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In affine surfaces theory, Blaschke ([B]) found that the Euler-Lagrange equation of
the equiaffine area functional is of fourth order and nonlinear. He also showed that this
equation is equivalent to the vanishing of the affine mean curvature, which led to the
notion of affine minimal surface without a previous study of the second variation formula.
But Calabi proved in [C] that, for locally strongly convex surfaces, the second variation
is always negative and since then, locally strongly convex surfaces with vanishing affine
mean curvature are called affine maximal surfaces.

After Calabi’s work this class of surfaces has become a fashion research topic and it
has received many interesting contributions.

In this poster we present the resolution of the problem of existence and uniqueness of
affine maximal surfaces containing a regular analytic curve and with a given affine normal
along it, see [AMM2]. As applications we give results about symmetries, characterize
when a curve in R3 can be a geodesic of a such surface and study helicoidal affine
maximal surfaces, that is, surfaces invariant under a one-parametric group of equiaffine
transformations. We obtain new examples with an analytic curve in its singular set,
which have been studied in [AMM3]. To do that, we introduce the notion of affine
map which allows us to analyze global problems regarding to affine maximal surfaces
admitting some natural singularities.

ICM2010, Section 5: Geometry.
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Abstract
We present the resolution of the problem of existence and uniqueness of affine
maximal surfaces containing a regular analytic curve and with a given affine nor-
mal along it, see [1]. As applications we give results about symmetries, character-
ize when a curve in R3 can be a geodesic of a such surface and study helicoidal
affine maximal surfaces, that is, surfaces invariant under a one-parametric group
of equiaffine transformations. We obtain new examples with an analytic curve in
its singular set, which have been studied in [2].

1. Affine Maximal Surfaces
The equiaffine area functional∫

dA =

∫
|Ke|

1
4dAe,

with Ke the euclidean Gauss curvature and dAe the element of euclidean area,
has attracted to many geometers since the beginning of the last century.
Well-known Facts:

• Blaschke (1923): the associated fourth order Euler-Lagrange equation is
equivalent to the vanishing of the affine mean curvature.

• Calabi (1982): locally strongly convex surfaces have always a negative sec-
ond variation (affine maximal surfaces).

1.1. Recent developments
• Affine Weierstrass formulas that have provided an important tool in their

study, (Calabi, Li, 1990).

• Entire solutions of the fourth order affine maximal surface equation

φyyωxx − 2φxyωxy + φxxωyy = 0, ω =
(
det
(
∇2φ

))−3/4
, (1..1)

are always quadratic polynomials (Trudinger-Wang, 2000).

• Every Affine complete affine maximal surface is an elliptic paraboloid, (Li-Jia,
2001, Trudinger-Wang, 2002).

• The Affine Plateau Problem (Trudinger-Wang, 2005).

• Their extension to different nonlinear fourth order equations (Li-Jia,
2003,Trudinger-Wang, 2002).

• The validity of the results in affine maximal surfaces with some natural singu-
larities that may arise (Aledo, Chaves, Gálvez, Martı́nez, Milán, Mira, 2005-
2008).

1.2. Basic Notations

Let ψ : Σ → R3 be a l.s.c immersion, with second fundamental form σe definite
positive,

g = K
−1

4
e σe, Berwald-Blaschke metric

ξ =
1

2
∆gψ, affine normal

with ∆g:= Laplace-Beltrami operator associated to g.

The affine conormal field N := K
−1/4
e Ne, satisfies

〈N, ξ〉 = 1, 〈N, dψ(v)〉 = 0, v ∈ TpΣ, (1..2)

and the Euler-Lagrange equation:= ∆gN = 0.

1.3. Weierstrass-type Representation Formulas

In the simply-connected case ψ can be recovered from N and the conformal
class of the Blaschke metric:
Lelieuvre formula

ψ = 2 Re

∫
ı N ×Nzdz

Calabi’s Representation ψ determine a holomorphic curve Φ : Ω ⊂ Σ → C3

s.t.
N = Φ + Φ, g = −ıDet

[
Φ + Φ,Φz,Φz

]
dzdz. (1..3)

ψ is determined, up to real translation, by a holomorphic curve Φ satisfying
−ıDet

[
Φ + Φ,Φz,Φz

]
> 0. To be precise,

ψ = 2 Re

∫
ı
(
Φ + Φ

)
× Φzdz = −ı ( Φ× Φ−

∫
Φ× dΦ +

∫
Φ× dΦ ).

2. The Affine Björling Problem
Let β : I → Σ be a regular analytic curve. α = ψ ◦ β, Y = ξ ◦ β and U = N ◦ β,
then, along the curve α

0 = 〈α′(s), U(s)〉,
1 = 〈Y (s), U(s)〉,
0 = 〈Y ′(s), U(s)〉,
0 < λ(s) = −〈α′(s), U ′(s)〉 = 〈α′′(s), U(s)〉,

 (2..1)

where by prime we indicate derivation respect to s, for all s ∈ I.
Definition Given Y, U, α : I −→ R3 regular analytic curves.
{Y, U} is an analytic equiaffine normalization of α if there is an analytic positive
function λ : I → R+ such that all the equations in (2..1) hold on I.
Theorem Let {Y, U} be an analytic equiaffine normalization of α, then there ex-
ists a unique affine maximal surface ψ containing α(I), with conormal field and
Blaschke normal along α, U and Y respectively.
(ψ:= a.m.s. along α generated by {Y, U}).
Outline of the Proof

• By the Inverse Function Theorem ∃z : s + ıt, s ∈ I
• Identity Principle: Nz = 1

2 (Uz + ıY × αz) , z ∈ Ω

• Via Calabi’s representation.

ψ = α(s0) + 2 Re

∫ z

s0

ı(Φ + Φ)× Φζdζ, (2..2)

where, Φ(z) = 1
2

(
U + ı

∫ z
s0
Y × αζdζ

)
, z ∈ Ω, s0 ∈ I, on a complex do-

main Ω containing I.

Corollary Let α, Y : I → R3 be two regular analytic curves

Det[ Y ′, α′, Y ]Det[ Y ′, α′, α′′ ] > 0, on I. (2..3)

⇒ ∃1 ψ containing α(I) with Y as Blaschke normal along α.
Proof ∃1 U and λ,

U =
Y ′ × α′

Det[ Y ′, α′, Y ]
, 0 < λ =

Det[ Y ′, α′, α′′ ]

Det[ Y ′, α′, Y ]

s.t. {Y, U} is an a.e.n. of α. The result follows from above Theorem, taking in
Calabi’s representation,

Φ(z) =
Yz × αz

2Det[ Yz, αz, Y ]
+

i

2

∫ z

s0

Y × αζdζ, z ∈ Ω, s0 ∈ I.

Corollary α, Y : I → R3 regular analytic curves

[ Y, α′, α′′ ] 6= 0, Y ′ × α′ = 0, on I. (2..4)

Given λ : I → R+, ∃1 ψ containing α(I), such that its Blaschke normal along α
is Y and g(α′, α′) = λ.

3. Applications

3.1. The Cauchy Problem

If ψ : Ω −→ R3 is the graph of a l.s.c. function φ(x, y), (x, y) ∈ Ω. The Euler-
Lagrange equation for the affine area functional is

φyyωxx − 2φxyωxy + φxxωyy = 0, ω =
(
det
(
∇2φ

))−3/4
.

In this situation

gφ = 3
√
ω
(
φxx dx

2 + 2φxy dx dy + φyy dy
2
)
,

N = 3
√
ω (−φx,−φy, 1) , (3..1)

ξ =

(
ϕy,−ϕx,

1
3
√
ω
− φyϕx + φxϕy

)
,

where ϕx = 1
3 (φxyωx − φxxωy) and ϕy = 1

3 (φyyωx − φxyωy) .
The Cauchy Problem

φyyωxx − 2φxyωxy + φxxωyy = 0, ω =
(
det
(
∇2φ

))−3/4

φ(x, 0) = a(x),

φy(x, 0) = b(x),

φyy(x, 0) = c(x),

φyyy(x, 0) = d(x),

c(x)a′′(x)− b′(x)2 > 0

where a, b, c, d are analytic functions on I, φ is defined on Ω containing I × {0},
has solution

(x, y, φ(x, y)) = (s0, 0, a(s0)) + 2 Re

∫ z=s+i t

s0

(
Φ + Φ

)
× Φζ dζ,

with

Φ(z) =
1

2

(
U(z) + ı

∫ z

s0

Y (ζ)× A(ζ) dζ

)
,

U(s) =
(
c(s)a′′(s)− b′(s)2

)−1/4
(−a′(s),−b(s), 1),

A(s) = (1, 0, a′(s)),

Y (s) =
1

4

(
c(s)a′′(s)− b′(s)2

)−7/4 (
b′(da′′ + 3cb′′)− 2b′2c′ − c(c′a′′ + ca′′′),

b′(3c′a′′ + ca′′′)− 2b′2b′′ − a′′(da′′ + cb′′),

+4b′4 − 2b′2(a′c′ + 4ca′′ + bb′′)− a′′((−4c2 + bd)a′′ + bcb′′)

− ca′(c′a′′ + ca′′′) + b′ (a′(da′′ + 3cb′′) + b(3c′a′′ + ca′′′))) .

3.2. Symmetry and Geodesics

Consider T : R3 → R3, the equiaffine transformation given by T (v) = Av + b

and {Y, U} an analytic equiaffine normalization of α : I → R3. We say T

is a symmetry of {Y, U} if ∃ Γ : I → I analytic diffeomorphism such that
α ◦ Γ = T ◦ α, Y ◦ Γ = AY, U ◦ Γ = (At)−1U.

Theorem. (Generalized symmetry principle). Any symmetry of an analytic
equiaffine normalization induces a global symmetry of the affine maximal sur-
face generated by the equiaffine normalization.
If β : I → Σ is a regular curve s.t., α = ψ ◦ β, Y = ξ ◦ β and U = N ◦ β are
analytic⇒ α is a pre-geodesic for the Blaschke metric if and only if

[α′, α′′, Y ] + [U,U ′, U ′′] = 0 on I. (3..2)

Then a regular analytic curve α : I → R3 is the geodesic of some affine maximal
surface if and only if there exists an affine equiaffine normalization {Y, U} of α
satisfying (3..2) and 〈α′′, U〉 = c for a positive constant c.
Thus, we can obtain that every planar analytic curve whose curvature does not
vanish at any point is pre-geodesic of an affine maximal surface which has the
plane containing the curve as a symmetry plane. Also, every analytic helix, (k/τ
constant), is pre-geodesic of an affine maximal surface.

4. Helicoidal affine maximal surfaces

Consider Ts(v) = Asv + bs a one-parametric subgroup of equiaffine transforma-
tions. From our existence Theorem and generalized symmetry Principle, an
affine maximal surface invariant under Ts, s ∈ R, is locally given as the sur-
face generated by the following {Ts}-symmetric a.e.n {Y, U}, along the orbit
αp(s) = Ts(p) of a fixed point p = (p1, p2, p3),

Y (s) = AsYp, U(s) = (At
s)
−1Up

and Yp, Up ∈ R3 satisfy the necessary conditions for (2..1) holds. In particular,
the Berwald-Blaschke metric must be constant along αp.
We apply our representation to classify the affine maximal surfaces invariant
under these groups.

4.1. Some G1,a-invariant affine maximal surfaces

For this one-parametric group the orbit of a point p is given by αp(s) =(
p1 + p2as + p3a

s2

2 + as
3

6 , p2 + p3s + s2

2 , p3 + s
)

.

4.2. Some G2,a-invariant affine maximal surfaces

In this case αp(s) = (p1 cos(s) + p2 sin(s),−p1 sin(s) + p2 cos(s), p3 + as) .

Rotational affine maximal surfaces:

Rotational improper affine spheres:

Non rotational G2,a-invariant affine maximal surface:

5. Affine maximal maps

Some Helicoidal affine maximal surfaces:

• Are glued by analytic curves where the affine metric is degenerated but the
affine normal and the affine conormal are well defined.

• Can be represented as in (2..2), where Φ is a well-defined holomorphic reg-
ular curve on the Riemann surface Σ.

Definition If a map ψ : Σ −→ R3 admits a representation as in (2..2) for a cer-
tain holomorphic curve Φ which satisfies that [Φ + Φ,Φz,Φz]|dz|2 does not vanish
identically, we say that ψ is an affine maximal map

Theorem α : I −→ R3 a regular analytic curve with non-vanishing curvature.
Then, for any non-vanishing regular analytic function h : I −→ R there exists a
unique affine maximal map ψh containing α(I) in its set of singularities.
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