Some Geometric Aspects of the Hessian One
Equation

Antonio Martinez and Francisco Milan

Abstract The Hessian one equation and its complex resolution prexadeémpor-
tant tool in the study of improper affine sphereRifiwith some kind of singular-
ities. The singular set can be characterized and, in mos$teoases, it determines
the surface. Here, we show how to obtain improper affine gzheith a prescribed
singular set and construct some global examples with thieediesingularities. We
also classify improper affine spheres admitting a planayudar set.

1 Introduction

Differential geometry of surfaces and partial differehéiguations (PDES) are re-
lated by a productive tie by means of which both theories autualy benefited.

Many classic partial differential equations (PDES) ark tminteresting geomet-
ric problems, [18, 20, 27]. Sometimes, the geometry allawsstablish non trivial
properties of the solutions and to determine new solutioterims of already known
solutions.

One of the biggest contributions from geometry to the thedrartial differen-
tial equations is the Monge Ampeére equation. Among the rootdtanding Monge
Ampére equation we can quote the Hessian one equation

Doy — By = €, ge{-1,1}. (1)

This is the easiest Monge Ampére equation and it appeaguthers, in prob-
lems of affine differential geometry, flat surfaces or spa€éhler manifolds.
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The equation (1) has been studied from a global perspeatigiettee situation
changes completely if we take= 1 (definite case) oe = —1 (indefinite case).
Whene = 1, Jorgens , [13, 14], proved that revolution surfaces igthe only
entire solutions with at most an isolated singularity aniitsans in R? with a fi-
nite set of points removed are classified in [9]. The indefindse is more compli-
cated and we can not expect a classification result as in fivétdecase. Actually,
©(x,y) = xy+g(x) is an entire solution for any functian

Another important issue in the theory of geometric PDEs ésstudy of singu-
larities. Concerning with (1), a geometric theory of smowmips with singularities
(improper affine maps) has been developed in [21, 25]. In widbie cases the sin-
gular set determines the surface and, generically, thelirities are cuspidal edges
and swallowtails, see [1, 5, 12, 23, 24].

In this paper we show how to obtain easily improper affine majbis a pre-
scribed singular set and construct some global examplésthétdesired singulari-
ties. We also classify definite improper affine maps adngttiplanar singular set.

The paper is organized as follows. In section 2 we introdoogesnotations and
give a complex resolution for the equation (1).

In Section 3 we discuss a priori conditions on a curvR¥rto be a singular curve
of an improper affine map with prescribed cuspidal edges watl@vtails. We also
study isolated singularities both from a local as a globawi

In Section 4 we describe the global behavior of embedded Eiengefinite im-
proper affine maps with a planar singular set and those withafinite number of
isolated singularities.

2 The conformal structure

Let@: Q C R?> — R be a solution to (1) on a planar domai Then its graph

Y= {(Xaya (p(xvy)) : (Xay) € 'Q}

describes an improper affine sphere in the affine 3-sf&caith constant affine
normalé = (0,0,1), affine metrich,

h:= @« O + @y dy? + 2y dxdy (2)

and affine conormall,
N:= (_@(7_%51)' (3)
From (2) and (3) it is easy to check that the following relasidnold,
h=—<dN,dy >, <N, &>=1 <N, dy>=0, 4)
V det(h) = deI[LIJXa ’~,Uy, E] = - deI[NX7 Ny; N]7 (5)
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see [19, 26] for more details. Conversely, up to unimodutangformations, any
improper affine sphere iR® is, locally, the graph over a domain in thg/-plane of
a solution to (1).

Whene =1 (resp.€ = —1) the affine metrich induces a Riemann (Lorentz)
surface structure of2 known as theinderlying conformal structure @f(x,y).

It follows from (1) that,

(d@)?+edy? = goh,  (d@)?+edx = @yh, (6)

and the expression (6) indicates that the two first coordmafy andN provides
conformal parameters fdr. Actually, let considefC, the complex (split-complex)
numbers according to=1 (ore = —1), that is

Ce={z=s+]jt : steR, j*=—¢, j1=1j}, (7
see [4, 11] for more information, then it is not difficult toowe, see [3, 8, 23], that

. Q —C3,
@:=N+jéxy, (8)

is a planar holomorphic (split-holomorphic) curve. In fadt= (—B,A, 1) where
A=—-@g+]Xx, B:=@+]Yy, 9)
are holomorphic (split-holomorphic) functions éh Moreover, from (1) and (2),
|do|? = [dA? + |dB® = (@u+ @y)h, (10)

and|d®|2 andh are in the same conformal class always gt @, has a sign.
From (2) and (9), the metrigis given by

h:=Im(dAdB) = [dG|]? — |dF|? (11)

where F = —B—¢jAand =B —¢j A, and the immersiogy may be recovered
as

- = 1 =
W= Im(A,B,/AdB)ffZIm/(CDJr ®) x do. (12)
or ) )
W= (G+E,%_%+2Re GdF), (13)

where in (13) the two first coordinates gfare identified as numbers @ in the
standard way.

Remark 1 The complex representation (12) is similar to the introdLice[6] and
(13) was studied in [7, 8, 21, 25].
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3 Allowing singularities

In this section we discuss improper affine spheres admistimge kind of singulari-
ties. First, we study when a prescribed curve of singukgitietermines the surface
and then we deal with the case of isolated singularities fsoth a local as a global
view.

Definition 1. Let = be a Riemann (Lorentz) surface agid: 5 — RS be a dif-
ferentiable mapy is called an improper affine map with constant affine normal
& =(0,0,1), if ¢ is given as in (12) for some holomorphic (split-holomorphic
curve® = (—B,A 1) : & — C2 satisfying that Intid AdB) does not vanish identi-
cally onz.

Remark 2Equivalent definitions of improper affine maps (also callewbrioper
affine fronts for other authors) has been introduced in [B113].

From (3), (9) and (12) one may writ® = N+ j & x ¢, whereN is the affine
conormal ofyy and we have

h = Im(dAdB) = JZJ def® + ®,d®,dP).

The singular set of is the set of points whetfedegenerates. A singular pointis
called non degenerate if, writtifg= p|dZ?2 aroundz,, then

p(20) =0,  dplz #0.

Whenz, is a non degenerate singular poiti{z) is either an isolated singularity or
the singular set afy aroundzy becomes a regular curye | C R — >. Generically,
the image of these curves are singular curves with cuspitgsand swallowtails,
see [5, 25, 12]. In [17], we have the following criterion fhetsingular curver =
Yoy,

Theorem 1 (17]). If n is a vector field along, with n(s) # 0in the kernel of @y,
for any s in the interval |, then

1. y(0) = zyis a cuspidal edge if and onlydfefy'(0), n(0)] # 0, wheredetdenotes
the usual determinant and prime indicates differentiatioth respect to s.
2. y(0) = 7y is a swallowtail if and only ilefy’(0), n(0)] = 0 and

d !/
Jol_odety’(s):n(s] #0.

3.1 Prescribing singular curves

The affine Bprling problemof finding an improper affine map containing a curve
o with a prescribed affine conormidl along it has been discuss in [1, 23] and its
solution is applied to see that a non constant singular aletermines the surface.
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Actually, if we assume thatr : | — R® is an analytic curve, which is in the
singular set of a definite (indefinite) improper affine map, then from (4) the
affine conormall alonga satisfies

<a',U>=0, <U,&>=1, <a”,U>=0.

Hence, ifa is non constant but det’,a”,&] = 0 onl, thena’ x a” = 0 anda is

an straight line with a constant tangent veatoin this case< N,v >= 0 and the

conormalN of ¢ satisfies déN,Nz, Nz} = 0 on a neighborhood aff which is a

contradiction.

But, if defa’,a”,&] # 0 onl, thenU is uniquely determined by and it may be

written as o x o
U= defa’,a” &’

Then, ¢ is uniquely determined as in (12) by the holomorphic (Sptitemorphic)
curve

(14)

_ 0zX 0
det[ab aZZ7 E]

which is defined in a neighborhood ofin C; where the holomorphic (split-
holomorphic) extension af is well defined.

@, +jéxa, (15)

Theorem 2.Let a : | — R3 be an analytic curve satisfyindefa’, a”,&] # 0 on
I. Then the following items hold

e there exists a unique definite improper affine map containifig in its singular
set.

e if defa’,a”,a")? # defa’,a”,&]* on 1, then there exists a unique indefinite
improper affine map containing(l) in its singular set.

Moreover, in both cases(s) is a cuspidal edge for all s I.

Proof. From (12) and (14), we have that alohthe improper affine mag?# given
by @; satisfies

_ 1
v = 2@+ @) x o) =Huxu-Sux(exa)
1, €] ,_ 1, €jdefa’,a”,a”
=Za+SUxU =2+ o
20t VYN =S Getarar g2 @
and ¢ contains the curve with
del[a/, a//, a///] ,

wg = a/v ults = (16)

detfa’,a”,&)2

Thus, from (4), (5) and (16), we get ¢t , Y&, &](s,0) =0, VYsel, and
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d
0t s J0TYE - U, €] = defyfs, 0 £](s.0) — edelys, yis &)(s.0)

det[a’, all, a//I]Z

= det[a',a"af](_g_m) 7o

That is,a is a non degenerate singular curve and the kerndl/gfat y(s) = (s,0)
is spanned by) = (defa’,a”,a"],defa’,a”,&]?). We conclude that déy’,n) =
defa’,a” &]2 # 0 anda(s) is a cuspidal edge for adic | from Theorem 1.

\

h ¢ D

Fig. 1 Indefinite improper affine maps whose singular set contaiiss = (cogs), sin(s), as) with
a=0.2anda=0

i

Fig. 2 Definite improper affine maps whose singular set conteifs = (cogs), sin(s),as) with
a=0.5anda=0

Theorem 3.Let a : | — R3 be an analytic curve satisfyindefa’,a”,&] # 0 on
I'\ {0} and suchtha® € | isazero ofa’, a’ x a”,defa’,a”,&] anddefa’,a”,a"]
of order1, 2, 2 and3 respectively. Then the following items hold

e there exists a unique definite improper affine map containifig in its singular
set.

e ifdefa’,a”,a")? #defa’,a”,&]* on 1\ {0}, then there exists a unique indefi-
nite improper affine map containing(l) in its singular set.

Moreover, in both cases(0) is a swallowtail.

Proof. Following the same arguments as in the proof of Theorem 2, ave that
a is a non degenerate singular curveyst and the kernel ofly* at y(s) = (s,0)
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is spanned by) = (1,defa’,a”,&]?/defa’,a”,a’]). But from the hypothesis, 0

is a zero of order 1 of déy’,n) = defa’,a”,&]?/defa’,a”,a”] anda(0) is a
swallowtail from Theorem 1.

¢

Fig. 3 Improper affine maps with three swallowtails

3.2 Isolated singularities

Itis well known, see [1], that the conformal structure of #féne metric around any
isolated singularity of a definite improper affine map is tfatn annulus. Moreover,
any definite improper affine map must be symmetric with resjoggoint reflection
in R3 through any isolated embedded singularity.

In the case of indefinite improper affine maps and when theorordl structure
of the affine metric around an isolated singularity is thaaofannulus we have as
application of the affine Bjorling problem that (see [1, 4]

Theorem 4 (1, 24]). Let U: R — R? x {1} be a2r-periodic regular analytic
parameterization of a convex curve. Then, there exists quenjdefinite) indefinite
improper affine mapy, with a non removable isolated singularity, where the affine
conormal is tending to U. Moreover, it is embedded if and dflly(R) is a Jordan
curve.

\

Fig. 4 Improper affine maps with isolated singularities
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But in the indefinite case, one may construct improper affiapswith non remov-
able isolated singularities around which the conformaldtrre of the affine metric
is a punctured disk7*. Actually, from (11) and (12) it is easy to see the following
result,

Theorem 5.Let A: 2 — C_; be a split-holomorphic function satisfying A H?
for some split-holomorphic function HZ — C_1. If zg € 2 is an isolated zero
of F, then the indefinite improper affine mgg 2 — R3 given, as in(12), by the
split-holomorphic curvep(z) = (jz,A(z),1), is well defined or¥* = ¥ — {2} and
it has a non removable isolated singularity gt z

Remark 3By using the Theorem 5 we can construct indefinite improdereamap
Y : C_; — R3with afinite number of prescribed isolated singularitiethatpoints
{z1,---,zy}. For thisis enough to consider a split-holomorphic funetit: C_; —
C_1 with zeros at the pointéz, - - -,z }.

A

Fig. 5 Entire solutions on the puncture plane obtained by taklfig) = zin Theorem 5

4 Global results

The aim of this section is to determine the global behavicerobedded complete
definite improper affine maps such that any connected conrmpariets singular
set is mapped on a plane & and those with only a finite number of isolated
singularities.

4.1 The case of finitely many isolated singularities.

In [9] is proved the existence of entire solutions of (1) wéthy finite number of
isolated singularities. The situation is totally diffetdar an embedded complete
definite improper affine map, where complete means that fireahetric is com-
plete outside a compact subset.

Actually, from the generalized symmetry principle one Has,Theorem 4.2],
any definite improper affine map must be symmetric with ressfpegoint reflection
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in R3 through any isolated embedded singularity. As immediatesequence we
has

Theorem 6. Any embedded complete definite improper affine map whoselaing
set is a finite number of isolated singularities must be iotetl, see Figure 4.

Proof. An easy application of the Maximum Principle let us to sed #drey em-
bedded complete improper affine map with only one isolatadwarity must be
rotational. Consequently, it is enough to prove that if a pte improper affine
map y : = — R® has two different isolated singularitigs and p,, then it has
infinitely many isolated singularities.

In fact, having in mind thaty(X) is symmetric with respect the reflectiorss,
ands,, in R3 through the pointp; andp,, respectively, we get that

S1(P2),S2(P1),S2081(P2),S10%2(P1),S10%2081(P2), - -

also are isolated singularities of the map.

4.2 Embedded complete definite improper affine map with a @lan
singular set

We shall prove the following result:

Theorem 7.Let ¢y : = — R3 be an embedded complete definite improper affine
map with a non-degenerate analytic singular sétC > such thaty(.) lies on a
planelT in R3. Theny is a snowman rotational improper affine map (see Figure
3.1)

Proof. Let # C > be a compact containing’ in its interior. Thanks to a classical
result of Huber, [10]2 \ int(.#") is conformally a compact Riemann surface with
compact boundary and finitely many points removed whichlaeeshds ofp.

But ¢ is an embedding and then each end is asymptotic to one oforudht
type (see [8]). ConsideX* a connected component ¢f( X) \ ¢(.), if we add to
>*tU@x™ the planar bounded regions determined by the convex Joutar< of
its boundary, we get a globally convex surface in R3.

It is clear than=™ has at least one end, otherwise adding its reflexion respect t
planell we get a compact flat improper affine map without boundaryciwvlis
impossible see [21].

Consider® = (B,A,1) the holomorphic curve associated¥d and denote by
5.} the corresponding improper affine map associate to the halainc curve
@, (—jA,—jB,1), thenZ; has the following properties:

1. the boundary oE;" is a singular poina € HZ.

2. Having in mind that any embedded complete end is of rotatitype, see [8], any
end of 2 is also embedded and complete, moreavgrhas the same number
ofends as™.
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In other words 2" U {a} is a non compact complete definite improper affine map
with only one isolated singularity. An easy application loé tMaximum Principle
says it must be rotational and, consequerily,is also rotational and then the The-
orem follows easily

Definite improper affine map with a planar singular set algsgmmetric. Actually,
we have

Proposition 1. Any improper affine map containing an analytic singular @iiyxing
on a planel7 in R must be symmetric with respect to the pldhe

Proof. Let ¢ : = — R® be the improper affine map having
a = (ap,0,0): 1 — R3

as a singular curve with affine conormak (0,0,1) alonga, then from (15) is
determined by the holomorphic (split-holomorphic) cusgz) = (a1(2), 02(2),1),
zin a neighborhoo®; of I in C, where the holomorphic (split-holomorphic) exten-
sion of a is well determined. Then, from the Riemann-Schwarz symynminciple
we have thati(z) = a;zand , we concludey(Q¢) is symmetric respect to the plane
Iin R3.

Using this fact, we can generalize the Theorem 7 as follows:

Theorem 8.Lety : ~ — R® be an embedded complete improper affine map with a
non-degenerate analytic singular set C > such that any connected component of
Y(.7) lies on a plane ifR3. Theny is a snowman rotational improper affine map.

Remark 4There is a flat metric associated with (1) that connects thmatsan to
another interesting family of surfaces. Actually, if we s@er onQ de Riemannian
metric

ds? = dx@ +dy?, (17)

one may checks, from (2) and (17), thesatisfies the Codazzi-Mainardi equations
of classical surface theory with respect to the metis€ In other words, the pair
(d€, h) of real quadratic forms is a Codazzi pair @n(see for instance [2, 16] for
more information about Codazzi pairs). Moreover, from (2),and (17),(ds, h)
has constant extrinsic curvatukéds’, h) = £ and from the existence and unique-
ness theorem of surfaces in a space form we have that, lpc@llgs’) is isomet-
rically immersed in the 3-dimensional space folit(—¢) of constant sectional
curvature—¢. Conversely, any flat surface Mi(—¢) has around any point a local
coordinategx,y) such that its second fundamental form may be written as in (2)
whereg is solution to (1).

In [22] you can find similar results to the above mentionedtbms for flat
surfaces in the hyperbolic space.
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