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Abstract
The Hessian one equation and its complex resolution provides an important tool in
the study of improper affine spheres. Conversely, the properties of these surfaces
play an important role in the development of geometric methods for the study of their
PDEs. We review some results of this good interplay and present our extension of the
classical Ribaucour transformations to this subject. In particular, we construct new
solutions and families of improper affine spheres, periodic in one variable, with any
even number of complete embedded ends and singular set contained in a compact
set. Also, we compare the Cauchy problem for the elliptic and non-elliptic Hessian
equation, with some results about their admissible singularities, mainly, isolated sin-
gularities and singular curves with cuspidal edges and swallowtails.

1 Introduction

• Affine spheres are the umbilical surfaces of the equiaffine theory
in R3, (SL(3,R)-invariants).

• Locally, they are the graphs of the solutions of some Monge-
Ampère equations.

• The study of their PDEs, with geometric methods, was initiated
by Calabi, Pogorelov and Cheng-Yau.

1.1 Preliminaries

If f : Ω ⊂ R2 −→ R3 is a solution of the Hessian one equation

fxxfyy − f2
xy = 1,

then its graph ψ = {(x, y, f (x, y)) : (x, y) ∈ Ω} is an improper affine
sphere in R3.

That is, ψ has constant affine normal

ξ =
1

2
∆hψ = (0, 0, 1),

where
h = κ

−1
4 σ

is the affine metric, (the SL(3,R)-invariant metric obtained with the
Gauss curvature κ and the second fundamental form σ of ψ).

In fact, from the Hessian one equation, the affine metric

h = fxxdx
2 + fyydy

2 + 2fxydxdy

(second fundamental form of a flat surface in H3) and the affine
conormal

N = κ
−1
4 Ne = (−fx,−fy, 1)

satisfy

1 =
√
det(h) = det(ψx, ψy, ξ) = det(Nx, Ny, N).

Also, h = −〈dN, dψ〉, 〈N, ξ〉 = 1 and 〈N, dψ〉 = 0.
Thus, for a conformal parameter z, we have h = 2ρ|dz|2 with

ρ = 〈N,ψzz〉 = −ı[ψz, ψz, ξ] = −ı[Nz, Nz, N ]

and ξ = (0, 0, 1). Hence,

ψz = ıN ×Nz, Nz = −ıξ × ψz

and
Φ =

1

2

(
N + ıξ × ψ

)
is a holomorphic curve, such that N = Φ + Φ.

In particular, ψ is an affine maximal surface ≡ Nzz = 0 and

ψzz = ıNz ×Nz = ρξ.

1.2 Weierstrass-type Representation Formulas

Theorem 1.1 Calabi (1988). If ψ is an affine maximal surface (im-
proper affine sphere), then

ψ = 2Re

∫
ı(Φ + Φ)× Φzdz,

with φ a holomorphic (planar) curve and −ı[Φ + Φ,Φz,Φz] > 0.

Theorem 1.2 Ferrer, Martı́nez, M (1996). If ψ is an improper affine
sphere in R3 ≡ C× R, then

ψ =
(
G + F ,

1

2
|G|2 − 1

2
|F |2 + Re(GF )− 2Re

∫
FdG

)
with F and G holomorphic functions, such that N = (F −G, 1) and
h = |dG|2 − |dF |2 > 0.

Examples 1.3 Rotational IAS: G = z, F = a
z , |z|

2 > |a|.

Isolated singularity (a < 0), complete (a = 0), cuspidal edge a > 0.

1.3 Applications

• An extension of a theorem by Jörgens and a maximum principle
at infinity for IAS, (Ferrer, Martı́nez, M 99).

f (x, y) = E(x, y) + a log |z|2 + 0(1).

• The space of IAS with fixed compact boundary, (FMM 00).

• Flat surfaces in H3, (Gálvez, Martı́nez, M 00).

• Flat fronts in H3, with admissible singularities, (isolated singu-
larities, cuspidal edges and swallowtails), (Kokubu, Umehara,
Yamada 04).

• Improper affine maps, with admissible singularities, where
|dG| = |dF | 6= 0, (Martı́nez 05). That is, h = |dG|2 − |dF |2 ≥ 0,
but

|dΦ|2 = 2(|dG|2 + |dF |2) > 0.

• The space of solutions to the Hessian one equation in the finitely
punctured plane, (Gálvez, Martı́nez, Mira 05). Explicit construc-
tion for two singularities, with the annular Jacobi theta functions.

• The Cauchy problem for IAS and the Hessian one equation,
(Aledo, Chaves, Gálvez 07). Isolated singularities are in 1-1
correspondence with planar convex analytic Jordan curves.

•Complete flat surfaces in H3 with two isolated singularities,
(Corro, Martı́nez, M 10).

•Generalized Weyl problem, (Gálvez, Martı́nez, Teruel 14).

2 Ribaucour transformations

Definition 2.1 Two improper affine maps ψ, ψ̃ : Σ −→ R3 are R-
associated if there is a differentiable function g : Σ −→ R such
that

1. (ψ + gN)×ξ = (ψ̃ + gÑ)×ξ.

2. dGdF = dG̃dF̃ .

Theorem 2.1 (Martı́nez, M, Tenenblat 15). Equivalently

(F̃ , G̃) =
(
F +

1

cR
,G + R

)
,

where c ∈ R − {0} and R is a holomorphic solution of the Riccati
equation

dR + dG = cR2dF
(
⇐⇒ d

( 1

cR

)
+ dF =

1

cR2
dG
)
.

Consequences 2.2 :

• ψ̃ has a new end at po if and only if po is either a zero or a pole
of R.

(Q(po) 6= 0 =⇒ complete, embedded and of revolution type).

• The singular set of ψ̃ is the nodal set of the harmonic function
log |dG| − log(c2|R|4|dF |).
• If ψ is helicoidal, then FG = −a2 and

R =
exp(z)

2ac

1 + b + (1− b)k exp(bz)

1 + k exp(bz)

with a, k ∈ C, c ∈ R− {0} and b =
√

1 + 4a2c 6= 0.
In particular, if

b =
n

m
∈ Q− {0, 1}

is irreducible, then ψ̃ is 2mπ-periodic in one variable and has 2n
complete embedded ends of revolution type.

Examples 2.3 R-helicoidal

(n,m) = (1, 3), (2, 1) and (3, 2).

The singular set is contained in a compact set.

3 Cauchy problem

Björling-type problem 3.1 Find all (definite and indefinite) IAS
containing a curve α in R3 with a prescribed affine conormal U
along it.

1. Note that h definite implies

0 < h(α′(s), α′(s)) = −〈α′(s), U ′(s)〉,

with {α, U} analytic curves, (Aledo, Chaves, Gálvez 07).

2. In the indefinite case, 〈α′, U ′〉 vanishes when α′ is an asymptotic
(also known as characteristic) direction.

3.1 Non-characteristic Cauchy problem

• First, we exclude asymptotic (characteristic) data.

•We consider
fxxfyy − f2

xy = ε = ±1

and the ε-complex numbers (Inoguchi, Toda 04)

Cε = {z = s + jt : s, t ∈ R, j2 = −ε, j1 = 1j}.

Thus

Φ =
1

2

(
N + jξ × ψ

)
=

1

2

(
− fx − jy,−fy + jx, 1

)
is a holomorphic curve and

ψ = 2Re

∫
j(Φ + Φ)× Φzdz.

• If ψ : Σ −→ R3 is an IAS with ξ = (0, 0, 1) and β : I −→ Σ is a
curve, then α = ψ ◦ β, U = N ◦ β and λ = −〈α′, U ′〉 satisfy 1 = 〈ξ, U〉,

0 = 〈α′, U〉,
λ = 〈α′′, U〉.

Definition 3.1 A pair of (analytic) curves α, U : I −→ R3 is a
non-characteritic admissible pair if verify the above conditions with
λ : I −→ R+.

Theorem 3.1 (M 14).

1. If {α, U} is a non-characteristic admissible pair, then there exits
a unique IAS ψ containing α(I) with affine conormal U along α.

2. There exits a unique solution to the Cauchy problem fxxfyy − f2
xy = ε,

f (x, 0) = a(x), a′′(x) > 0,
fy(x, 0) = b(x).

Consequences 3.2 :

1. If [α′, α′′, ξ] 6= 0, then α and λ determine

U =
α′ × (α′′ − λξ)

[α′, α′′, ξ]
and ψ.

2. In particular, any revolution IAS can be recovered with one their
circles α and the affine metric along it. Moreover, α is geodesic
when λ = r2 and ε = −1.

3. In general, α is geodesic of some IAS if and only if

[α′, α′′, ξ] = −ε[U ′, U ′′, ξ],

with λ = m ∈ R+.

Examples 3.3 IAS admitting a geodesic planar curve

Any symmetry of a non-characteristic admissible pair induces a
symmetry of the IAS generated by it.

Examples 3.4 IAS which are invariant under a one-parametric
group of equiaffine transformations

Isolated singularities and cuspidal edges.

Where are the swallowtails?

3.2 Prescribed singular curves

Theorem 3.5 If [α′, α′′, α′′′]2 6= −ε[α′, α′′, ξ]4 6= 0, then there exists a
unique improper affine map ψ with α as (cuspidal edge) singular
curve.

Theorem 3.6 If [α′, α′′, α′′′]2 6= −ε[α′, α′′, ξ]4 6= 0 on I − {0} and 0 is
a zero of α′, α′ × α′′, [α′, α′′, ξ] and [α′, α′′, α′′′] of order 1, 2, 2 and
3 respectively, then α(0) is a swallowtail of ψ.

Examples 3.7 Three swallowtails

Improper affine map, flat front (Martı́nez, M 14).

3.3 Characteristic Cauchy problem

• The uniqueness fails when α(s) = ψ(u(s), v(s)) is tangent to an
asymptotic curve.

• Two solutions agree on a domain which contains α(I) except its
characteristic points without sign (Martı́nez, M 15).
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