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Abstract

The aim of this paper is to solve the Cauchy problem for locally strongly con-
vex surfaces which are extremal for the equiaffine area functional. These surfaces
are called affine maximal surfaces and here, we give a new complex representation
which let us describe the solution to the corresponding Cauchy problem. As ap-
plications, we obtain a generalized symmetry principle, characterize when a curve
in R3 can be a geodesic or pre-geodesic of a such surface and study the helicoidal
affine maximal surfaces. Finally, we investigate the existence and uniqueness of
affine maximal surfaces with a given analytic curve in its singular set.

1 Introduction

There has been a growing interest in recent years in geometric functionals whose
Euler-Lagrange equations are nonlinear fourth order partial differential equations. Well
known examples are the Willmore functional [GLW, Sim], the functional proposed by
Calabi in [Cal2, WZ] and the equiaffine area functional [Cal, TrWa] .

1Research partially supported by Ministerio de Educación y Ciencia Grant No. MTM2007-65249,
Junta de Andalućıa Grant No. FQM325 and la Junta de Comunidades de Castilla-La Mancha Grant
No. PCI-08-0023

1



Perhaps for being the most classical, the equiaffine area functional has attracted the
interest of a considerable group of geometers as evidenced by the amount of works that
it has generated.

In affine surfaces theory, Blaschke (see [Bla2]) found that the corresponding Euler-
Lagrange equation is of fourth order and nonlinear. He also showed that this equation
is equivalent to the vanishing of the affine mean curvature, which led to the notion of
”affine minimal surface” without a previous study of the second variation formula. But
sixty years later Calabi proved in [Cal] that, for locally strongly convex surfaces, the
second variation is always negative and since then, locally strongly convex surfaces with
vanishing affine mean curvature are called ”affine maximal surfaces”.

After Calabi’s work this class of surfaces has become a fashion research topic and it
has received many interesting contributions that help us to understand its geometry. So
far, some important facts are known:

• Affine maximal surfaces have got affine Weierstrass formulas that, along with
methods from complex function theory, have provided an important tool in their
study (see [Cal, Cal3, Li, Te]).

• Entire solutions of the fourth order affine maximal surface equation

L[φ] := φyyωxx − 2φxyωxy + φxxωyy = 0, ω =
(
det
(
∇2φ

))−3/4
, (1.1)

where ∇2φ is the positive definite Hessian matrix of φ, are always quadratic poly-
nomials, [TrWa].

• Every Affine complete affine maximal surface must be an elliptic paraboloid, [LiJi,
TrWa3].

• There is a formulation of the Affine Plateau Problem as a geometric variational
problem for the equiaffine area functional for which the existence and regularity
of maximizers have been proved, [TrWa4].

These results have opened two research lines. One of them deals with their extension
to different nonlinear fourth order equations (see [LiJi2, TrWa2]). The other one con-
cerns to study the validity of the results in affine maximal surfaces with some natural
singularities that may arose (see [AMaM, GMaMir, Ma]). In the last direction and for
the particular case of improper affine spheres, a previous study of the corresponding
Cauchy problem has been very useful to understand and motivate the problem (see
[ACG]).

In the present work we deal with the general Cauchy Problem for affine maximal
surfaces. To be more precise, we are going to solve the following Affine Cauchy Problem:

Let β : I −→ R3 be a regular analytic curve, and let Y : I −→ R3 be an
analytic vector field along β such that β′ × Y 6= 0. Find all affine maximal
surfaces containing β with Y the affine normal along β.
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This problem can be considered as a generalization to the Cauchy problem for the
equation (1.1) and has been inspired by the classical Björling problem for minimal
surfaces in R3, proposed by E.G. Björling in 1844 and solved by H.A. Schwarz in 1890.
More details and some research on this topic may be consulted in [ACMi, DHKW, GMi,
GMi2, MiPa].

Blaschke was the first who considered a Björling type problem in affine differential
geometry. However, he just considered the case of non convex affine minimal surfaces,
that is, when the Berwald-Blaschke metric is indefinite, [Bla].

After some notation, we discuss in Section 3 the existence and uniqueness of solutions
to the above affine Cauchy problem. We also construct the solutions in terms of the
data β, Y . These constructions set up, in all the cases, new conformal representations
for affine maximal surfaces.

Section 4 is devoted to applications in several directions. First, we use our conformal
representation to prove uniqueness of the Cauchy problem for the equation (1.1) and
give explicitly its solution. Second, we obtain a generalized symmetry principle and
characterize when a curve in R3 can be geodesic or pre-geodesic of an affine maximal
surface. In the rest of the section we apply our results to the study of affine maximal
surfaces invariant under a one-parameter equiaffine isometry group.

Finally, in Section 5 we get down the problem of finding affine maximal surfaces with
a singular set which contains a prescribed analytic curve. The results in this section will
motivate a forthcoming study of affine maximal surfaces with singularities, [AMaM2].

2 Basic notations

Consider ψ : Σ → R3 a locally strongly convex immersion of a surface Σ, oriented
so that the second fundamental form, σe, is positive definite everywhere. Denote by Ke

and dAe its Gaussian curvature and the element of euclidean area, respectively. The
most elementary unimodular affine invariants of the immersion are the Berwald-Blaschke
metric, g, the equiaffine area element, dA, and the Blaschke normal or affine normal ξ
given by the following objects:

g = K
− 1

4
e σe,

dA = K
1
4
e dAe,

ξ =
1

2
∆gψ,

where ∆g is the Laplace-Beltrami operator associated to g.

The affine conormal field N := K
−1/4
e Ne, where Ne is the unit normal to the

immersion, satisfies

〈N, ξ〉 = 1, 〈N, dψ(v)〉 = 0, v ∈ TpΣ, (2.1)

where 〈 , 〉 denotes the standard inner product in R3.
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On Σ we have a conformal structure representable by the common conformal equiv-
alence class of g. In terms of a local complex parameter z, the holomorphic conditions
are expressed as follows

[ψz, ψz, ψzz] = [ψz, ψz, ψzz] = 0, − i[ψz, ψz, ψzz] > 0,

where [X, Y, Z] denotes the determinant functional of any ordered triple of vectors
X, Y, Z, subscripts are partial derivations with respect to the indicate parameters and
by bar we denote the usual conjugation.

Using this parameter, the above affine invariants can be written as

g = −〈dN, dψ〉 = 2ρ|dz|2, ρ = (− i[ψz, ψz, ψzz])
1
2

dA = i ρdz ∧ dz, (2.2)

ξ =
1

ρ
ψzz.

Moreover

N =
− i

ρ
ψz × ψz,

ψz = iN ×Nz, (2.3)

Nz = i ξ × ψz,

where by × we denote the cross product in C3. Furthermore, the metric factor ρ can be
expressed in terms of the affine conormal as

ρ = − i[N,Nz, Nz]. (2.4)

On the other hand, [Bla2, Cal], the Euler-Lagrange equation for the affine area functional
of locally strongly convex immersions∫

dA =

∫
K

1
4
e dAe,

leads to the following system of PDE’s:

∆N = 0.

So, when Σ is simply-connected, 1
2
N is locally the real part of a holomorphic curve

Φ : Ω ⊂ Σ→ C3 determined by ψ up to a real translation which satisfies

N = Φ + Φ (2.5)

0 > i
[
Φ + Φ,Φz,Φz

]
= −ρ. (2.6)

Conversely, the expressions in (2.3) allow us (via the Lelieuvre formula, [Cal4, Li]),
to recover ψ from its affine conormal field and the conformal class of the Blaschke metric,

ψ = 2 Re

∫
i N ×Nzdz, (2.7)
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which, along with (2.5) and (2.6), say that ψ is uniquely determined, up to a real
translation, by a holomorphic curve Φ satisfying (2.6) (see also, [Cal3, Cal4]). To be
precise,

ψ = 2 Re

∫
i
(
Φ + Φ

)
× Φzdz = − i ( Φ× Φ−

∫
Φ× dΦ +

∫
Φ× dΦ ).

3 The Affine Björling problem

Motivated from the classical Schwarz’s formula we will obtain a local representation
of affine maximal surfaces in terms of holomorphic data, which let us solve the ”affine
Björling problem” of finding affine maximal surfaces containing a prescribed analytic
strip.

Consider ψ : Σ → R3 an affine maximal surface with Blaschke normal ξ and affine
conormal N . Let I be an interval and β : I → Σ a regular analytic curve. If α = ψ ◦ β,
Y = ξ ◦β and U = N ◦β, then, from (2.1), (2.2) and (2.3), we have that along the curve
α

0 = 〈α′, U〉,
1 = 〈Y, U〉,
0 = 〈Y ′, U〉,

0 < λ = −〈α′, U ′〉 = 〈α′′, U〉,

 (3.1)

where by prime we indicate derivation respect to s, for all s ∈ I.

Remark 1. From the fourth condition in (3.1) it is clear that α′′(s) does not vanish
anywhere. Therefore, throughout this paper we will assume that the curves α(s) have
non zero curvature everywhere.

Let α, Y, U : I → R3 be regular analytic curves. We say the pair {Y, U} is an analytic
equiaffine normalization of α if there is an analytic positive function λ : I → R+ such
that all the equations in (3.1) hold on I.

Theorem 3.1. Let {Y, U} be an analytic equiaffine normalization of α : I → R3. Then
there exists a unique affine maximal surface ψ containing α(I) and such that the affine
conormal field and the Blaschke normal along α are U and Y , respectively.

We shall say that ψ is the affine maximal surface along α generated by {Y, U}.

Proof. Assume that ψ : Ω̃ ⊆ C → R3 is an affine maximal surface containing α(I)
with U and Y their affine conormal field and Blaschke normal along α. By the Inverse
Function Theorem it is not difficult to prove (see [ACMi]) that there exists a conformal
parameter z := s+ i t, with s ∈ I.

If N is the affine conormal field of ψ, then from (2.3) we have that, along α,

Nz =
1

2
(Ns − iNt) =

1

2
(U ′ + iY × α′) ,
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and the Identity Principle shows that on a neigbourhood Ω ⊆ Ω̃ of I in C, the holomor-
phic curve Nz is given by

Nz =
1

2
(Uz + iY × αz) , z ∈ Ω (3.2)

where U(z), Y (z) and α(z) denote the holomorphic extensions of the analytic curves U ,
Y and α, respectively. Thus, the immersion can be recovered from (2.7) and (3.2) in
terms of U , Y and α, which proves the uniqueness.

For the existence, we consider the holomorphic curve Φ : Ω→ C3 given by

Φ(z) =
1

2

(
U + i

∫ z

s0

Y × αζdζ
)
, z ∈ Ω, s0 ∈ I, (3.3)

where Ω is a simply-connected domain containing I, and U , Y and α are extended in a
holomorphic way. If we set

ψ = α(s0) + 2 Re

∫ z

s0

i(Φ + Φ)× Φζdζ, (3.4)

then
ψz = i

(
Φ + Φ

)
× Φz

ψz × ψz =
[

Φ + Φ,Φz,Φz

] (
Φ + Φ

)
ψzz = i

(
Φ + Φ

)
× Φzz,

ψzz = − i Φz × Φz,

 (3.5)

and

[ψz, ψz, ψzz] = [ψz, ψz, ψzz] = 0, i [ψz, ψz, ψzz] =
[

Φ + Φ,Φz,Φz

]2
. (3.6)

From (3.1) and (3.3) we have that, along α,

− i
[

Φ + Φ,Φz,Φz

]
= − i

4
[ U,U ′ + i Y × α′, U ′ − i Y × α′ ]

= −1

2
〈U × U ′, Y × α′〉 =

λ

2
> 0.

This fact jointly with (3.5) and (3.6), proves that ψ is an immersion on a simply-
connected neigbourhood of I and its conormal field N is given by N = Φ + Φ which is
an extension of U along α.

Moreover, from (2.2), (3.1), (3.3) and (3.5), the Blaschke normal ξ of ψ along α is
given by

ξ =
− i

ρ

(
Φz × Φz

)
=
−1

λ
(U ′ × (Y × α′)) =

−1

λ
〈U ′, α′〉Y = Y.

The proof is completed by showing that the immersion contains the curve α(I). But
this is clear from (3.1), (3.3) and (3.5) because

ψz = i U × Φz =
−1

2
U × (Y × α′) +

i

2
U × U ′

=
1

2
α′ +

i

2
U × U ′ (3.7)

along α.
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Corollary 3.2. Let α, Y : I → R3 be two regular analytic curves satisfying

[ Y ′, α′, Y ][ Y ′, α′, α′′ ] > 0, on I. (3.8)

Then there exists a unique affine maximal surface ψ containing the curve α(I) and such
that its Blaschke normal along α is Y .

Moreover, the immersion ψ can be written as (3.4) in a simply-connected neigbour-
hood Ω of I in C, where the holomorphic curve Φ is given by

Φ(z) =
Yz × αz

2[ Yz, αz, Y ]
+

i

2

∫ z

s0

Y × αζdζ, z ∈ Ω, s0 ∈ I,

Y (z) and α(z) being holomorphic extensions of Y and α, respectively.

Proof. From (3.1) and the condition (3.8), there exists a unique U ,

U =
Y ′ × α′

[ Y ′, α′, Y ]
, (3.9)

such that the pair {Y, U} is an analytic equiaffine normalization of α. Then, the result
follows from Theorem 1, (3.3) and (3.9).

Remark 2. It is clear from the proof that if [ Y ′, α′, Y ][ Y ′, α′, α′′ ] < 0 on I, then
there exists a unique affine maximal surface ψ containing the curve α(I) and such that
its Blaschke normal along α is −Y .

Corollary 3.3. Let α, Y : I → R3 be two regular analytic curves satisfying

[ Y, α′, α′′ ] 6= 0, Y ′ × α′ = 0, on I. (3.10)

Then, for a given positive analytic function λ : I → R+, there exists a unique affine
maximal surface ψ containing the curve α(I), such that its Blaschke normal along α is
Y and g(α′, α′) = λ.

Moreover, the immersion ψ can be written as (3.4) in a simply-connected neighbor-
hood Ω of I in C, where now Φ is given as

Φ(z) =
(−αzz + λY )× αz

2[ αz, αzz, Y ]
+

i

2

∫ z

s0

Y × αζdζ, z ∈ Ω, s0 ∈ I,

Y (z), α(z) and λ(z) being holomorphic extensions of Y , α and λ, respectively.

Proof. From (3.1) and the condition (3.10), we can prove that there is a unique U ,

U =
(−α′′ + λY )× α′

[ α′, α′′, Y ]
, (3.11)

such that the pair {Y, U} is an analytic equiaffine normalization of α. Then the result
is an easy consequence of Theorem 1, (3.3) and (3.11).
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Using Proposition 3.1 in [ACG] and the above Corollary, it follows:

Corollary 3.4. If the Blaschke normal ξ of a connected affine maximal surface ψ : Σ→
R3 is constant along an analytic curve β : I → Σ and [ ξ ◦ β, (ψ ◦ β)′, (ψ ◦ β)′′ ] 6= 0 in
some point, then ξ is constant, that is, ψ is an improper affine sphere.

Remark 3. Let α, Y : I → R3 be two regular analytic curves. From (3.1):

1. If Y ′×α′ 6= 0 on I, then there exists an affine maximal surface ψ containing α(I),
with Blaschke normal Y (resp. −Y ) along α if, and only if, [ Y ′, α′, Y ][ Y ′, α′, α′′ ] >
0 (resp. [ Y ′, α′, Y ][ Y ′, α′, α′′ ] < 0).

2. If Y ′×α′ = 0, [ Y, α′, α′′ ] = 0 and there is an affine maximal surface ψ containing
α(I) such that the Blaschke normal along α is Y , then

α′′ = να′ + λY

for ν, λ analytic functions, λ > 0, and there exist infinitely many affine maximal
surfaces containing α(I), with Y as Blaschke normal along α. In fact, a pair
{Y, U} is an analytic equiaffine normalization of α if, and only if, the pair {Y, U+
µY ×α′} is also an analytic equiaffine normalization of α, for any analytic function
µ.

4 Applications

Next, we will apply the affine Björling-type representation given in Section 3 via the
formulas (3.3) and (3.4) in order to obtain the solution of the corresponding Cauchy
problem, some symmetry properties, affine maximal surfaces containing a prescribed
geodesic and affine maximal surfaces which are invariants under a one parametric group
of equiaffine transformations.

4.1 The Cauchy problem

Consider ψ : Ω −→ R3 the graph of a locally strictly convex function φ(x, y), (x, y)
in a planar simply-connected domain Ω. The Euler-Lagrange equation for the affine
area functional

A(φ) =

∫ (
det
(
∇2φ

))1/4
dxdy =

∫
K1/4
e dAe,

is the following fourth order non-linear equation

φyyωxx − 2φxyωxy + φxxωyy = 0, ω =
(
det
(
∇2φ

))−3/4
.
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In this situation one can check that the Berwald-Blaschke metric, the Blaschke normal
and the affine conormal field of ψ are given by

gφ = 3
√
ω
(
φxx dx

2 + 2φxy dx dy + φyy dy
2
)
,

ξ =

(
ϕy,−ϕx,

1
3
√
ω
− φyϕx + φxϕy

)
, (4.1)

N = 3
√
ω (−φx,−φy, 1) ,

where

ϕx =
1

3
(φxyωx − φxxωy) , ϕy =

1

3
(φyyωx − φxyωy) .

Using the above expression and Theorem 3.1 we can solve the Cauchy problem for
the equation of an affine maximal surface

φyyωxx − 2φxyωxy + φxxωyy = 0, ω = (det (∇2φ))
−3/4

φ(x, 0) = a(x),
φy(x, 0) = b(x),
φyy(x, 0) = c(x), c(x)a′′(x)− b′(x)2 > 0
φyyy(x, 0) = d(x),

(4.2)

where a, b, c, d are analytic functions defined on an interval I, and φ is defined on a
simply-connected planar domain Ω containing I×{0}. We are assuming that c(x)a′′(x)−
b′(x)2 > 0 because det (∇2φ) must be positive. In particular, changing the orientation
if necessary, we can also assume that a′′(x) > 0 on I.

From (4.1) and Theorem 3.1 it follows easily the following

Theorem 4.1. There exists a unique solution φ(x, y) to the Cauchy Problem (4.2) such
that

(x, y, φ(x, y)) = (s0, 0, a(s0)) + 2 Re

∫ z

s0

i
(
Φ + Φ

)
× Φζ dζ, z = s+ i t,

where Φ is the holomorphic extension of the analytic curve

Φ(s) =
1

2

(
U(s) + i

∫ s

s0

Y (u)× A(u) du

)
,

being

U(s) =
(
c(s)a′′(s)− b′(s)2

)−1/4
(−a′(s),−b(s), 1),

A(s) = (1, 0, a′(s)),

Y (s) =
1

4

(
c(s)a′′(s)− b′(s)2

)−7/4 (
b′(da′′ + 3cb′′)− 2b′2c′ − c(c′a′′ + ca′′′),

b′(3c′a′′ + ca′′′)− 2b′2b′′ − a′′(da′′ + cb′′),

+4b′4 − 2b′2(a′c′ + 4ca′′ + bb′′)− a′′((−4c2 + bd)a′′ + bcb′′)

− ca′(c′a′′ + ca′′′) + b′ (a′(da′′ + 3cb′′) + b(3c′a′′ + ca′′′))) .
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4.2 Symmetry and geodesics

Consider T : R3 → R3 the equiaffine transformation given by

T (v) = Av + b, v ∈ R3

where A ∈ SL(3,R) is a 3 × 3 matrix with determinant 1, and b ∈ R3 is a fixed
vector. Given an analytic equiaffine normalization {Y, U} of an analytic regular curve
α : I → R3, we will say that T is a symmetry of the equiaffine normalization if there
exists an analytic diffeomorphism Γ : I → I such that α ◦ Γ = T ◦ α, Y ◦ Γ = AY and
U ◦ Γ = (At)−1U .

The following result is a generalization of Theorem 4.2 in [ACMi] and it can be
proved analogously to the corresponding ones in [GMi2]:

Theorem 4.2. (Generalized symmetry principle). Any symmetry of an analytic equiaffine
normalization induces a global symmetry of the affine maximal surface generated by the
equiaffine normalization.

The results in Section 3 let us also characterize when curves in R3 can be geodesics
or pre-geodesics of affine maximal surfaces. Indeed, we have

Theorem 4.3. Let Σ be a Riemann surface and ψ : Σ→ R3 an affine maximal surface
with Blaschke normal ξ and affine conormal N . If β : I → Σ is a regular analytic curve
from an interval I, α = ψ ◦ β, Y = ξ ◦ β and U = N ◦ β, then α is a pre-geodesic for
the Blaschke metric if and only if

[α′, α′′, Y ] + [U,U ′, U ′′] = 0 on I. (4.3)

Proof. As we have seen in Theorem 3.1, there exists a conformal parameter z = s + i t
for the Berwald-Blaschke metric g, defined in a neighbourhood containing I, and such
that ψ(s, 0) = α(s).

It is well-known that α is a pregeodesic if, and only if, ∇α′(s)α
′(s) is proporcional to

α′(s), where ∇ is the Levi-Civita connection of g, or equivalently,

0 = g

(
∇ ∂

∂s

∂

∂s
,
∂

∂t

)
=

1

2

∂

∂t
g

(
∂

∂s
,
∂

∂s

)
= − ∂

∂t
g

(
∂

∂z
,
∂

∂z

)
along α(s). That is, the imaginary part of

∂

∂z
g

(
∂

∂z
,
∂

∂z

)
vanishes identically for all z = s ∈ I. But, from (2.5) and (2.6),

∂

∂z
g

(
∂

∂z
,
∂

∂z

)
= i [N,Nzz, Nz] =

i

4
[U,U ′′ + i(Y ′ × α′ + Y × α′′), U ′ − iY × α′]

= −1

4
([U,U ′′, Y × α′] + [U, Y ′ × α′ + Y × α′′, U ′])

− i

4
([α′, α′′, Y ] + [U,U ′, U ′′])
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along α, where we are using (3.2) and taking U(s) = N(s, 0). Then, the result is
clear.

As a consequence we have

Corollary 4.4. Let I be an interval and α : I → R3 be a regular analytic curve. Then
α is the geodesic of some affine maximal surface if and only if there exists an equiaffine
normalization {Y, U} of α satisfying (4.3) and 〈α′′, U〉 = c for a positive constant c.

Planar geodesics or pre-geodesics: Let us take a planar analytic curve α(s) whose
curvature k(s) does not vanish at any point. Let us call Π the plane where α is contained.
If we choose {Y, U} an analytic equiaffine normalization of α such that both Y and U
are also contained in Π, then the condition (4.3) is fulfilled trivially and so α is a pre-
geodesic (geodesic if 〈α′′, U〉 is a positive constant) of the corresponding affine maximal
surface given in Theorem 3.1 which, by Theorem 4.2, will have Π as a plane of symmetry.
Observe that it is always possible to choose a such equiaffine normalization of α. For
instance we can take Y = U = n, where n(s) is the unit normal vector field of α(s). In
this case, α(s) is a geodesic as long as α has constant curvature k0 = 〈α′′, U〉.

Thus we have

Corollary 4.5. Every planar analytic curve whose curvature does not vanish at any
point is pre-geodesic of an affine maximal surface which has the plane containing the
curve as a symmetry plane.

Remark 4. The curve α(s) = (cos(s), sin(s), 0) cannot be the geodesic of an improper
affine sphere (see [ACG]). However, α is geodesic of a large family of affine maxi-
mal surfaces. In fact, from (3.1) one deduces that if {Y, U} is an analytic equiaffine
normalization of α, then

U = (−c cos(s),−c sin(s), µ(s)) (4.4)

for some regular analytic function µ and a positive constant c. Thus, if Y = (Y1, Y2, Y3)
then from (4.3) it follows that

Y3 = −det(U,U ′, U ′′) = −c2(µ+ µ′′)

and using again (3.1) we conclude that

Y =
1

c
(cos(s)(µY3 − 1)− sin(s)µ′Y3, cos(s)µ′Y3 + sin(s)(µY3 − 1), cY3). (4.5)

The expressions (4.4) and (4.5) give a wide family of analytic equiaffine normalizations
of α such that the corresponding affine maximal surfaces which they generate have α as
a geodesic.

Non planar geodesics or pregeodesics: Now, let us take an analytic curve α(s)
whose curvature k(s) and torsion τ(s) do not vanish at any point. If we take Y (s) as
the unit normal vector field n(s) of α(s), we have that

[Y ′, α′, Y ] = −τ 6= 0 and [Y ′, α′, α′′] = −kτ 6= 0
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and so (3.8) is satisfied. Then there exists a unique affine maximal surface containing
the curve α(s) such that its Blaschke normal along α is Y , and the affine conormal is

U =
Y ′ × α′

[Y ′, α′, Y ]
= n.

It is easy to check that (4.3) is satisfied if and only if k/τ is constant, that is, if α is a
helix.

In particular

Corollary 4.6. Every analytic helix is pre-geodesic of an affine maximal surface.

4.3 Helicoidal Affine Maximal Surfaces

Here we shall show how to obtain the affine maximal surfaces which are invariant
under a one-parametric group of equiaffine transformations.

We are going to identify the group A of equiaffine transformation of R3 with a
subgroup of matrices of SL(4,R) in the following way: T (v) = Av + b will be identified

to the matrix

(
A b
0 1

)
∈ SL(4,R). Under this identification,

A =

{(
A b
0 1

)
: A ∈ SL(3,R), b ∈ R3

}
and its Lie algebra a is given by

a =

{(
C d
0 0

)
: Trace C = 0, d ∈ R3

}
.

Since the one-parameter groups of equiaffine transformations are obtained as exp (sG),
s ∈ R, G ∈ a, the Jordan matrix decomposition Theory let us obtain the following
result:

Proposition 4.7. Up to a conjugation in A, the one-parametric groups of equiaffine
transformations can be identified to the following subgroups of SL(4,R):

12



G1,a =


1 as as2

2
as3

6

0 1 s s2

2

0 0 1 s
0 0 0 1

 G2,a =


cos(s) sin(s) 0 0
− sin(s) cos(s) 0 0

0 0 1 as
0 0 0 1



G3,a =


es 0 0 0
0 e−s 0 0
0 0 1 as
0 0 0 1

 G4,a =


1 as 0 0
0 1 0 0
0 0 1 s
0 0 0 1



G5,a =


eas eass 0 0
0 eas 0 0
0 0 e−2as 0
0 0 0 1

 G6,a =


eas 0 0 0
0 es 0 0
0 0 e−as−s 0
0 0 0 1



G7,a =


eas cos(s) eas sin(s) 0 0
−eas sin(s) eas cos(s) 0 0

0 0 e−2as 0
0 0 0 1


where a ∈ R.

Let Ts =

(
As bs
0 1

)
, s ∈ R, be a one-parametric subgroup of A, which can be seen

as an affine transformation in R3 as

Ts(v) = Asv + bs,

where As ∈ SL(3,R) and bs ∈ R3.
From Theorem 3.1 and Theorem 4.2, we know that an affine maximal surface in-

variant under Ts, s ∈ R, is locally given as the surface generated by the following
{Ts}-symmetric analytic equiaffine normalization {Y, U}, along the orbit αp(s) = Ts(p)
of a fixed point p, where Y (s) = AsYp, U(s) = (Ats)

−1Up and Yp, Up ∈ R3 satisfy the
necessary conditions for (3.1) holds. It is remarkable that in this situation the Berwald-
Blaschke metric must be constant along αp.

From this fact, the local classification of helicoidal affine maximal surfaces, that is,
affine maximal surfaces which are invariant under a one-parametric group of equiaffine
transformations, comes from applying Theorem 3.1 to the study of the orbits of a point p
under the groups described in Proposition 4.7 and the corresponding symmetric analytic
equiaffine normalization. As the process involves straightforward computations, we are
going to apply our representation to classify the affine maximal surfaces invariant under
the two first groups in Proposition 4.7. The total classification can be done analogously.
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• G1,a-Invariant affine maximal surfaces:

In this case the orbit of a point p = (p1, p2, p3) is given by

αp(s) =

(
p1 + p2as+ p3a

s2

2
+ a

s3

6
, p2 + p3s+

s2

2
, p3 + s

)
and the Blaschke normal along αp can be written as

Yp(s) =

(
y1 + y2as+ y3a

s2

2
, y2 + y3s, y3

)
.

Thus, up to a change of parameter, it is clear from this expression that we can assume
either y2 = 0 or y3 = 0.

Case I: y2 = 0 6= y3. In this case Y ′p × α′p 6= 0 on R and from Remark 3, there exists
the corresponding affine maximal surface if and only if

[Y ′p , α
′
p, Yp][Y

′
p , α

′
p, α

′′
p] = ap3y

2
3(y1 − ap2y3) > 0.

Under this assumption one can obtain from Corollary 3.2 and (3.4) that

Up(s) =
1

y4

(
−1, as, ap2 −

as2

2

)
,

and the corresponding helicoidal affine maximal surface is given, up to a translation, by

ψ(s, t) =

(
p2as+ p3a

s2 + t2

2
+ a

s3

6
− ast

2

2
+

1

30
a2p2

3y
2
3(t5 + 5s2t3 + 10p2t

3)

+
a2

6y2
4

(t3 + 3s2t+ 6p2t) +
a2p3y3

6y4

(−t4 + 3s2t2 − 6p2t
2) +

1

3
ap3y3y4t

3(s− p3)

+
1

3
t3y2

4 , p3s+
1

2
(s2 − t2) +

1

3
p3y3t

3(ap3y3s+ y4) +
ast

y2
4

(1− y4p3y3t) ,

s+
a(−1 + p3ty3y4)

3

3p3y3y3
4

)
,

where y4 = −y1 + ap2y3. From (2.2), the Berwald-Blaschke metric in this case is given
by

g = P1[t]
(
ds2 + dt2

)
,

where

P1[t] = −ap3

y4

+

(
ap2

3y3 − y4 −
a2

y3
4

)
t+

(
2a2p3y3

y2
4

)
t2

−
(

4a2p2
3y

2
3

3y4

)
t3 +

(
a2p3

3y
3
3

3

)
t4.
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Figure 1: helicoidal affine maximal surface G1,a-invariant.

Thus, g degenerates along βt1(s) = (s, t1), for any root t1 of P1[t].
The Figure 1, gives a representation of ψ when p1 = 0, p2 = 0, p3 = 1, y1 = 1, y3 =

1, and a = 1.

Case II: y3 = 0. In this case, Yp = (y1 + asy2, y2, 0). We distinguish two subcases:
If a = 0 (or y2 = 0), Yp is constant along αp and from (3.1) we can write, up to a

translation,

αp(s) =

(
0, p2 −

us

λ
+
s2

2
,−u

λ
+ s

)
,

Yp(s) =

(
y,

1− yu1

λ
, 0

)
,

Up(s) = (u1, λ,−sλ+ u)

and then, from (3.3) and (3.4), the corresponding G1,a-invariant affine maximal surface
is given by

ψ(s, t) =

(
λ2t+ λt2y +

t3y2

3

s2 + t2

2
− λtu1 −

su

λ
+
t3y

3λ
− t2u1y −

t3u1y
2

3λ
, s

)
.

In this case the Berwald-Blaschke metric is given by

g = (λ+ ty)(ds2 + dt2)

and all the surfaces are G1,0-invariant improper affine spheres (see Figure 2 )
If a 6= 0, then

Y ′p × α′p 6= 0

on R and again, from Remark 3, the corresponding affine maximal surface exists if and
only if

[Y ′p , α
′
p, Yp][Y

′
p , α

′
p, α

′′
p] = a2y3

2 > 0.
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Figure 2: G1,0-invariant improper affine sphere

So, a 6= 0, y2 > 0 and from Corollary 3.2 and (3.4),

Up(s) =
1

y2

(0, 1,−p3 − s) ,

and up to a translation, the helicoidal affine maximal surface is given by

ψ(s, t) =

(
p2as+ p3a

s2 − t2

2
+ a

s3

6
+ as

t2

2
+

t

y2
2

+
t2y1

y2

+
1

30
a2t5y2

2

+
t3

6
(2y2

1 − 2ap3y1y2 + 2asy1y2 + 2a2p2y
2
2 + a2s2y2

2) ,

p3s+
s2 + t2

2
+
t3

3
(y1y2 + asy2

2) s+
at3

3
y2

2

)
.

In this case the Berwald-Blaschke metric is given by

g = P2[t]
(
ds2 + dt2

)
,

where

P2[t] =
1

y2

+ (y1 − ap3y2) t−
(

1

3
a2y3

2

)
t4.

Thus, g degenerates along the curves βt2(s) = (s, t2), for any root t2 of P2[t].
The Figure 3, gives a representation of ψ when p1 = p2 = p3 = y1 = 0, a = y2 = 1.

• G2,a-invariant affine maximal surfaces.
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Figure 3: helicoidal affine maximal surface G1,a-invariant.

For this one-parametric group the orbit of a point p = (p1, p2, p3) is given by

αp(s) = (p1 cos(s) + p2 sin(s),−p1 sin(s) + p2 cos(s), p3 + as) ,

and every G2,a-symmetric analytic equiaffine normalization {Yp, Up} along αp can be
written as

Yp(s) = (y1 cos(s) + y2 sin(s),−y1 sin(s) + y2 cos(s), y3) ,

Up(s) = (u1 cos(s) + u2 sin(s),−u1 sin(s) + u2 cos(s), u3) .

Up to a change of parameter if necessary, it is clear from these expressions that we can
assume without loss of generality, that y2 = 0. Thus from (3.1),

y1u1 + y3u3 = 1, p2u1 − p1u2 = −au3,
p1u1 + p2u2 = −λ, u2y1 = 0.

(4.6)

After applying the equiaffine transformation

T =


u1√
u2
1+u2

2

u2√
u2
1+u2

2

0 0

−u2√
u2
1+u2

2

u1√
u2
1+u2

2

0 0

0 0 1 −p3

0 0 0 1


and using (4.6), one has,

αp(s) =

(
−λ
u

cos(s),
λ

u
sin(s), as

)
,

Yp(s) =

(
1− u3y3

u
cos(s),−1− u3y3

u
sin(s), y3

)
,

Up(s) = (u cos(s),−u sin(s), u3) ,
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Figure 4: Rotational affine maximal surfaces.

Figure 5: Rotational improper affine spheres.

where u =
√
u2

1 + u2
2 and au3 = 0.

If a = 0 we obtain the Rotational affine maximal surfaces and, from Theorem
3.1, they can be described up to an equiaffine transformation as

ψ(s, t) = (R(t) cos(s), R(t) sin(s),

1

4u2

(
2tu4 − 2λ2ty2

3 + 2λu2y3 cosh(2t) +
(
u4 + λ2y2

3

)
sinh(2t)

))
,

where

R(t) =
1

u3

(
cosh(t)

(
λ
(
u2 + λty3 (−1 + u3y3)

)))
+ sinh(t)

(
u3u

4 + λtu2 (−1 + u3y3) + λ2
(
y3 − u3y

2
3

))
.

In this case the Berwald-Blaschke metric is given by g = E(t)(ds2 + dt2), where

E(t) =
1

2u4

(
λu2

(
u2 + λty3 (−1 + u3y3)

)
cosh(t)2

+
(
u3u

6 + λ2u2y3 (2− u3y3) + λtu4 (−1 + u3y3) + λ3ty2
3 (−1 + u3y3)

)
cosh(t) sinh(t)

+λy3

(
u3u

4 + λ2y3 (1− u3y3) + λtu2 (−1 + u3y3)
)

sinh(t)2
)
.
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Figure 6: Non rotational G2,a-invariant affine maximal surfaces

A straightforward computation let us see that E(t) vanishes at most for two values
t1, t2 ∈ R, and consequently, the Berwald-Blaschcke metric degenerates along βi(s) =
(s, ti), i = 1, 2 (see Figures 4 and 5).

When u3 = 0 and a 6= 0 we obtain G2,a-invariant affine maximal surfaces which
are not rotational (see Figure 6). In this case, again from Theorem 3.1, the immersion
ψ = (ψ1, ψ2, ψ3) is given up to an equiaffine transformation by

ψ1(s, t) =
λ

u3

(
cosh(t)

((
−u2 + λty3

)
cos(s) + at sin(s)

)
+ sinh(t)

((
tu2 − λy3

)
cos(s)− aλ sin(s)

)
,

ψ2(s, t) =
λ

u3

(
cosh(t)

((
u2 − λty3

)
sin(s) + at cos(s)

)
+ sinh(t)

((
−tu2 + λy3

)
sin(s)− aλ cos(s)

)
,

ψ3(s, t) =
1

4u2

(
−2a2t+ 4asu2 + 2tu4 − 2λ2ty2

3 + 2λu2y3 cosh(2t)

+
(
a2 + u4 + λ2y2

3

)
sinh(2t)

)
.

5 A class of affine maximal surfaces with singulari-

ties

Helicoidal examples show the existence of an important amount of affine maximal
surfaces glued by analytic curves where the affine metric is degenerated but the affine
normal and the affine conormal are well defined.
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In other words, they can be represented as in (3.4), where Φ is a well-defined holo-
morphic regular curve on the Riemann surface Σ such that [Φ + Φ,Φz,Φz]|dz|2 vanishes
only on some analytic curves.

When a map ψ : Σ −→ R3 admits a representation as in (3.4) for a certain holo-
morphic curve Φ which satisfies that [Φ + Φ,Φz,Φz]|dz|2 does not vanish identically,
we say that ψ is an affine maximal map. A deeper study of this class of surfaces with
singularities can be found in [AMaM2]. Their study may be motivated by the following
two results:

Theorem 5.1. Let I be an interval and α : I −→ R3 a regular analytic curve with non-
vanishing torsion. Then, for any non-vanishing regular analytic function h : I −→ R
there exists a unique affine maximal map ψh containing α(I) in its set of singularities.

Proof. Assume that ψ : Σ→ R3 is an affine maximal map which can be represented as
in (3.4) for some holomorphic curve Φ : Σ −→ C3, with α(I) in its singular set.

From (3.5) and (3.7) the affine conormal N = Φ + Φ of ψ does not vanish along α.
We shall denote by U and Y the affine conormal field and Blaschke normal along α,
respectively. As in Theorem 3.1, we can take a conformal parameter z := s + i t, with
s ∈ I.

As α is a curve of singularities, from (3.1) we have that

0 = −〈α′, U ′〉 = 〈α′′, U〉. (5.1)

Since the torsion of α does not vanish, [α′, α′′, α′′′] 6= 0 on I. From (3.1), (5.1) and
(2.3) we have that

N(s, 0) = U(s) = h(s)α′(s)× α′′(s),
Nt(s, 0) = −Y (s)× α′(s),

where h(s) is a non-vanishing regular analytic function, and so

Ns(s, 0)×Nt(s, 0) = 0. (5.2)

Since the affine normal ξ of ψ satisfies that 〈N, ξ〉 = 1, we get

Y (s) = ξ(s, 0) =
Ns ×Nt

[Ns, Nt, N ]
(s, 0) =

0

0
.

By applying L’Hopital Theorem, and taking into account that Nst = Nts and Ntt = −Nss

(because N is harmonic), we have

ξ(s, 0) =
Nts ×Nt −Ns ×Nss

[Nts, Nt, N ]− [Ns, Nss, N ]
(s, 0). (5.3)

On the other hand, from (5.2) we can write Nt(s, 0) = m(s)Ns(s, 0) for a differentiable
function m(s). Hence

Nts(s, 0) = m′(s)Ns(s, 0) +m(s)Nss(s, 0)
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and so (5.3) becomes

Y (s) = ξ(s, 0) =
Nss ×Ns

[Nss, Ns, N ]
(s, 0)

which gives an analytic curve, because

[Nss, Ns, N ](s, 0) = h(s)3[α′, α′′, α′′′]2(s) 6= 0.

As in the proof of Theorem 3.1 the Identity Principle shows that, on a neighborhood
Ω ⊆ Σ, Nz is given as in (3.2) and the immersion can be recovered from (2.7) in terms
of the holomorphic extensions of the analytic curves U , Y and α, which proves the
uniqueness and the existence.

Theorem 5.2. Let I be an interval and α : I −→ R3 a planar regular analytic curve.
Then, for any regular analytic function h : I −→ R there exists a unique affine maximal
map ψh containing α(I) in its set of singularities.

Proof. Assume that ψ : Ω̃ ⊆ C → R3 is an affine maximal surface containing α(I) as
a curve of singularities, with U and Y their affine conormal field and Blaschke normal
along α. Again, we can take a conformal parameter z := s+ i t, with s ∈ I.

Since α(s) is planar, we can assume without loss of generality that α(s) = (f(s), g(s), 0).
Then, from (3.1) we can take

U(s) = (0, 0, 1), Y (s) = (Y1, Y2, 1).

Consequently

Nt(s, 0) = −Y (s)× α′(s) = (g′(s),−f ′(s), h(s)), h(s) = (f ′Y2 − g′Y1)(s),

where N is the affine conormal field of ψ.
Now, by applying L’Hopital we get

ξ(s, 0) =

(
f ′h′ − f ′′h
g′f ′′ − g′′f ′

,
g′h′ − g′′h
g′f ′′ − g′′f ′

, 1

)
(s)

and reasoning as in Theorem 5.1 we finish the proof.
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