
Singularities of improper affine maps and their
Hessian equation 1

Francisco Milán
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Abstract

We study improper affine spheres with some admissible singularities, called
improper affine maps and associated to the unimodular Hessian equation. In par-
ticular, we characterize when a curve of R3 is the singular curve of some improper
affine map with prescribed cuspidal edges and swallowtails. Also, we consider
improper affine maps with isolated singularities and show some similarities and
differences between the Hessian +1 equation and the Hessian −1 equation. As a
consequence, we construct global examples with the desired singularities.

1 Introduction

A celebrated fact in geometric analysis is the correspondence between the solutions
of the Monge-Ampère equation

fxxfyy − f 2
xy = ε = ±1 (1.1)

and the umbilical surfaces of the unimodular affine theory in R3, obtained locally as the
graphs of f(x, y) and called improper affine spheres, see [CL, L, LJSX, TW].

Thus, in the definite case (ε = +1), the lack of global examples seems a natural
consequence of the famous result by Jörgens [J1], which states that all the solutions of
the (elliptic) Hessian +1 equation on R2 are quadratic polynomials. Actually, up to
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unimodular affine transformations, the elliptic paraboloid is the unique improper affine
sphere with complete definite affine metric, see [C1, CY, P].

This situation motivates the study of solutions and surfaces with some singularities.
In particular, Jörgens proved in [J2] that the revolution surfaces provide the only entire
solutions with at most an isolated singularity.

Recently, thanks to the conformal representation of the definite improper affine
spheres obtained in [FMM1, FMM2], the above theorem has been extended to the finitely
punctured plane in [GMM]. Moreover, from a local viewpoint, we remark that around a
non-removable isolated singularity the conformal structure is always that of an annulus
and the solution is determined by a planar convex analytic curve, see [ACG].

Now, although the indefinite case (ε = −1) is different, we use similar methods.
However, with the corresponding geometric model, we can also construct solutions of
the (non-elliptic) Hessian −1 equation with isolated singularities and the conformal
structure of a punctured disk.

First, following [M, N], we extend the conformal representation given in [Mi] and
introduce the improper affine maps as improper affine spheres with some admissible
singularities. These are, mainly, isolated singularities and singular curves with cuspidal
edges and swallowtails, see [IM, KRSUY].

Then, we solve the associated Björling problem and prove that any indefinite im-
proper affine map can be recovered in terms of its set of singularities. Moreover, we
give a priori conditions for a curve of R3 to be the singular curve of some indefinite (or
definite) improper affine map with prescribed cuspidal edges and swallowtails. Thus,
one can obtain interesting examples with the desired singularities.

Finally, we construct indefinite improper affine maps with isolated singularities, some
of them with the conformal structure of an annulus and determined by a planar convex
analytic curve and others with the conformal structure of a punctured disk. As conse-
quence, we get entire solutions of the Hessian −1 equation in the punctured plane, but
the corresponding improper affine maps are not revolution surfaces.

2 Improper affine maps

Consider ψ : Σ −→ R3 an improper affine sphere, that is, an immersion with constant
affine normal ξ. Then, see [LSZ, NS], up to an unimodular affine transformation, one
has ξ = (0, 0, 1) and ψ can be locally seen as the graph of a solution f(x, y) of the
unimodular Hessian equation (1.1).

In such a case, the affine conormal N and the affine metric h of ψ are given by

N = (−fx,−fy, 1),

(2.1)

h = fxxdx
2 + 2fxydxdy + fyydy

2

and (1.1) is equivalent to

(dfx)
2 + ε dy2 = fxxh, (dfy)

2 + ε dx2 = fyyh. (2.2)
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Hence, the coordinates of N and ψ provide conformal parameters for h. Note that
the ruled solution f(x, y) = xy seems special, because fxx = 0 = fyy, however up the
unimodular change (x, y) by (x − y, x + y)/

√
2, we can take f(x, y) = (x2 − y2)/2 and

recover h from (2.2).
Actually, when ε = +1, it is well known that N + i ξ × ψ : Σ −→ C3 is a global

holomorphic curve, with respect to the conformal structure induced by the Riemannian
metric h, where the standard inner product 〈ξ × ψ,X〉 is the determinant [ξ, ψ,X], for
any X ∈ R3, see [C2, FMM2].

Similarly, when ε = −1, we can change C by the split-complex numbers

C′ = {z = s+ jt : s, t ∈ R, j2 = 1, 1j = j1}

and prove that N + j ξ×ψ : Σ −→ C′3 is a global split-holomorphic curve, with respect
to the conformal structure induced by the Lorentzian metric h, see [Mi].

In fact, from (1.1) and (2.1), we get

h = −〈dN, dψ〉, 〈N, ξ〉 = 1, 〈N, dψ〉 = 0 (2.3)

and √
h(ψx, ψy)2 − h(ψx, ψx)h(ψy, ψy) = [ψx, ψy, ξ] = −[Nx, Ny, N ].

Thus, for a local conformal parameter z, we have

h = 2ρ dz dz, ρ = 〈N,ψzz〉 = −j[ψz, ψz, ξ] = j[N,Nz, Nz] > 0 (2.4)

and the split-holomorphic condition

Nz = jξ × ψz, Nz = −jξ × ψz, (2.5)

with the usual notation z = s− jt, Re(z) = s, Im(z) = t and the partial derivatives

ψz =
1

2
(ψs + jψt) , ψz =

1

2
(ψs − jψt) .

Moreover, from (2.3), (2.4) and (2.5), we obtain

ψzz = ρξ = jNz ×Nz, Nzz = 0

and the Lelieuvre formula

ψ = 2 Re

∫
jNz ×Ndz = −2 Re

∫
j
(
Φ + Φ

)
× Φzdz, (2.6)

with the global split-holomorphic curve

Φ =
1

2
N +

j

2
ξ × ψ. (2.7)

Conversely, we can introduce the class of indefinite improper affine spheres with
admissible singularities, where the affine metric h is degenerated, but the affine conormal
is well defined.
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Definition 2.1. A map ψ : Σ −→ R3 is an indefinite improper affine map, with constant
affine normal ξ, if it admits the representation (2.6) for a split-holomorphic curve Φ such
that [Φ + Φ,Φz,Φz] does not vanish identically and 2〈Φ, ξ〉 = 1.

From (2.3), (2.4) and the above definition, it is clear that

ψz = −j(Φ + Φ)× Φz, N = Φ + Φ, (2.8)

ψzz = jΦz × Φz = ρξ, ρ = j
[

Φ + Φ,Φz,Φz

]
(2.9)

and that z0 ∈ Σ is a non-degenerate singular point of the map ψ if and only if

ρ(z0) = 0, dρ
∣∣
z0
6= 0. (2.10)

In this case, either ψ(z0) is an isolated singularity or the singular set of ψ around z0

locally becomes a regular curve γ : I ⊂ R −→ Σ and we have the KRSUY criterion for
the singular curve α = ψ ◦ γ.

Theorem 2.2. [KRSUY]. If η is a vector field along γ, with η(s) 6= 0 in the kernel of
dψγ(s) for any s in the interval I, then the following hold.

1. γ(0) = z0 is a cuspidal edge if and only if det(γ′(0), η(0)) 6= 0, where det denotes
the determinant of 2× 2 matrices and prime indicates differentiation with respect
to s.

2. γ(0) = z0 is a swallowtail if and only if det(γ′(0), η(0)) = 0 and

d

ds

∣∣∣
s=0

det(γ′(s), η(s)) 6= 0.

3 Singular curves

First, we solve the ”affine Björling problem” consisting in finding the indefinite
improper affine map containing an analytic curve α with a prescribed affine conormal
U along it. That is, we determine the corresponding split-holomorphic curve Φ with α
and U .

Motivated by (2.3), we say that a pair of analytic curves α, U : I −→ R3 is
admissible for a non-zero vector ξ ∈ R3 if the equations

0 = 〈α′, U〉, 1 = 〈ξ, U〉, (3.1)

hold on the interval I.
Thus, see (2.7) and (2.9), if we take the split-holomorphic curve Φ : Ω −→ C′3 given

by

Φ(z) =
1

2

(
U(z) + jξ × α(z)

)
, z = s+ jt ∈ Ω ⊂ C′,
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in a domain Ω containing I, where the split-holomorphic extensions of U and α exist,
then

2〈Φ, ξ〉 = 〈U, ξ〉 = 1

in Ω (by analyticity) and

ρ = j
[

Φ + Φ,Φz,Φz

]
=

j

4
[U,U ′ + jξ × α′, U ′ − jξ × α′]

= −1

2
〈U × U ′, ξ × α′〉 = −1

2
〈U ′, α′〉

in I. Hence, if we denote by I0 the zero set of the function λ : I −→ R,

λ = 〈α′′, U〉 = −〈α′, U ′〉, (3.2)

we can obtain the following extension of Theorem 3.1 in [Mi].

Theorem 3.1. Let α, U : I −→ R3 be an admissible pair of curves for a non-zero
vector ξ, with I0 6= I. Then there exists a unique indefinite improper affine map ψ,
containing α(I), with affine normal ξ, affine conormal U(s) at α(s) for all s ∈ I and
α(I0) contained in its set of singularities.

The case I0 = I is special, because ρ = 0 = λ in I and the map ψ can be recovered
in terms of its set of singularities.

From now on, without loss of generality, we will fix ξ = (0, 0, 1).

Theorem 3.2. Let α : I −→ R3 be an analytic curve satisfying

[α′, α′′, α′′′]2 6= [α′, α′′, ξ]4 6= 0, ∀s ∈ I. (3.3)

Then, there exists a unique indefinite improper affine map ψ containing α(I) in its set
of singularities.

Actually, α is a singular curve of ψ and α(s) is a cuspidal edge for all s ∈ I.

Proof. From (3.1) and (3.2), with λ ≡ 0, there is a unique U : I −→ R3,

U =
α′ × α′′

[α′, α′′, ξ]
, (3.4)

such that {α, U} is an admissible pair of curves for ξ and the map ψ is defined by (2.6)
with

Φ =
αz × αzz

2[αz, αzz, ξ]
+
j

2
ξ × α,

in a neighborhood of I in C′, where the split-holomorphic extension of α exists.
In fact, from (2.8) and (3.4), we have along I

ψz = −j(Φ + Φ)× Φz =
−j
2

U × U ′ − 1

2
U × (ξ × α′)

=
1

2
α′ − j

2
U × U ′ = 1

2
α′ − j

2

[α′, α′′, α′′′]

[α′, α′′, ξ]2
α′
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Figure 1: Improper affine maps with cuspidal edges.

and ψ contains the curve α with

ψs = α′, ψt = − [α′, α′′, α′′′]

[α′, α′′, ξ]2
α′. (3.5)

Thus, from (2.9), (2.10), (3.3) and (3.5), we get [ψs, ψt, ξ](s, 0) = 0, ∀s ∈ I,

d

dt

∣∣∣
(s,0)

[ψs, ψt, ξ] = [ψts, ψt, ξ](s, 0) + [ψs, ψss, ξ](s, 0) (3.6)

= [α′, α′′, ξ]
(

1− [α′, α′′, α′′′]2

[α′, α′′, ξ]4

)
6= 0

and α is a singular curve. Moreover, the kernel of dψ at γ(s) = (s, 0) is spanned by

η = ([α′, α′′, α′′′], [α′, α′′, ξ]2)

and we conclude from

det(γ′, η) = [α′, α′′, ξ]2 6= 0

and Theorem 2.2 that α(s) is a cuspidal edge for all s ∈ I.

Example 3.3. If we take the curve α : R −→ R3 given by

α(s) = (cos(s), sin(s), as),

then [α′, α′′, ξ] = 1 and [α′, α′′, α′′′] = a. So, from Theorem 3.2, when a ∈ R− {±1},

U(s) = (a sin(s),−a cos(s), 1)

and the associated improper affine map ψ : R2 −→ R3 has coordinates

ψ1(s, t) = cos(s) cos(t) + a sin(s) sin(t),

ψ2(s, t) = sin(s) cos(t)− a cos(s) sin(t),

ψ3(s, t) = as− 1

2
(1 + a2)t+

1

4
(1− a2) sin(2t).
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It is clear that the affine metric

h = [ψs, ψt, ξ](ds
2 − dt2) = (1− a2) cos(t) sin(t)(ds2 − dt2)

does not vanish identically, because a 6= ±1.
Moreover, around t = 0, α = ψ( , 0) is the only singular curve with cuspidal edges,

(see Figure 1, with a = 0 and a = 0.1).

Theorem 3.4. Let α : I −→ R3 be an analytic curve such that

[α′, α′′, α′′′]2 6= [α′, α′′, ξ]4 6= 0, ∀s ∈ I − {0}

and 0 ∈ I is a zero of α′, α′ × α′′, [α′, α′′, ξ] and [α′, α′′, α′′′] of order 1, 2, 2 and 3
respectively.

Then, α is a singular curve of an unique indefinite improper affine map ψ and α(0)
is a swallowtail.

Proof. We follow the same arguments from (3.4) to (3.6). Note that U and ψt are well
defined by the hypothesis and

d

dt

∣∣∣
(s,0)

[ψs, ψt, ξ] = [α′, α′′, ξ]− [α′, α′′, α′′′]2

[α′, α′′, ξ]3
6= 0.

Now, the kernel of dψ at γ(s) = (s, 0) is spanned by

η =
(

1,
[α′, α′′, ξ]2

[α′, α′′, α′′′]

)
and from Theorem 2.2, α(0) is a swallowtail, because 0 is a zero of order 1 of

det(γ′, η) =
[α′, α′′, ξ]2

[α′, α′′, α′′′]
.

Example 3.5. The curve α : R −→ R3 defined by

α(s) =
(

cos(s) +
1

2
cos(2s), − sin(s) +

1

2
sin(2s),

1

6
cos(3s)

)
has

[α′, α′′, ξ] = 1− cos(3s) and [α′, α′′, α′′′] = sin(3s)− 1

2
sin(6s),

with the same 2π-periodic zeros 2
3
π, 4

3
π and 2π. Thus, one can check the conditions of

Theorem 3.4 and obtain an improper affine map with α as a singular curve with three
swallowtails connected by three arcs with cuspidal edges. In fact,

U(s) =
(
− cos(s) +

1

2
cos(2s), sin(s) +

1

2
sin(2s), 1

)
7



Figure 2: Improper affine map with swallowtails.

and ψ : R2 −→ R3 has coordinates

ψ1(s, t) = cos(s)(cos(t) + sin(t)) +
1

2
cos(2s)(cos(2t) + sin(2t)),

ψ2(s, t) = − sin(s)(cos(t) + sin(t)) +
1

2
sin(2s)(cos(2t) + sin(2t)),

ψ3(s, t) =
1

24
(12t+ 12 cos(2t)− 3 cos(4t) + 4 cos(3s)(cos(3t) + 3 sin(t)).

Now, the affine metric is

h = 2 sin(t)
(

sin(3t)− cos(3s)
)

(ds2 − dt2)

and t = 0 gives α = ψ( , 0) with the expected properties, (see Figure 2).

Theorem 3.6. There are no indefinite improper affine maps containing a singular curve
α : I −→ R3 satisfying

[α′, α′′, ξ] = 0, ∀s ∈ I. (3.7)

Proof. If we assume that α is contained in an indefinite improper affine map ψ, with
affine conormal U along α, then (3.1), (3.2) and (3.7), with λ ≡ 0, give

α′ × α′′ = 〈α′ × α′′, ξ〉U = 0

and α is a line with direction vector v, such that 〈v, U〉 = 0.
As a consequence, 〈v,N〉 = 0 and [N,Nz, Nz] vanishes in a neighborhood of α,

which is a contradiction.

Remark 1. We can change C′ by C and prove in a similar way the above theorems
for definite improper affine maps, with the holomorphic curves N + i ξ × ψ and the
conformal representation used in [ACG] for the classification of the isolated singularities
of the Hessian +1 equation. Note that the 1 in (3.6) becomes −1 in the definite case
and we can simplify the hypotheses, see [MM].
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Figure 3: Improper affine map with isolated singularities.

4 Isolated singularities

Conversely, we can apply the ideas of [ACG] for the isolated singularities of the
Hessian −1 equation, when the conformal structure of the affine metric around the
singularity is that of an annulus A.

Theorem 4.1. Let U : R −→ R2×{1} be a 2π-periodic regular analytic parameterization
of a convex curve.

Then, there exists a unique indefinite improper affine map ψ : A −→ R3, with an
isolated singularity at the origin, where the affine conormal tends to U .

Proof. Here, we take the constant curve α0 : R −→ R3, α0 ≡ 0 and so

Φ(z) =
1

2

(
U(z) + jξ × 0)

)
=

1

2
U(z),

in a neighborhood of R× {0} in C′, where the split-holomorphic extension of U exists.
We observe that Φ is well defined on the annulus

A = {z = s+ jt ∈ C′ : 0 < t < r}/(2πZ)

and 2〈Φ, ξ〉 = 1, by the hypothesis.
Moreover, from (2.8) and (2.9), we get along the circle S ≡ R× {0}/(2πZ)

ψs = 0, ψt = − U × U ′, ρ = 0

and

d

dt

∣∣∣
(s,0)

[ψs, ψt, ξ] = [ψts, ψt, ξ](s, 0) = −[U,U ′, U ′′](s) 6= 0.

Thus, from (2.10), we conclude that 0 = ψ(S) is an isolated singularity, where the affine
conormal of ψ tends to U .
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Figure 4: Non-embedded isolated singularity.

Example 4.2. Similarly to Example 3.3, if we take U : R −→ R2 × {1} with

U(s) = (cos(s), sin(s), 1),

then Theorem 4.1 gives the revolution improper affine map ψ : R2 −→ R3 with

ψ(s, t) =
(

cos(s) sin(t), sin(s) sin(t),
t

2
+

1

4
sin(2t)

)
and it is clear that ψ(R× {0}) = (0, 0, 0) is an isolated singularity, (see Figure 3).

We also observe that ψ(R × [0, π
4
]) and ψ(R2) provide a solution of the Hessian −1

equation on the same punctured disk.

Remark 2. If U(R) is not a simple curve in R2 × {1}, then the isolated singularity is
not embedded, (see Figure 4).

Unlike what happens in the definite case, where an isolated singularity is non-
removable if and only if its underlying conformal structure is that of an annulus, see
[J2, GMM], we can construct indefinite improper affine maps with isolated singularities
and the conformal structure of a punctured disk D∗.

In general, if the split-holomorphic curve Φ of an indefinite improper affine map
ψ : Σ −→ R3 has coordinates (Φ1,Φ2, 1/2), then

ρ = j
[

Φ + Φ,Φz,Φz

]
= j(Φ1zΦ2z − Φ2zΦ1z). (4.1)

Theorem 4.3. Let Φ : D −→ C′2 × {1/2} be a split-holomorphic curve with

Φ1z ≡ j and Φ2z = F 2, (4.2)

such that the split-holomorphic function F : D −→ C′ only vanishes at z0 ∈ D. Then, the
corresponding indefinite improper affine map ψ : D −→ R3 is regular on D∗ = D−{z0}
and has an isolated singularity.

Proof. It is clear from (4.1) and (4.2), because ρ = F 2 + F 2 > 0 on D∗.

Remark 3. Similarly, we get a global indefinite improper affine map ψ : C′ −→ R3 with
a finite number of singularities, associated to the zeros of a split-holomorphic function
F : C′ −→ C′.

In this way, different to [J2, GMM], we also find solutions of the Hessian −1 equation
in the finitely punctured plane.
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Figure 5: Entire solution on the punctured plane.

Example 4.4. Of course, the simplest choice in Theorem 4.3 is F (z) = z and

Φ(z) =
(
jz,

1

3
z3,

1

2

)
,

with z = s+ jt ∈ C′. Thus, the affine conormal is given by

N(s, t) =
(

2t,
2

3
s3 + 2st2, 1

)
and the corresponding improper affine map ψ : R2 −→ R3 has

ψ(s, t) =
(

2s2t+
2

3
t3, −2s,

1

3
s4 − 2s2t2 − t4

)
.

Now, the affine metric is h = 4(s2 + t2)(ds2 − dt2) and ψ(0, 0) = (0, 0, 0) is the only
singularity, (see Figure 5).

Moreover, we see that ψ(R2−{(0, 0)}) is the graph of a global solution of the Hessian
−1 equation on the punctured plane.

Remark 4. We can follow with F (z) = z(z − 1) and obtain a solution on the twice-
punctured plane. Alternately, we can distribute the zeros between the coordinates of Φz

and choose, for instance,

Φ(z) =
1

2

(
jz3, z3 − 3z2 + 3z, 1

)
.

In this case, from (4.1), the associated improper affine map ψ : R2 −→ R3 has affine
metric

h = 9
(
t2 + (s− s2 + t2)2

)
(ds2 − dt2)

and ψ(0, 0), ψ(1, 0) are the only singularities, (see Figure 6).
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Figure 6: Improper affine map with two isolated singularities.
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