exist three real numbers a, b, c, not all zero, such that

2 aH + b K = c (1)

Moreover, the above equation is elliptic only when a2 + bc > 0 (see [8, pp.128-129]). In
that case we will say that the immersion ψ is elliptic linear Weingarten, in short ELW.

Some interesting examples of ELW immersions are given by the surfaces with constant
mean curvature, that is b = 0, and the surfaces with positive constant Gauss curvature,
that is a = 0.

Lemma 1 Let ψ : S−→R3 be an ELW immersion satisfying (1) then there exists a Gauss
map η : S−→S2 and two real numbers α, β such that

2 α H + β K = γ ≥ 0, (2)
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and α I + β II is a positive definite metric; being I = 〈dψ, dψ〉 and II = 〈dψ,−dη〉 the
first and second fundamental form of the immersion, respectively.

Proof : By changing the sign in (1), if it was necessary, we can assume that (2) is satisfied.
On the other hand, if {e1, e2} is an orthonormal basis at a point p which diagonalizes

dη, that is, dη(ei) = −kiei, i = 1, 2, we have

σ(e1, e1) σ(e2, e2)− σ(e1, e2)
2 = (α + βk1) (α + βk2) =

= α2 + β (2αH + βK) = α2 + βγ > 0
(3)

with σ = αI + βII, namely, σ is definite.
Moreover, if σ is negative definite then we replace η by−η and one has 2(−α)H+βK =

γ and (−α) I + β II = −σ is positive definite, since the mean curvature and the second
fundamental form change the sign with η. 2

Thus, from now on, we will suppose that every ELW immersion satisfies the above
result. Moreover, the Gauss map η given by Lemma 1 will be called its associated Gauss
map.

Now, we obtain a condition to determinate the associated Gauss map of an ELW
immersion.

Lemma 2 Let ψ : S−→R3 be an ELW immersion satisfying (2) with associated Gauss
map η, then at a point p with Gauss curvature K(p) > 0 we have that η(p) is the inner
normal if and only if α ≥ 0 or β ≥ 0.

Proof : If η is not the inner normal at p then the principal curvatures k1(p), k2(p) are
both negative and using (3),

0 > k2(p) =
1

β

(
−α +

α2 + βγ

α + βk1(p)

)
=

γ − αk1(p)

α + βk1(p)

when β 6= 0.
Since σ = αI + βII is positive definite, α + βk1(p) > 0 and so 0 ≤ γ < αk1(p),

therefore α < 0 and β < 0. If β = 0 the result is obvious.
Conversely, if α < 0 and β < 0 then since α + βk1(p) > 0 we have that k1(p) < 0,

namely, η(p) is the outter normal. 2

Theorem 1 Let ψ : S−→R3 be an ELW immersion satisfying (2) with associated Gauss
map η. Then

∆σψ =
γ + βK

α2 + βγ
η,

∆ση = 2
αK − γH

α2 + βγ
η,

(4)

where ∆σ denotes the Laplacian respect to the Riemannian metric σ = α I + β II.
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Proof : Let (u, v) be isothermal parameters for σ, that is,

I = E1 du2 + 2F1 dudv + G1 dv2,
II = E2 du2 + 2F2 dudv + G2 dv2,
σ = (αE1 + βE2) du2 + 2(αF1 + βF2) dudv + (αG1 + βG2) dv2 = λ (du2 + dv2).

(5)

If we denote by ∧ the usual cross product in R3 then, bearing in mind that η∧ψu and
η ∧ ψv are a basis of the tangent plane, we can write

α ψu − β ηu = µ11 η ∧ ψu + µ12 η ∧ ψv,
α ψv − β ηv = µ21 η ∧ ψu + µ22 η ∧ ψv.

for certain real functions µ11, µ12, µ21 and µ22.
Now, making the inner product with ψu and ψv,

λ = σ(ψu, ψu) = µ12 〈η ∧ ψv, ψu〉 = −µ12 |ψu ∧ ψv|,
0 = σ(ψu, ψv) = µ11 〈η ∧ ψu, ψv〉 = µ11 |ψu ∧ ψv|,
0 = σ(ψv, ψu) = µ22 〈η ∧ ψv, ψu〉 = −µ22 |ψu ∧ ψv|,
λ = σ(ψv, ψv) = µ21 〈η ∧ ψu, ψv〉 = µ21 |ψu ∧ ψv|,

and so, since |ψu ∧ ψv| =
√

E1G1 − F 2
1 , one has

α ψu − β ηu =
−λ√

E1G1 − F 2
1

η ∧ ψv,

α ψv − β ηv =
λ√

E1G1 − F 2
1

η ∧ ψu.
(6)

By using that

λ2 = (αE1 + βE2) (αG1 + βG2)− (αF1 + βF2)
2

= (α2 + β(2αH + βK)) (E1G1 − F 2
1 ) = (α2 + βγ) (E1G1 − F 2

1 ),
(7)

it follows from (6) that

α ψu − β ηu = −
√

α2 + βγ η ∧ ψv,

α ψv − β ηv =
√

α2 + βγ η ∧ ψu,
(8)

and
α ψu ∧ η − β ηu ∧ η = −

√
α2 + βγ ψv,

α ψv ∧ η − β ηv ∧ η =
√

α2 + βγ ψu.

4



Thus, the derivative of the second equation with respect to u minus the derivative of the
first equation with respect to v gives

(2αH + 2βK) ψu ∧ ψv =
√

α2 + βγ (ψuu + ψvv)

that is,

ψuu + ψvv =
γ + βK√
α2 + βγ

ψu ∧ ψv. (9)

On the other hand, if we consider in (8) the derivative of the first equation with respect
to u plus the derivative of the second equation with respect to v,

α (ψuu + ψvv)− β (ηuu + ηvv) = 2H
√

α2 + βγ ψu ∧ ψv.

Therefore, if β 6= 0,

ηuu + ηvv = 2
αK − γH√

α2 + βγ
ψu ∧ ψv (10)

and the Theorem follows from (7), (9) and (10). (The result is well-known if β = 0, see,
for instance, [14]). 2

Remark 1 Since H2 ≥ K on every surface, given an ELW immersion satisfying (2) the
equality in the above inequality occurs when

K =
γ2

(α±√α2 + βγ)2
if βγ 6= 0, K =

γ2

4α2
if β = 0

and K = 0, K =
4α2

β2 if γ = 0 and β 6= 0.

Moreover, from (4) and (5)

2
αK − γH

α2 + βγ
= 〈∆ση, η〉 =

1

λ
〈ηuu + ηvv, η〉 = −1

λ
(〈ηu, ηu〉+ 〈ηv, ηv〉) .

Hence, αK − γH ≤ 0 and since σ is positive definite

(A) If α ≥ 0, then K ≤ γ2

(α +
√

α2 + βγ)2
.

(B) If α ≤ 0, then K ≥ γ2

(α +
√

α2 + βγ)2
when γ 6= 0 and K ≥ 4α2

β2 when γ = 0.

As an immediate consequence of the above Theorem we obtain that η can be considered
as a harmonic map, that is,
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Corollary 1 Let ψ : S−→R3 be an ELW immersion satisfying (2) with associated Gauss
map η. If we consider on S the conformal structure induced by σ = α I + β II, then η is
harmonic. Moreover, if γ 6= 0, ψ can be recovered as

ψ = −α

γ
η +

√
α2 + βγ

γ

∫
η ∧ ηv du− η ∧ ηu dv, (11)

for (u, v) isothermal parameters on S.
Conversely, if S is a simply-connected Riemann surface and η : S−→S2 is a harmonic

map, then (11) gives an ELW immersion (possibly degenerated at some points) such that
the conformal structure on S is the induced one by α I + β II.

Proof : From (6) and (7)

α ψu = β ηu −
√

α2 + βγ η ∧ ψv,
α ψv = β ηv +

√
α2 + βγ η ∧ ψu

and putting the second equation into the first one

α2 ψu = αβ ηu − β
√

α2 + βγ η ∧ ηv + (α2 + βγ) ψu,

that is,

βγ ψu = −αβ ηu + β
√

α2 + βγ η ∧ ηv.

Analogously,

βγ ψv = −αβ ηv − β
√

α2 + βγ η ∧ ηu.

Hence, if β 6= 0, the immersion is recovered using (11). (If β = 0 the result is well-
known, see [10]).

The converse is a straightforward computation. 2

Remark 2 It is easy to see that there exists, up to an isometry, a unique totally umbilical
immersion in the family of ELW immersions satisfying (2), given by

(i) a round sphere of radius R = |α +
√

α2 + βγ|/γ if γ 6= 0,

(ii) a round sphere of radius R = |β|/2|α| if γ = 0 and α < 0,

(iii) a plane if γ = 0 and α > 0.

These surfaces are characterized as the simply-connected ones with a closed line of cur-
vature. More precisely,
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Corollary 2 Let S be a closed topological disk and ψ : S−→R3 an ELW immersion. If
the image of the boundary of S, ψ(∂S), is a line of curvature then ψ(S) lies on a round
sphere or on a plane.

Proof : Let us assume ψ satisfies (2) and consider S as a Riemann surface with the confor-
mal structure induced by σ = α I + β II. Then S is conformally equivalent to the closed
unit disk D = {z ∈ C/ |z| ≤ 1}.

Thus, we can consider S = D and choose polar coordinates (r, θ) given by z = u+iv =
reiθ. Therefore,

∂

∂r
= cos θ

∂

∂u
+ sin θ

∂

∂v
,

∂

∂θ
= − sin θ

∂

∂u
+ cos θ

∂

∂v
,

on ∂D. Since (u, v) are conformal parameters respect to σ, we have

0 = α 〈∂ψ

∂r
,
∂ψ

∂θ
〉+ β 〈∂ψ

∂r
,−∂η

∂θ
〉

and using that |z| = 1 is a line of curvature with normal curvature kn we have

0 = (α + β kn) 〈∂ψ

∂r
,
∂ψ

∂θ
〉

on |z| = 1.
Because of σ is positive definite, α + β kn > 0, and

〈∂ψ

∂r
,
∂ψ

∂θ
〉 = 0 = 〈∂ψ

∂r
,−∂η

∂θ
〉

on ∂D, or equivalently,

0 = −1

2
sin 2θ (Ei −Gi) + cos 2θ Fi, i = 1, 2 (12)

on ∂D, where I and II are written as in (5).
On the other hand, from Theorem 1 the complex functions

f1(z) = 〈∂ψ

∂z
,
∂ψ

∂z
〉 and f2(z) = 〈∂ψ

∂z
,−∂η

∂z
〉

are holomorphic. In fact,

∂f1

∂z
= 2 〈 ∂2ψ

∂z∂z
,
∂ψ

∂z
〉 =

λ

2
〈∆σψ,

∂ψ

∂z
〉 = 0,

∂f2

∂z
= 〈 ∂2ψ

∂z∂z
,−∂η

∂z
〉+ 〈∂ψ

∂z
,− ∂2η

∂z∂z
〉 =

λ

4
〈∆σψ,−∂η

∂z
〉+

λ

4
〈∂ψ

∂z
,−∆ση〉 = 0.

Moreover, gi(z) = z2fi(z) is also holomorphic with imaginary part, Im(gi) = sin 2θ (Ei−
Gi)− 2 cos 2θ Fi, on ∂D and, from (12), gi must be constant, i=1,2.

Using that gi(0) = 0, we have gi ≡ 0 ≡ fi, i=1,2 and II is proportional to I. 2

7



3 Estimates on Linear Weingarten Surfaces and

Graphs

First, we give a bound of the height that a compact ELW surface can rise above a plane,
generalizing the well-known bounds for constant mean curvature due to E. Heinz, positive
constant Gauss curvature [14] and special linear Weingarten surfaces [15]. For that, we
need the following result,

Lemma 3 Let S be a compact surface with boundary ∂S and ψ : S−→R3 a non-flat ELW
graph on the plane P = {x3 = 0}, satisfying (2), with ψ(∂S) ⊆ P . Then ψ(S) is contained
in a halfspace determined by P . Moreover, if we call h to the maximum height that ψ(S)
can rise above P and ψ3 the third coordinate immersion then

1. if α ≥ 0 or β ≥ 0 and |∇ψ3| ≤ m along ∂S for a non-negative constant m ≤ 1, we
have

h ≤ R
(
1−

√
1−m2

)
,

2. if α < 0, β < 0 and |∇ψ3| ≥ m along ∂S for a non-negative constant m ≤ 1, we
have

h ≥ R
(
1−

√
1−m2

)
,

where R is the radius of the unique sphere satisfying (2), given by Remark 2, and ∇ψ3 is
the gradient of ψ3 for the induced metric.

Proof : Let us assume that α ≥ 0 or β ≥ 0 and there exists a point p1 such that ψ(p1) ∈
{x3 > 0}. If we take a hemisphere H with boundary on P such that S ∩ {x3 ≥ 0} is
inside and we consider spherical caps with boundary H∩P , then a spherical cap meets to
ψ(S) the first time at a point q1 with positive Gauss curvature and inner normal pointing
down. Thus, from Lemma 2, the associated Gauss map η points down at q1.

On the other hand, if there exists another point p2 such that ψ(p2) ∈ {x3 < 0},
then reasoning as above there would exist q2 such that η points up at q2, which is a
contradiction, since ψ is a graph. Therefore, ψ(S) is contained in a halfspace determined
by P .

Up to a reflexion, we can assume ψ(S) ⊆ {x3 ≥ 0}. Then from Theorem 1

∆σ
(

1

R
ψ3 + η3

)
=

(
1

R

γ + βK

α2 + βγ
+

2(αK − γH)

α2 + βγ

)
η3

=
(2αR + β)K + γ(1− 2RH)

R (α2 + βγ)
η3

where η3 is the third coordinate of the associated Gauss map.
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By using that
2αR + β = γR2 (13)

we have

∆σ
(

1

R
ψ3 + η3

)
=

γR

α2 + βγ

(
k1 − 1

R

) (
k2 − 1

R

)
η3

for the principal curvatures k1, k2 of the immersion.
On the other hand, if β 6= 0, from (2) and (13), the two points (k1, k2) and (1/R, 1/R)

belong to the equilateral hyperbola α(x + y) + βxy = γ on the (x, y)-plane. And, since,
α + βki > 0, i = 1, 2, α + β/R > 0, both points are on the same connected component of
the hyperbola. Therefore, (

k1 − 1

R

) (
k2 − 1

R

)
≤ 0.

If β = 0, the above inequality is clear from (2) and (13).
Now, from Lemma 2, η3 ≤ 0 and

∆σ
(

1

R
ψ3 + η3

)
≥ 0. (14)

Bearing in mind that

1

R
ψ3 + η3 = η3 = −

√
1− |∇ψ3|2 ≤ −

√
1−m2

along ∂S, we have

ψ3 ≤ R
(
−η3 −

√
1−m2

)
≤ R

(
1−

√
1−m2

)

as we wanted to prove.
The case α < 0, β < 0 is analogous to the first one, but (14) changes the sign. 2

Thus, by using the classical Alexandrov reflection principle in a standard way (see,
for instance, [14]) for the elliptic equation (1) in an ELW embedding and since |∇ψ3| ≤ 1
everywhere, one has from Remark 2 and Lemma 3, the following

Theorem 2 Let S be a compact surface with boundary ∂S, P a plane and ψ : S−→R3

a non-flat ELW embedding satisfying (2) with ψ(∂S) ⊆ P . Then, if α ≥ 0 or β ≥ 0 the
maximum height that ψ(S) can rise above P is

2|α +
√

α2 + βγ|
γ

, with γ 6= 0 and
|β|
|α| , with γ = 0.
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Now, we obtain a balancing formula for linear Weingarten surfaces in R3. Let S be
a compact surface with boundary ∂S and ψ : S−→R3 a linear Weingarten immersion
satisfying

2aH + bK = c

for a unit normal vector field N : S−→S2. Then, if we consider local coordinates (u, v),
we have

dN ∧ dψ = (Nu ∧ ψv + ψu ∧Nv) du ∧ dv = −2H (ψu ∧ ψv) du ∧ dv = −H dψ ∧ dψ

dN ∧ dN = 2 (Nu ∧Nv) du ∧ dv = 2K (ψu ∧ ψv) du ∧ dv = K dψ ∧ dψ.
(15)

Therefore,
−2a d (N ∧ dψ) + b d (N ∧ dN) = c d (ψ ∧ dψ)

and, by applying Stoker’s theorem, we have the following balancing formula

−2a
∫

∂S
N ∧ dψ + b

∫

∂S
N ∧ dN = c

∫

∂S
ψ ∧ dψ. (16)

Now, we use the above balancing formula to study linear Weingarten surfaces spanned
by a fixed planar Jordan curve. For that, we remind that the algebraic area of the curve
ψ(∂S), given by the vector

A =
1

2

∫

∂S
ψ ∧ dψ,

only depends on the curve and not on its representation ψ|∂S. Moreover, if ψ(∂S) is a
planar Jordan curve, then |A| is the area enclosed by ψ(∂S) on the plane.

Theorem 3 Let S be a compact surface with boundary ∂S and ψ : S−→R3 a linear
Weingarten immersion satisfying

2aH + bK = c

and such that ψ(∂S) ⊆ {x3 = 0} is a convex Jordan curve. Then, if |∇ψ3| ≤ m ≤ 1 along
∂S, one has

|2aH + bK| ≤ |a|mL + |b|m2 π

A
,

where L and A are the length and enclosed area by the curve ψ(∂S), respectively.
Moreover, if S is a topological disk and the equality holds then ψ(S) is planar or a

spherical cap.

Proof : Let t be a unit tangent vector field along ∂S, then −dN(t) = knt + λN ∧ t, where
kn is the normal curvature along ∂S. And the boundary is a line of curvature if and only
if λ ≡ 0.
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If we put v3 = (0, 0, 1), then from (16)

2|c|A =
∣∣∣∣c

∫

∂S
〈ψ ∧ dψ, v3〉

∣∣∣∣ =
∣∣∣∣−2a

∫

∂S
〈N ∧ t, v3〉+ b

∫

∂S
〈N ∧ dN(t), v3〉

∣∣∣∣

≤
∣∣∣∣−2a

∫

∂S
〈N ∧ t, v3〉

∣∣∣∣ +
∣∣∣∣−b

∫

∂S
kn〈N ∧ t, v3〉

∣∣∣∣ . (17)

On the other hand, it is well known that kn = k〈N, t ∧ v3〉, where k denotes the
curvature of the curve ψ(∂S) (see, for instance, [4, p. 141]). Moreover, 〈N ∧ t, v3〉2 =
|∇ψ3|2; indeed, 〈N, v3〉2 = 1 − |∇ψ3|2 and N = 〈N, t ∧ v3〉 t ∧ v3 + 〈N, v3〉 v3, therefore
〈N, t ∧ v3〉2 = 1− 〈N, v3〉2 = |∇ψ3|2. Thus, by using that k does not change the sign

2|c|A ≤ 2|a|mL + |b|m2

∣∣∣∣
∫

∂S
k

∣∣∣∣ = 2|a|mL + 2|b|m2 π

as we wanted to prove.
Moreover, if the equality holds 〈N, v3〉 and 〈N ∧ t, v3〉 are constant along ∂S. So, if

we derive respect to t

0 = 〈 − knt− λN ∧ t, v3〉 = −λ〈N ∧ t, v3〉
0 = −λ〈(N ∧ t) ∧ t, v3〉+ 〈N ∧ kg(N ∧ t), v3〉 = λ〈N, v3〉

where kg is the geodesic curvature of ∂S [4, p. 248]. Therefore, λ ≡ 0 and ∂S is a line of
curvature.

Hence, if S is a topological disk, we can distinguish three cases:

(i) a2 + bc > 0. Then, from Corollary 2, ψ(S) lies on a plane or it is a spherical cap.

(ii) a2 + bc < 0. Since a point p ∈ S is umbilical if and only if H2 = K at p, one has
that there does not exist any umbilical point on S. Now, by the Poincaré-Hopf
Theorem ([9, p. 135]), the sum of the indices of the singularities of a line field,
on a compact surface with boundary, which is transversal along the boundary and
has a finite number of singularities, must be the Euler charasteristic of the surface.
Consequently, the Euler charasteristic of S is zero, since the field of line elements
associated to the principal curvature different of kn has not got any singularity and
it is perpendicular to the boundary, which is a contradiction. Therefore, the equality
is not possible in this case.

(iii) a2 + bc = 0. Then, from (3), (a + bk1)(a + bk2) = 0, being k1 and k2 the principal
curvatures of the immersion. Therefore, a + bki = 0 for some i = 1, 2, but if the
equality holds, from (17), the signs of a and bkn are the same and a + bkn 6= 0
everywhere (otherwise a = 0 and K ≡ 0, that is, the immersion lies on a plane).
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Thus, ∂S is free of umbilical points and the principal curvature kn is different to
the constant principal curvature −a/b. Hence, if p is an interior point on S and
q is the nearest point on ∂S, then the minimizing geodesic γ from p to q meets
ortogonally to the boundary and, using [16, Lemma 3], there is no umbilical point
on γ and p is a non-umbilical point. Consequently, the immersion is umbilically free
and, reasoning as the above case, the equality is not possible.

2

Observe that the hypothesis about convexity of ψ(∂S) is non-necessary if b = 0, that
is, for constant mean curvature. In that case, the result was first proved by E. Heinz [7]
(whithout any assumption about |∇ψ3|, that is, m = 1).

Now, we obtain a similar result about the behaviour of the curvatures of a general
graph with planar boundary.

Theorem 4 Let S be a compact surface and ψ : S−→R3 a graph with connected convex
planar boundary ψ(∂S) ⊆ {x3 = 0} and such that for a positive number m, |∇ψ3| ≤ m ≤ 1
along the boundary. Then, given non-negative real numbers a, b, not both zero, one has

min
p∈S

(2aH + bK) ≤ amL + bm2π

A

for any Gauss map N on S, where L and A denote the length and enclosed area by the
curve ψ(∂S).

Moreover, if the equality holds then ψ(S) is a spherical cap.

Proof : Let c be the minimum of the function 2aH + bK on S for a Gauss map N on S,
then if c is non-positive the result is obvious. Otherwise, we have 2aH + bK ≥ c > 0 and
taking σ = a I + b II,

σ(e1, e1) σ(e2, e2)− σ(e1, e2)
2 = (a + bk1) (a + bk2) =

= a2 + b (2aH + bK) ≥ a2 + bc > 0,

for an orthonormal basis {e1, e2} which diagonalizes dN at a point p ∈ S, that is, σ is
definite.

Since ψ(S) is not contained in {x3 = 0}, up to a reflexion, we can assume that there
exists a point in {x3 > 0}. Then, reasoning as in Lemma 3 there exists a point q on
S ∩ {x3 > 0} with positive Gauss curvature satisfying a + bki > 0, i = 1, 2, for the inner
normal pointing down η, that is, σ is positive definite for η.

On the other hand, if N 6= η then the mean curvature HN for N is −Hη and 2aHN +
bK < 2aHη + bK at q. Moreover, this inequality is true everywhere, otherwise, the
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equality should hold at some point p. Consequently, H(p) = 0 and, since, H2 ≥ K one
has K(p) ≤ 0 and c should be non-positive. So, it is sufficient to prove the result for η.

By using (15),

0 ≥ c
∫

S
〈dψ ∧ dψ, v3〉 ≥ −2a

∫

S
〈dη ∧ dψ, v3〉+ b

∫

S
〈dη ∧ dη, v3〉

and by applying Stoker’s theorem for a well-oriented tangent unit vector field t along ∂S

0 > −2cA = c
∫

∂S
〈ψ ∧ dψ, v3〉 ≥ −2a

∫

∂S
〈η ∧ dψ, v3〉+ b

∫

∂S
〈η ∧ dη, v3〉

= −
∫

∂S
(2a + bkn)〈η ∧ t, v3〉 ≥ −m

∫

∂S
(2a + bkn)

≥ −m
∫

∂S
(2a + bk〈η ∧ t, v3〉) ≥ −(2amL + 2bm2π),

being kn and k the normal curvature and curvature of ψ(∂S), respectively, where we have
used that 2a + bkn = a + σ(t, t) > 0.

Moreover, if the equality holds minp∈S(2aH + bK) = maxp∈S(2aH + bK) and the
immersion is linear Weingarten. Thus, the result follows from Theorem 3. 2

It is important to remark that the convexity of the boundary is not necessary in the
above Theorem if b = 0. In that way, we obtain

Corollary 3 For any compact graph with connected planar boundary, one has

min
p∈S

H ≤ L

2A
and min

p∈S
K ≤ π

A

where L and A are the length and enclosed area by the curve ψ(∂S).
Moreover, the equality holds if and only if ψ(S) is a hemisphere.

Proof : If minp∈S K > 0 then the boundary is a convex curve. Hence, since |∇ψ3| ≤ 1
everywhere, taking m = 1 in Theorem 4, we obtain the first inequality for a = 1/2, b = 0
and the second one for a = 0, b = 1. 2
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