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Abstract The Hessian one equation and its complex resolution provides an impor-
tant tool in the study of improper affine spheres inR3 with some kind of singular-
ities. The singular set can be characterized and, in most of the cases, it determines
the surface. Here, we show how to obtain improper affine spheres with a prescribed
singular set and construct some global examples with the desired singularities. We
also classify improper affine spheres admitting a planar singular set.

1 Introduction

Differential geometry of surfaces and partial differential equations (PDEs) are re-
lated by a productive tie by means of which both theories out mutually benefited.

Many classic partial differential equations (PDEs) are link to interesting geomet-
ric problems, [18, 20, 27]. Sometimes, the geometry allows to establish non trivial
properties of the solutions and to determine new solutions in terms of already known
solutions.

One of the biggest contributions from geometry to the theoryof partial differen-
tial equations is the Monge Ampère equation. Among the mostoutstanding Monge
Ampère equation we can quote the Hessian one equation

φxxφyy−φ2
xy = ε, ε ∈ {−1,1}. (1)

This is the easiest Monge Ampère equation and it appears, among others, in prob-
lems of affine differential geometry, flat surfaces or special Kähler manifolds.
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The equation (1) has been studied from a global perspective and the situation
changes completely if we takeε = 1 (definite case) orε = −1 (indefinite case).
Whenε = 1, Jörgens , [13, 14], proved that revolution surfaces provide the only
entire solutions with at most an isolated singularity and solutions inR2 with a fi-
nite set of points removed are classified in [9]. The indefinite case is more compli-
cated and we can not expect a classification result as in the definite case. Actually,
φ(x,y) = xy+g(x) is an entire solution for any functiong.

Another important issue in the theory of geometric PDEs is the study of singu-
larities. Concerning with (1), a geometric theory of smoothmaps with singularities
(improper affine maps) has been developed in [21, 25]. In mostof the cases the sin-
gular set determines the surface and, generically, the singularities are cuspidal edges
and swallowtails, see [1, 5, 12, 23, 24].

In this paper we show how to obtain easily improper affine mapswith a pre-
scribed singular set and construct some global examples with the desired singulari-
ties. We also classify definite improper affine maps admitting a planar singular set.

The paper is organized as follows. In section 2 we introduce some notations and
give a complex resolution for the equation (1).

In Section 3 we discuss a priori conditions on a curve inR3 to be a singular curve
of an improper affine map with prescribed cuspidal edges and swallowtails. We also
study isolated singularities both from a local as a global view.

In Section 4 we describe the global behavior of embedded complete definite im-
proper affine maps with a planar singular set and those with only a finite number of
isolated singularities.

2 The conformal structure

Let φ : Ω ⊆ R2 −→R be a solution to (1) on a planar domainΩ . Then its graph

ψ = {(x,y,φ(x,y)) : (x,y) ∈ Ω}

describes an improper affine sphere in the affine 3-spaceR3 with constant affine
normalξ = (0,0,1), affine metrich,

h := φxx dx2+φyy dy2+2φxy dxdy, (2)

and affine conormalN,
N := (−φx,−φy,1). (3)

From (2) and (3) it is easy to check that the following relations hold,

h=−< dN,dψ >, < N,ξ >= 1, < N,dψ >= 0, (4)
√

det(h) = det[ψx,ψy,ξ ] =−det[Nx,Ny,N], (5)
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see [19, 26] for more details. Conversely, up to unimodular transformations, any
improper affine sphere inR3 is, locally, the graph over a domain in thex,y-plane of
a solution to (1).

When ε = 1 (resp.ε = −1) the affine metrich induces a Riemann (Lorentz)
surface structure onΩ known as theunderlying conformal structure ofφ(x,y).

It follows from (1) that,

(dφx)
2+ ε dy2 = φxxh, (dφy)

2+ ε dx2 = φyyh, (6)

and the expression (6) indicates that the two first coordinates ofψ andN provides
conformal parameters forh. Actually, let considerCε the complex (split-complex)
numbers according toε = 1 (or ε =−1), that is

Cε = {z= s+ j t : s, t ∈R, j2 =−ε, j1= 1 j}, (7)

see [4, 11] for more information, then it is not difficult to prove, see [3, 8, 23], that
Φ : Ω −→C3

ε ,
Φ := N+ j ξ ×ψ , (8)

is a planar holomorphic (split-holomorphic) curve. In fact, Φ = (−B,A,1) where

A :=−φy+ j x, B := φx+ j y, (9)

are holomorphic (split-holomorphic) functions onΩ . Moreover, from (1) and (2),

|dΦ|2 = |dA|2+ |dB|2 = (φxx+φyy)h, (10)

and|dΦ|2 andh are in the same conformal class always thatφxx+φyy has a sign.
From (2) and (9), the metrich is given by

h := Im(dAdB) = |dG|2−|dF|2 (11)

where 2F =−B−ε j A and 2G= B−ε j A, and the immersionψ may be recovered
as

ψ := Im(A,B,
∫

AdB) =−
1
2

Im
∫
(Φ +Φ)×dΦ. (12)

or

ψ := (G+F,
|G|2

2
−

|F|2

2
+2Re

∫
GdF), (13)

where in (13) the two first coordinates ofψ are identified as numbers ofCε in the
standard way.

Remark 1.The complex representation (12) is similar to the introduced in [6] and
(13) was studied in [7, 8, 21, 25].
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3 Allowing singularities

In this section we discuss improper affine spheres admittingsome kind of singulari-
ties. First, we study when a prescribed curve of singularities determines the surface
and then we deal with the case of isolated singularities bothfrom a local as a global
view.

Definition 1. Let Σ be a Riemann (Lorentz) surface andψ : Σ −→ R
3 be a dif-

ferentiable map,ψ is called an improper affine map with constant affine normal
ξ = (0,0,1), if ψ is given as in (12) for some holomorphic (split-holomorphic)
curveΦ = (−B,A,1) : Σ −→ C3

ε satisfying that Im(dAdB) does not vanish identi-
cally onΣ .

Remark 2.Equivalent definitions of improper affine maps (also called improper
affine fronts for other authors) has been introduced in [21, 25, 15].

From (3), (9) and (12) one may writeΦ = N+ j ξ × ψ , whereN is the affine
conormal ofψ and we have

h= Im(dAdB) =−
ε j
4

det[Φ +Φ,dΦ,dΦ ].

The singular set ofψ is the set of points whereh degenerates. A singular pointz0 is
called non degenerate if, writtingh= ρ |dz|2 aroundz0, then

ρ(z0) = 0, dρ |z0 6= 0.

Whenz0 is a non degenerate singular point,ψ(z0) is either an isolated singularity or
the singular set ofψ aroundz0 becomes a regular curveγ : I ⊂R−→ Σ . Generically,
the image of these curves are singular curves with cuspidal edges and swallowtails,
see [5, 25, 12]. In [17], we have the following criterion for the singular curveα =
ψ ◦ γ,

Theorem 1 ([17]). If η is a vector field alongγ, with η(s) 6= 0 in the kernel of dψγ(s)
for any s in the interval I, then

1. γ(0) = z0 is a cuspidal edge if and only ifdet[γ ′(0),η(0)] 6= 0, wheredetdenotes
the usual determinant and prime indicates differentiationwith respect to s.

2. γ(0) = z0 is a swallowtail if and only ifdet[γ ′(0),η(0)] = 0 and

d
ds

∣∣∣
s=0

det[γ ′(s),η(s)] 6= 0.

3.1 Prescribing singular curves

Theaffine Bj̈orling problemof finding an improper affine map containing a curve
α with a prescribed affine conormalU along it has been discuss in [1, 23] and its
solution is applied to see that a non constant singular curvedetermines the surface.
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Actually, if we assume thatα : I −→ R3 is an analytic curve, which is in the
singular set of a definite (indefinite) improper affine mapψε , then from (4) the
affine conormalU alongα satisfies

< α ′,U >= 0, <U,ξ >= 1, < α ′′,U >= 0.

Hence, ifα is non constant but det[α ′,α ′′,ξ ] ≡ 0 on I , thenα ′×α ′′ ≡ 0 andα is
an straight line with a constant tangent vectorν. In this case,< N,ν >= 0 and the
conormalN of ψε satisfies det[N,Nz,Nz̄] ≡ 0 on a neighborhood ofα which is a
contradiction.
But, if det[α ′,α ′′,ξ ] 6= 0 on I , thenU is uniquely determined byα and it may be
written as

U =
α ′×α ′′

det[α ′,α ′′,ξ ]
. (14)

Then,ψε is uniquely determined as in (12) by the holomorphic (split-holomorphic)
curve

Φε =
αz×αzz

det[αz,αzz,ξ ]
+ j ξ ×α, (15)

which is defined in a neighborhood ofI in Cε where the holomorphic (split-
holomorphic) extension ofα is well defined.

Theorem 2.Let α : I −→ R
3 be an analytic curve satisfyingdet[α ′,α ′′,ξ ] 6= 0 on

I. Then the following items hold

• there exists a unique definite improper affine map containingα(I) in its singular
set.

• if det[α ′,α ′′,α ′′′]2 6= det[α ′,α ′′,ξ ]4 on I, then there exists a unique indefinite
improper affine map containingα(I) in its singular set.

Moreover, in both casesα(s) is a cuspidal edge for all s∈ I.

Proof. From (12) and (14), we have that alongI the improper affine mapψε given
by Φε satisfies

ψε
z =

ε j
4
((Φ +Φ)×Φz) =

ε j
2

U ×U ′−
1
2

U ×
(
ξ ×α ′

)

=
1
2

α ′+
ε j
2

U ×U ′ =
1
2

α ′+
ε j
2

det[α ′,α ′′,α ′′′]

det[α ′,α ′′,ξ ]2
α ′

andψε contains the curveα with

ψε
s = α ′, ψε

t =−
det[α ′,α ′′,α ′′′]

det[α ′,α ′′,ξ ]2
α ′. (16)

Thus, from (4), (5) and (16), we get det[ψε
s ,ψε

t ,ξ ](s,0) = 0, ∀s∈ I , and
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d
dt

∣∣∣
(s,0)

det[ψε
s ,ψ

ε
t ,ξ ] = det[ψε

ts,ψ
ε
t ,ξ ](s,0)− ε det[ψε

s ,ψ
ε
ss,ξ ](s,0)

= det[α ′,α ′′,ξ ]
(
− ε −

det[α ′,α ′′,α ′′′]2

det[α ′,α ′′,ξ ]4
)
6= 0.

That is,α is a non degenerate singular curve and the kernel ofdψε at γ(s) = (s,0)
is spanned byη = (det[α ′,α ′′,α ′′′],det[α ′,α ′′,ξ ]2). We conclude that det(γ ′,η) =
det[α ′,α ′′,ξ ]2 6= 0 andα(s) is a cuspidal edge for alls∈ I from Theorem 1.

Fig. 1 Indefinite improper affine maps whose singular set containsα(s) = (cos(s),sin(s),as) with
a= 0.2 anda= 0

Fig. 2 Definite improper affine maps whose singular set containsα(s) = (cos(s),sin(s),as) with
a= 0.5 anda= 0

Theorem 3.Let α : I −→ R3 be an analytic curve satisfyingdet[α ′,α ′′,ξ ] 6= 0 on
I \{0} and such that0∈ I is a zero ofα ′, α ′×α ′′, det[α ′,α ′′,ξ ] anddet[α ′,α ′′,α ′′′]
of order1, 2, 2 and3 respectively. Then the following items hold

• there exists a unique definite improper affine map containingα(I) in its singular
set.

• if det[α ′,α ′′,α ′′′]2 6= det[α ′,α ′′,ξ ]4 on I \ {0}, then there exists a unique indefi-
nite improper affine map containingα(I) in its singular set.

Moreover, in both casesα(0) is a swallowtail.

Proof. Following the same arguments as in the proof of Theorem 2, we have that
α is a non degenerate singular curve ofψε and the kernel ofdψε at γ(s) = (s,0)
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is spanned byη = (1,det[α ′,α ′′,ξ ]2/det[α ′,α ′′,α ′′′]). But from the hypothesis, 0
is a zero of order 1 of det(γ ′,η) = det[α ′,α ′′,ξ ]2/det[α ′,α ′′,α ′′′] andα(0) is a
swallowtail from Theorem 1.

Fig. 3 Improper affine maps with three swallowtails

3.2 Isolated singularities

It is well known, see [1], that the conformal structure of theaffine metric around any
isolated singularity of a definite improper affine map is thatof an annulus. Moreover,
any definite improper affine map must be symmetric with respect to point reflection
in R3 through any isolated embedded singularity.
In the case of indefinite improper affine maps and when the conformal structure
of the affine metric around an isolated singularity is that ofan annulus we have as
application of the affine Björling problem that (see [1, 24]),

Theorem 4 ([1, 24]). Let U : R −→ R2 ×{1} be a 2π-periodic regular analytic
parameterization of a convex curve. Then, there exists a unique (definite) indefinite
improper affine mapψ , with a non removable isolated singularity, where the affine
conormal is tending to U. Moreover, it is embedded if and onlyif U (R) is a Jordan
curve.

Fig. 4 Improper affine maps with isolated singularities
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But in the indefinite case, one may construct improper affine maps with non remov-
able isolated singularities around which the conformal structure of the affine metric
is a punctured diskD∗. Actually, from (11) and (12) it is easy to see the following
result,

Theorem 5.Let A: D −→ C−1 be a split-holomorphic function satisfying Az = H2

for some split-holomorphic function H: D −→ C−1. If z0 ∈ D is an isolated zero
of F, then the indefinite improper affine mapψ : D −→R3 given, as in(12), by the
split-holomorphic curveΦ(z) = ( jz,A(z),1), is well defined onD∗ = D −{z0} and
it has a non removable isolated singularity at z0.

Remark 3.By using the Theorem 5 we can construct indefinite improper affine map
ψ :C−1 −→R3 with a finite number of prescribed isolated singularities atthe points
{z1, · · · ,zn}. For this is enough to consider a split-holomorphic functionH :C−1−→
C−1 with zeros at the points{z1, · · · ,zn}.

Fig. 5 Entire solutions on the puncture plane obtained by takingH(z) = z in Theorem 5

4 Global results

The aim of this section is to determine the global behavior ofembedded complete
definite improper affine maps such that any connected component of its singular
set is mapped on a plane inR3 and those with only a finite number of isolated
singularities.

4.1 The case of finitely many isolated singularities.

In [9] is proved the existence of entire solutions of (1) withany finite number of
isolated singularities. The situation is totally different for an embedded complete
definite improper affine map, where complete means that the affine metric is com-
plete outside a compact subset.

Actually, from the generalized symmetry principle one has,[1, Theorem 4.2],
any definite improper affine map must be symmetric with respect to point reflection
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in R3 through any isolated embedded singularity. As immediate consequence we
has

Theorem 6.Any embedded complete definite improper affine map whose singular
set is a finite number of isolated singularities must be rotational, see Figure 4.

Proof. An easy application of the Maximum Principle let us to see that any em-
bedded complete improper affine map with only one isolated singularity must be
rotational. Consequently, it is enough to prove that if a complete improper affine
mapψ : Σ −→ R3 has two different isolated singularitiesp1 and p2, then it has
infinitely many isolated singularities.

In fact, having in mind thatψ(Σ) is symmetric with respect the reflections,s1

ands2, in R3 through the pointsp1 andp2, respectively, we get that

s1(p2),s2(p1),s2 ◦ s1(p2),s1 ◦ s2(p1),s1 ◦ s2◦ s1(p2), · · ·

also are isolated singularities of the map.

4.2 Embedded complete definite improper affine map with a planar
singular set

We shall prove the following result:

Theorem 7.Let ψ : Σ −→ R3 be an embedded complete definite improper affine
map with a non-degenerate analytic singular setS ⊂ Σ such thatψ(S ) lies on a
planeΠ in R3. Thenψ is a snowman rotational improper affine map (see Figure
3.1 )

Proof. Let K ⊂ Σ be a compact containingS in its interior. Thanks to a classical
result of Huber, [10],Σ \ int(K ) is conformally a compact Riemann surface with
compact boundary and finitely many points removed which are the ends ofψ .

But ψ is an embedding and then each end is asymptotic to one of rotational
type (see [8]). ConsiderΣ+ a connected component ofψ(Σ)\ψ(S ), if we add to
Σ+ ∪ ∂Σ+ the planar bounded regions determined by the convex Jordan curves of
its boundary, we get a globally convex surfaceΣ̃+ in R3.
It is clear thanΣ+ has at least one end, otherwise adding its reflexion respect the
planeΠ we get a compact flat improper affine map without boundary, which is
impossible see [21].

ConsiderΦ = (B,A,1) the holomorphic curve associated toΣ+ and denote by
Σ+
∗ the corresponding improper affine map associate to the holomorphic curve

Φ∗(− jA,− jB,1), thenΣ+
∗ has the following properties:

1. the boundary ofΣ+
∗ is a singular pointa∈H3.

2. Having in mind that any embedded complete end is of rotational type, see [8], any
end ofΣ+

∗ is also embedded and complete, moreoverΣ+
∗ has the same number

of ends asΣ+.
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In other words,Σ+
∗ ∪{a} is a non compact complete definite improper affine map

with only one isolated singularity. An easy application of the Maximum Principle
says it must be rotational and, consequently,Σ+ is also rotational and then the The-
orem follows easily

Definite improper affine map with a planar singular set also are symmetric. Actually,
we have

Proposition 1. Any improper affine map containing an analytic singular curve lying
on a planeΠ in R3 must be symmetric with respect to the planeΠ .

Proof. Let ψ : Σ −→ R3 be the improper affine map having

α = (α1,α2,0) : I −→ R
3

as a singular curve with affine conormalV = (0,0,1) alongα, then from (15),ψ is
determined by the holomorphic (split-holomorphic) curveΦε(z) = (α1(z),α2(z),1),
z in a neighborhoodΩε of I in Cε where the holomorphic (split-holomorphic) exten-
sion ofα is well determined. Then, from the Riemann-Schwarz symmetry principle
we have thatαi(z) = αizand , we concludeψ(Ωε) is symmetric respect to the plane
Π in R3.

Using this fact, we can generalize the Theorem 7 as follows:

Theorem 8.Letψ : Σ −→R3 be an embedded complete improper affine map with a
non-degenerate analytic singular setS ⊂ Σ such that any connected component of
ψ(S ) lies on a plane inR3. Thenψ is a snowman rotational improper affine map.

Remark 4.There is a flat metric associated with (1) that connects the equation to
another interesting family of surfaces. Actually, if we consider onΩ de Riemannian
metric

ds2 = dx2+dy2, (17)

one may checks, from (2) and (17), thath satisfies the Codazzi-Mainardi equations
of classical surface theory with respect to the metricds2. In other words, the pair
(ds2,h) of real quadratic forms is a Codazzi pair onΩ (see for instance [2, 16] for
more information about Codazzi pairs). Moreover, from (1),(2) and (17),(ds2,h)
has constant extrinsic curvatureK(ds2,h) = ε and from the existence and unique-
ness theorem of surfaces in a space form we have that, locally, (Ω ,ds2) is isomet-
rically immersed in the 3-dimensional space formM3(−ε) of constant sectional
curvature−ε. Conversely, any flat surface inM3(−ε) has around any point a local
coordinates(x,y) such that its second fundamental form may be written as in (2)
whereφ is solution to (1).

In [22] you can find similar results to the above mentioned theorems for flat
surfaces in the hyperbolic space.
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