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Abstract

The aim of this paper is to give a classification of the solutions φ = φ(x, y)
of the fourth order nonlinear equation φyyρxx − 2φxyρxy + φxxρyy = 0, ρ =(
det

(∇2φ
))−3/4 in a punctured domain which are C2 at the singularity. We

prove that this kind of solutions either have a removable singularity or they are
asymptotic to rotationally symmetric solutions near the singularity. A geometric
description of solutions which are not C1 at the singularity is also given.

1 Introduction

In this work we apply methods suggested by Differential Geometry and Complex
Analysis to study isolated singularities of strictly convex solutions of the following fourth
order nonlinear equation

L[φ] := φyyρxx − 2φxyρxy + φxxρyy = 0, ρ =
(
det

(∇2φ
))−3/4

, (1.1)

1Research partially supported by Ministerio de Educación y Ciencia Grant No. MTM2004-02746
and Junta de Andalućıa Grant No. FQM325
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in a planar domain, where ∇2φ > 0 is the Hessian matrix of φ.
The equation (1.1) is the Euler-Lagrange equation of the affine area functional

A(φ) =

∫ (
det

(∇2φ
))1/4

dxdy =

∫
K1/4dσ, (1.2)

where K is the Euclidean Gauss curvature of the graph of φ and dσ its volume element.
The study of (1.1) may help to understand well-known functionals involving cur-

vatures of a hypersurface whose Euler-Lagrange equation is also a fourth order partial
differential equation, such as the Willmore’s functional ([GLW],[Si]) and the Calabi’s
functional ([Ca3], [Ch], [WZ]).

The equation (1.1) has been widely studied from a global point of view. For instance,
Trudinger and Wang [TW1] proved that entire convex solution of (1.1) are quadratic
polynomials. This result has solved the so called Affine Bernstein Problem conjectured
by Chern [Che] in 1978 and has motivated its extension to more general classes of fourth
order elliptic equations, [LJ], [TW2]. It generalizes a celebrate result by Jörgens [Jo1]
which states that all the solutions of the classical Monge-Ampère equation

det(∇2φ) := φxxφyy − φ2
xy = 1, (1.3)

globally defined on R2, are quadratic polynomials (see also [Ca1]).
The aim of this paper is to investigate the behavior of solutions of (1.1) around

isolated singularities. To be more precise, we shall consider the following problem:

L[φ] = 0, in a punctured domain U? = U \ {(0, 0)}, (1.4)

where U ⊆ R2 ia a planar domain containing the origin.
To the best of our knowledge, no results are known for (1.4) apart from those sat-

isfying det(∇2φ) = const > 0 which are trivially solutions of that equation. In this
sense Jörgens [Jo2] studied the equation (1.3) proving the removability of isolated sin-
gularities under the additional assumption that one of the first derivatives φx or φy (or
some directional derivative) has a continuous extension to the singular point. Recent
advances in the understanding and classification of isolated singularities of (1.3) can be
found in [GMMir] and [ACG].

Jörgens’ result has been extended to the following general equation

Aφxx + 2Bφxy + Cφyy + φxxφyy − φ2
xy = E

where the coefficients A, B, C and E are regular enough and the uniform ellipticity
condition

AC −B2 + E ≥ const > 0

is satisfied (see [Be1], [Be2], [HB], [SW] and references therein).
Some results about isolated singularities for fully nonlinear elliptic equations (see

[Be2], [La]) allow us to have a certain control of some locally strictly convex functions
in U? near the singularity. But the classification of non removable singularities for this
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kind of equations is nowadays an open problem only solved for some particular equations
(see [ACG], [GM], [GMMir]) which, as the Equation (1.3), can be solved in terms of
holomorphic data (see , [FMM1] and [FMM2] for more details).

Bearing in mind the results on isolated singularities of elliptic partial differential
equations of second order, one may conjecture that for a fourth order partial differential
equation as (1.4) the singularity may be removed if the solution is C3 at the origin.
However, it is natural to ask for the existence of solutions of (1.4) with a non removable
singularity which are C2 at the origin.

The main objective of this work is to give a classification of non removable isolated
singularities of (1.4) which are C2 at the singularity. In particular, we shall prove that
the singularity can be removed if the solution is C3 at the singular point. We also give
general representation’s formulas for solutions of (1.4) whose first partial derivatives not
extend continuously to the singularity. To do that, we follow the Jörgens’ approach of
introducing conformal parameters with respect to the Blaschke metric.

The paper is organized as follows. In Section 2, we introduce the notation and
recall basic facts about affine surfaces that allow to solve (1.1) by meromorphic data.
Section 3 is devoted to analyze in detail the behavior of a large family of solutions of
(1.4) that we will call canonical examples, which are C2 at the origin but such that
the singularity is not removable. Indeed, we will se that all of them are asymptotic
to rotational symmetric solutions near the singularity. In Section 4 we prove that the
canonical examples are precisely, up to equiaffine transformations, the only solutions to
(1.4) which are C2 at the origin and have a non removable singularity. Finally, in Section
5 we give a geometrical construction procedure for solutions of (1.4) which are not C1

at the singular point.

2 Notation and Basic Facts

Let φ ∈ C4(Ω) be a locally strongly convex function in a planar domain Ω. We
can assume without loss of generality that ∇2φ is a positive definite matrix. Then, the
Berwald-Blaschke metric

g =
1

(det (∇2φ))4

(
φxxdx2 + 2φxydxdy + φyydy2

)

induces on Ω a Riemann surface structure that we shall call the underlying conformal
structure of φ.

With respect to this conformal structure, the affine conormal vector field of the graph
of φ,

N = (N1, N2, N3) =
1

(det (∇2φ))4 (−φx,−φy, 1) , (2.1)

is harmonic if and only if φ is a solution of (1.1).
On the other hand, let D be a simply connected planar domain and N(u, v) a vector
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field, (u, v) ∈ D, satisfying

0 = Nuu + Nvv in D,
0 < [N, Nu, Nv] in D,

}
(2.2)

where by [A,B, C] we denote the determinant of the vectors {A,B, C}. Then, there
exists, up to a translation, a unique locally strongly convex affine maximal immersion
ψ : D −→ R3 having N as its affine conormal vector field. The terminology maximal
comes from the fact ψ is a maximum of the affine area functional (1.2) (see [Ca2]).

The immersion ψ can be recovered from N in the following way,

ψ =

∫
N ×Nvdu−N ×Nudv, (2.3)

where × denotes the usual cross product in R3. We remark that if N3 > 0, then ψ is
locally a vertical graph of a convex solution φ of the equation (1.1), and

g = [N,Nu, Nv](du2 + dv2) (2.4)

is its Berwald-Blaschke metric (see [Ca2], [GMMil] and Section 4.2 in [LSZ] for more
details).

When det (∇2φ) = const > 0, the immersion ψ is called improper affine sphere. In
this case the affine normal of the immersion, given by

ξ =
1

2
∆gψ, (2.5)

becomes constant, where by ∆g we denote the Laplace-Beltrami operator with respect
to the metric g.

From now on, we will denote by U a planar domain containing the origin. If φ
is a locally strongly convex solution of (1.4), we have that φ has a bounded gradient
∇φ = (φx, φy) at least in a neighborhood of the origin (see [Be2]) and then, φ has
a continuous extension to U that we will also denote by φ. Thus, the convex graph
ψ(x, y) = (x, y, φ(x, y)) on U? extends continuously to (0, 0) and, up to a suitable trans-
lation, we can assume that ψ(0, 0) = (0, 0, 0).

Let us consider the Legendre transform Lψ of ψ = (ψ1, ψ2, ψ3), (see [LSZ] pp. 89),

Lψ = (Lψ
1 , Lψ

2 , Lψ
3 ) = −

(
N1

N3

,
N2

N3

, ψ1
N1

N3

+ ψ2
N2

N3

+ ψ3

)

= (φx, φy, xφx + yφy − φ) . (2.6)

It is not difficult to check that Lψ is also a locally strongly convex immersion with
Euclidean normal

nL =
1√

1 + ψ2
1 + ψ2

2

(−ψ1,−ψ2, 1) =
1√

1 + x2 + y2
(−x,−y, 1). (2.7)
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Since the limit of Lψ
3 when (x, y) tends to (0, 0) is 0, then (Lψ

1 , Lψ
2 ) tends to a curve

Γ which is limit of the convex sections Lψ
3 = ε when ε tends to 0.

From the convexity of ψ, Lψ(U?) can be parametrized as the graph of a convex
function φL on a domain V in the exterior of Γ, such that Γ is a boundary component
of the closure of V . It is clear from (2.6) and (2.7) that φL and its gradient ∇φL extend
continuously to Γ. Actually, φL ≡ 0 and ∇φL ≡ 0 on Γ.

3 Canonical Examples

We begin with a rotational example that may help us to understand the general
description of a large family of solutions which are C2 at the singularity.

Let D? = {(u, v) ∈ R2 | 0 < u2 +v2 < 1} be the punctured unit disk and a a positive
real number. Let us take the harmonic vector field Na : D? −→ R3 given by

Na(u, v) =
(
u, v,−a log

√
u2 + v2 − a

)
, (u, v) ∈ D?.

It is clear from the above expression that Na satisfies the first condition in (2.2) and
as [Na, Na

u , Na
v ] = −a log(

√
u2 + v2), the second condition also holds. Then, from (2.3),

it defines an affine maximal immersion

ψa : D̃?−→R3,

where D̃ is the conformal universal covering of D?. The immersion ψa is actually well
defined in D?. In fact, it is easy to see that

ψa(u, v) =

(
au log

√
u2 + v2, av log

√
u2 + v2,

u2 + v2

2

)
, (u, v) ∈ D?.

Consequently, ψa is a rotational embedding which extends continuously to the origin
(see Figure 1).

When N3 is positive, we have that ψa is a global graph of a function φa(x, y). Indeed,
if we consider polar coordinates u = R cos(t), v = R sin(t), then

φa(x, y) =
R2

2
, x = aR log(R) cos(t), y = aR log(R) sin(t),

for 0 < R < 1/e, 0 ≤ t < 2π, and φa is a solution of (1.1).
As −aR log(R) is a monotone function of ]0, 1/e[ into ]0, a/e[, if we denote by D?

ε =
{(u, v) ∈ R2 | 0 < u2 + v2 < ε2} the punctured disk of radius ε, we have that φa

is a regular rotational convex solution of (1.1) in D?
a/e which is C2 at the origin but

the singularity can not be removed. By construction, φa has the underlying conformal
structure of a punctured disk.

Now we can extend the above example by considering the large family N of harmonic
vector fields N = (N1, N2, N3) ∈ N which admit, in a punctured disk D?

ε , a series
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Figure 1: Rotational example with N = (u, v,−2− log(u2 + v2))

development of the form

N1(u, v) = N1(R cos(t), R sin(t)) = R cos(t) +
∑

m≥2 RmA1m(t),

N2(u, v) = N2(R cos(t), R sin(t)) = R sin(t) +
∑

m≥2 RmA2m(t),

N3(u, v) = N3(R cos(t), R sin(t)) = −a log(R) +
∑

m≥0 RmA3m(t),





(3.1)

where Ajm(t) = ajm cos(mt) + bjm sin(mt), ajm, bjm, a ∈ R, j = 1, 2, 3, a > 0, a30 6= 0,
0 < R < ε and 0 ≤ t < 2π. It is remarkable that N ∈ N if and only if N3 > 0 near the
origin and N1, N2 are harmonic functions in the whole disk Dε and asymptotic to the
linear harmonic functions u and v, respectively.

Indeed, we have the following existence result:

Theorem 1 For each N ∈ N with a series development as in (3.1) there exists a
neighborhood U of the origin in R2 and a solution φN of (1.4) such that it can be written
as

φN(x, y) =
R2

2
+ h3(R, t),

x = aR log(R) cos(t) + h1(R, t), (3.2)

y = aR log(R) sin(t) + h2(R, t),

for some regular functions hj in a small disk Dε(N), j = 1, 2, 3, satisfying

lim
R→0

h1

R
= lim

R→0

h2

R
= lim

R→0

h3

R2
= 0. (3.3)

Moreover, φN is regular in U?, C2 at the origin and has the underlying conformal struc-
ture of a punctured disk and the singularity can not be removed.
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Figure 2: Non-rotational example with N = (u, v,− log(u2 + v2) + u2 − v2)

Proof: From (3.1), we have that [N, Nu, Nv] = −a log(R) + o(u, v)) for some bounded
function o(u, v) in Dε. Thus, there exists ε′, 0 < ε′ < ε, such that N satisfies the
conditions in (2.2). From (2.3), we recover a locally convex affine maximal immersion

ψN : D̃?
ε′−→R3,

where D̃?
ε′ is the conformal universal covering of D?

ε′ . The immersion ψN is, in fact, well
defined in D?

ε′ and after a straightforward computation we obtain that it can be written
as

ψN(u, v) =

(
au log

(√
u2 + v2

)
, av log

(√
u2 + v2

)
,
u2 + v2

2

)

+ (h1(u, v), h2(u, v), h3(u, v)) ,

(u, v) ∈ D?
ε′ , where hj : Dε′−→R, j = 1, 2, 3, are regular functions satisfying (3.3).

Consequently, ψN is asymptotic to ψa at the origin (see Figure 2).
Now, a standard argument let us prove that there is a small punctured disk D?

ε(N)

where ψN is globally the graph of a function φN(x, y) which is written as in (3.2).
Using (3.2) and (3.3) it follows that there is a neighborhood U of (0, 0) in R2, such

that φN is a solution of (1.4) which is C2 at the origin. Moreover, by construction,
φN has the underlying conformal structure of a punctured disk and the origin is a non
removable singularity of φN .

2

Definition 2 We will call canonical examples to the ones described in Theorem 1.

4 Main Result

This Section is devoted to prove the following result:
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Theorem 3 Let φ be a solution of (1.4) which is C2 at the origin. If φ has a non
removable singularity at the origin, then the graph ψ of φ is, up to an equiaffine trans-
formation, the graph of one of the canonical examples.

To begin, we will discuss about solutions of (1.1) with the underlying conformal struc-
ture of the punctured disk D?. The following argument is also successful, by restricting
the corresponding functions to the unit disk, if the underlying conformal structure is
the one of C \ {(0, 0)}.

Let us take (u, v) conformal parameters in D? for the Berwald-Blaschke metric, which
can be written as in (2.4). Since the affine conormal N = (N1, N2, N3) of the graph ψ of
φ is a harmonic vector field in D?, there exist holomorphic functions F,G, H : D? −→ C
and real constants a, b and c such that

N1(z) = Re(F (z)) + b log |z|,
N2(z) = Re(G(z)) + c log |z|,
N3(z) = Re(H(z)) + a log |z|,

where z = u+i v. Since ψ is a vertical graph, N3 is a positive function in D? and then H
is holomorphic in the whole disk D (see [ABR] for more details). Consequently, bearing
in mind that neither N1/N3 nor N2/N3 go to infinity when z tends to 0 (see (2.6)), both
F and G have a removable singularity at z = 0 and therefore they are also holomorphic
functions in D. In addition:

- If a = 0, then b = c = 0 and

lim
z→0

(
N1

N3

,
N2

N3

)
=

(
F (0) + F (0)

H(0) + H(0)
,
G(0) + G(0)

H(0) + H(0)

)
.

- If a 6= 0, then

lim
z→0

(
N1

N3

,
N2

N3

)
=

(
b

a
,
c

a

)
.

In particular, whichever the case the unit Euclidean normal vector field is well-defined
at the origin. Thus, up to an equiaffine transformation we can assume that the unit
normal of the graph ψ at the origin is (0, 0, 1), that is, b = c = 0. Moreover, if a = 0
then F (0), G(0) ∈ iR.

Let us study separately the cases a = 0 and a 6= 0.

Lemma 4 If a = 0, then φ has a removable singularity at the origin.

Proof: If a = 0, then b = c = 0 and N is harmonic in the whole disk D. Furthermore,

N0 := N(0) = (0, 0, Re(H(0))) 6= (0, 0, 0),

because H +H is a positive harmonic function in D and so it cannot attain its minimum
at z = 0. We can assume that H(0) = 1; otherwise we would argue in a similar way.
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Let us take
ψ̃ = N? ×N0 + 〈N0, ψ〉N0,

where 〈 , 〉 denotes the usual metric in R3 and N? the harmonic conjugate of the affine

conormal N in D. As it can be seen in [GMMil], ψ̃ is an improper affine sphere with
affine normal N0 and Berwald-Blaschke metric

g̃ = 〈ξ,N0〉[N,Nu, Nv](du2 + dv2) = 〈ξ, N0〉g,

where ξ is the affine normal of ψ (see (2.5)). Since ψ̃ is the graph of a solution of (1.3)
with the underlying conformal structure of a puncture disk, it has a removable singularity
at the origin (see, for instance, [Jo2], [GMMir]). Consequently [N, Nu, Nv] > 0 in D, ψ
is regular in the whole disk D and φ has a removable singularity at the origin.

2

Lemma 5 If a 6= 0 then, up to equiaffine transformations, the affine conormal N of ψ
is in the family N .

Proof: Let us take polar coordinates (R, t) in D such that u = R cos t and v = R sin t.
Since F , G and H are holomorphic functions in D, near the origin we can write (see
[ABR])

N = (A1 0 +
∑
m≥p

RmA1m(t), A2 0 +
∑
m≥q

RmA2m(t), A3 0 +
∑

m≥k

RmA3m(t) + a log(R)),

where
Ajm(t) = ajm cos(mt) + bjm sin(mt), j = 1, 2, 3,

A1p 6= 0, A2q 6= 0, A3k 6= 0.

Observe that, up to equiaffine transformations, we can assume that one of the fol-
lowing cases happens:

- A2 0 = A3 0 = 0 (or, symmetrically, A1 0 = A3 0 = 0).

- A1 0 = A2 0 = 0, A3 0 6= 0.

Let us see that the first one is not possible. In what follows, we will denote by o(l),
l ∈ Z, l ≥ 0, a function depending on R and t which can be written as o(l) = Rlf(R, t)
for a certain function f(R, t) bounded in a neighborhood of the origin. It is easy to
check that, if A2 0 = A3 0 = 0, A1 0 6= 0, then

[N, Nu, Nv] =
1

R
[N,NR, Nt] = Rq−2(−aA1 0A

′
2q(t) + o(1))

and so the sign of [N, Nu, Nv] changes depending on the angle t, for R small enough.
But this is impossible because g is a metric in D? and so [N, Nu, Nv] ≥ 0 in D.

Hence, we can assume that A1 0 = A2 0 = 0, A3 0 6= 0. By putting

N =
(
RpA1p(t) + o(p + 1), RqA2q(t) + o(q + 1), A3 0 + RkA3k(t) + a log(R) + o(k + 1)

)

9



we get

[N, Nu, Nv] = Rp+q−2(−a log(R)(pA1p(t)A
′
2q(t)− qA2q(t)A

′
1p(t)) + o(0)).

Observe that if

pA1p(t)A
′
2q(t)− qA2q(t)A

′
1p(t) = pq ((a1pa2q + b1pb2q) sin((p− q)t)

+ (a1pb2q − b1pa2q) cos((p− q)t))

is not constant, then the sign of [N,Nu, Nv] changes depending on the angle t for R
small enough, which is not possible. Therefore, it must be p = q. Thus we can take, up
to an equiaffine transformation, a1p = 1 = b2p, b1p = 0 = a2p, and N becomes

N = (Rp cos(pt), Rp sin(pt), A3 0 + a log(R))

+

( ∑
m≥p+1

RmA1m(t),
∑

m≥q+1

RmA2m(t),
∑

m≥k

RmA3m(t)

)
. (4.1)

From (2.3), the graph ψ of φ satisfies ψu = N ×Nv and ψv = −N ×Nu, or, equivalently,
ψR = (1/R)N × Nt and ψt = −RN × NR. Hence, from (4.1) and after long but easy
computations, we obtain

ψR = (−apRp−1 log(R) cos(pt),−apRp−1 log(R) sin(pt), pR2p−1)

+(o(p− 1), o(p− 1), o(2p))

ψt = (apRp log(R) sin(pt),−apRp log(R) cos(pt), 0) + (o(p), o(p), o(2p + 1))

and so

ψ = (−aRp log(R) cos(pt),−aRp log(R) sin(pt), R2p/2)

+(o(p), o(p), o(2p + 1)). (4.2)

Using now that ψ(x, y) = (x, y, φ(x, y)) we get that

x + i y = −aRp log(R)ei pt + o(p).

Hence, x + i y moves around the origin p times (see Figure 3 for p = 2). Consequently,
since ψ is the graph of φ, it is embedded and so p = 1. The proof concludes from (3.1)
and (4.2)

2

Lemma 6 Let φ be a solution of (1.4) with a non removable singularity at the origin.
Then φ has the underlying conformal structure of either C \ {(0, 0)} or a punctured disk
if and only if

lim
(x,y)→(0,0)

det
(∇2φ

)
= 0. (4.3)
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Figure 3: Non-embedded example with N = (u2 − v2, uv, 2 + u + log(u2 + v2))

Proof: From Lemmas 4 and 5, if φ has the underlying conformal structure of either a
punctured disk or C \ {(0, 0)}, then the condition (4.3) holds.

Otherwise, if φ has the underlying conformal structure of an annulus, there exists
a holomorphic function H3 in ∆r0− = {z = u + i v : −r0 < Im(z) < 0} such that
N3 = Re(H3). Thus, if (4.3) holds, then 1/H3(z) goes to 0 when Im(z) tends to 0. But
this is not possible because 1/H3(z) is holomorphic.

2

Proof of Theorem 3: Since φ is C2 at the singularity,

lim
(x,y)→(0,0)

det
(∇2φ

)

is well-defined.
If this limit is equal to 0, then the proof follows immediately from Lemmas 4, 5 and

6. Otherwise, from Lemma 6, φ has the underlying conformal structure of an annulus,
and reasoning as in Section 4 of [Be1] we see that this is not possible.

Corollary 7 Let φ be a solution of (1.4) which is C3 at (0, 0). Then φ has a removable
singularity at the origin.

5 Examples with the Underlying conformal Struc-

ture of an Annulus

Let φ be a solution of (1.4) satisfying the following condition

lim
(x,y)→(0,0)

det
(∇2φ

)
= E0, (5.1)

where E0 is a positive real number or ∞.
If φ has not a removable singularity at the origin, we know from Lemma 6 that

φ has the underlying conformal structure of an annulus. Hence, the graph ψ(x, y) =
(x, y, φ(x, y)), (x, y) ∈ U?, can be parametrized as

ψ̃(z) = (x(z), y(z), φ(z)), z ∈ ∆r0
− = {z = u + i v | −r0 < v < 0},
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and
ψ̃(z) = (0, 0, 0) when Im(z) = 0. (5.2)

Moreover ψ̃ is well defined in the annulus ∆r0− /(2πZ), that is, ψ̃(z+2π) = ψ̃(z), z ∈ ∆r0− .
The affine conormal vector field N = (N1, N2, N3) satisfies the conditions (2.2) in

∆r0− and the immersion ψ̃ can be recovered from N , up to a translation, as in (2.3).

Consequently, ψ̃ and N satisfy,

xu = −N2
3 (N2/N3)v , xv = N2

3 (N2/N3)u ,

yu = N2
3 (N1/N3)v , yv = −N2

3 (N1/N3)u ,

φu = N1N2v −N2N1v, φv = −N1N2u + N2N1u,





or equivalently,

Xuu + Xvv − fuXu − fvXv = (0, 0),

Yuu + Yvv + fuYu + fvYv = (0, 0, 0),

φuu + φvv − fuφu − fvφv = 2N2
3 [Yu, Yv, Y ] = 2[Nu, Nv, N ]/N3 > 0,





(5.3)

where f = 2 log(N3), X = (x, y) and Y = (N1/N3, N2/N3, 1).

5.1 Bounded Behavior

If 0 < E0 < ∞, we can assume E0 = 1; otherwise we argue in a similar way. Then,
from (2.1) and (5.1), N3 ≡ 1 in Im(z) = 0, and so N3 extends in a harmonic way to
∆r0 = {z = u+i v | −r0 < v < r0}. From (5.3) (see [Le], [SS]), X, Y and φ also extend to
∆r0 as solutions of (5.3). In particular, γ : R −→ R3 given by γ(u) = Y (u, 0) = N(u, 0)
is a 2π-periodic analytic parametrization of an embedded planar curve with non negative
curvature.

On the other hand, (2.3) and (5.2) tell us that there exists a 2π-periodic regular
analytic function λ : R−→R satisfying Nv(u, 0) = λ(u)N(u, 0), u ∈ R.

When γ(R) is a regular analytic strictly convex Jordan curve, we are able to recover
the solution in terms of the pair {γ, λ}.

More precisely, let γ : R−→R3, γ(u) = (γ1(u), γ2(u), 1) be a 2π-periodic regular
analytic parametrization of a strictly convex Jordan curve and λ : R−→R be a 2π-
periodic regular analytic function. Observe that γ(R) encloses a convex planar domain
and it has non-zero curvature at every point, that is, changing of orientation if it was
necessary we can assume that

[γ(u), γ ′(u), γ ′′(u)] > 0, u ∈ R, (5.4)

where we shall use prime to denote derivation respect to u. Then, it is clear the existence
of a positive real number r such that the holomorphic extensions λ(z) and γ(z) of λ and
γ, respectively, are well defined in

∆r = {z = u + i v | − r < v < r}.
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The pair {γ, λ} let us define a holomorphic curve F γλ : ∆r−→C3,

F γλ(z) = γ(z)− i

∫ z

0

λ(w)γ(w)dw, z ∈ ∆r. (5.5)

We shall denote by F the family of this kind of holomorphic curves. It is clear from the
definition that F γλ is 2π-periodic and it induces a well defined holomorphic curve in the
annulus ∆r/2πZ.

Let us note that from (5.5), the real part N of a holomorphic curve F γλ ∈ F satisfies

N(u, 0) = γ(u), Nu(u, 0) = γ ′(u), Nv(u, 0) = λ(u)γ(u), u ∈ R. (5.6)

Moreover, if we set Φ = [N, Nu, Nv] then from (5.4), (5.5) and (5.6),

Φ(u, 0) = 0, −Φv(u, 0) = [γ(u), γ ′(u), γ ′′(u)] > 0, u ∈ R. (5.7)

Applying the Implicit Function Theorem we have, from (5.7), that there exists r0 > 0
such that N satisfies the conditions (2.2) in

Ω = ∆r0
− = ∆r0 ∩ {Im(z) < 0}.

Via (2.3), and having in mind that N3 ≡ 1 in R, we get a locally strongly convex affine
maximal immersion ψ : ∆r0−−→R3 which is a vertical graph around each point (see
Figure 4).

Since ψu = N × Nv, we get from (5.6) that limv→0 ψu(u, v) = (0, 0, 0) and so ψ
extends continuously to {Im(z) = 0}. Up to a suitable translation we may assume that

ψ(u, 0) = (0, 0, 0), u ∈ R. (5.8)

From (2.6), (2.7), (5.6) and (5.8) we obtain

lim
v→0

Lψ(u, v) = Γ(u), lim
v→0

nL(u, v) = (0, 0, 1),

where Γ(u) = (γ1(u), γ2(u), 0) is the x1x2-projection of γ. Consequently, for r, ε > 0
small enough, Lψ(∆r

−) lies in the half space R3
+ = {x3 > 0} and γε = Lψ(∆r

−)∩{x3 = ε}
are regular convex Jordan curves tending to Γ(R) when ε tends to 0. Hence, Lψ(∆r

−) ∩
{0 < x3 < ε} is globally the graph of a convex function φL(y1, y2), (y1, y2) ∈ ΩL, for
some domain ΩL in the exterior of Γ(R) which contains Γ(R) in its boundary. But then,
via the Legendre transform of (y1, y2, φ

L) we conclude that ψ is also a graph of a solution
φ(x1, x2) of (1.1), where (x1, x2) ∈ U? for some neighbourhood U of the origin in R2.
Therefore, we have proved

Theorem 8 Let N be the real part of a holomorphic curve F γλ ∈ F . Then there exists
a solution φ of (1.4) such that

1. N is the affine conormal vector field of the graph of φ.

2. φ extends continuously at the origin and it has the underlying conformal structure
of an annulus.

3. φ is not C1 at the origin and (−∇φ, 1) tends to the convex Jordan curve γ at the
origin.

13



Figure 4: Bounded behavior with N = (ev cos(u),−ev sin(u), 2 + 2v)

5.2 Unbounded Behavior

If
lim

(x,y)→(0,0)
det(∇2φ) = ∞,

then, from (2.1) and (2.6), N vanishes identically in Im(z) = 0, and so it reflects in a
harmonic way to ∆r0 and ψ extends also around the singularity. From (2.6), γ : R −→ R3

given by γ(u) = (N1/N3, N2/N3, 1)(u, 0) is a 2π-periodic analytic parametrization of an
embedded planar curve with non negative curvature and, from (2.3) and (5.2), there
exists a 2π-periodic positive regular analytic function α : R−→R satisfying Nv(u, 0) =
α(u)γ(u), u ∈ R.

Similarly to the above case, when γ(R) is a regular analytic strictly convex Jordan
curve, we are able to recover the solution in terms of the pair {γ, α}. Indeed, if γ :
R−→R3, γ(u) = (γ1(u), γ2(u), 1), is a 2π-periodic regular analytic parametrization of a
strictly convex Jordan curve satisfying (5.4), and α : R−→R is a 2π-periodic positive
analytic function, then the pair {γ, α} defines a holomorphic curve Gγα : ∆r−→C3,
given by

Gγα(z) = − i

∫ z

0

α(w)γ(w)dw, z ∈ ∆r. (5.9)

The family of this kind of holomorphic curves will be denoted by G.
It is also clear that Gγα is 2π-periodic and it induces a well defined holomorphic

curve in the annulus ∆r/2πZ.
Consider now N the real part of a holomorphic curve Gγα ∈ G. Then from (5.9) we

have
N(u, 0) = Nu(u, 0) = (0, 0, 0), Nv(u, 0) = α(u)γ(u), u ∈ R.

If we write N = N3T , we obtain from (5.9) and the harmonicity of N that

T (u, 0) = γ(u), Tv(u, 0) = (0, 0, 0) u ∈ R,

N3(Tuu + Tvv) + 2(N3)uTu + 2(N3)vTv = (0, 0, 0).

}
(5.10)
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Figure 5: Unbounded behavior with N(u, v) = (sin(u) sinh(v), cos(u) sinh(v), v)

Since 0 < (N3)v(u, 0) = α(u), we can assume that N3 > 0 in ∆r
− (otherwise we work in

∆r
+ = ∆r ∩ {Im(z) > 0}).

Thus, Φ = [N, Nu, Nv] = (N3)
3[T, Tu, Tv] vanishes in a point of ∆r

− if and only if
[T, Tu, Tv] so does. By taking derivatives with respect to the normal direction in the
second equation of (5.10), we have

(3(N3)vTvv + (N3)vTuu + 2(N3)uvTu) (u, 0) = 0,

which together to (5.4) and (5.10) gives

[T, Tu, Tv]v(u, 0) = −1

3
[T, Tu, Tuu](u, 0) = −1

3
[γ(u), γ ′(u), γ ′′(u)] < 0.

The Implicit Function Theorem let us conclude that Φ never vanishes in ∆r
− for some r

small enough and we can assume that N satisfies the conditions in (2.2).
Via (2.3) we have a locally strongly convex affine maximal immersion ψ : ∆r

−−→R3

which is a vertical graph around each point (see Figure 5).
By taking the Legendre transform of ψ and arguing as in the case of the family F ,

we have the following:

Theorem 9 Let N be the real part of a holomorphic curve Gγα ∈ G. Then there exists
a solution φ of (1.4) such that φ satisfies the properties in Theorem 8.
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