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Abstract

In this paper we give a global conformal representation for flat surfaces with
flat normal bundle in the standard flat Lorentzian space form L4. Particularly,
flat surfaces in the hyperbolic 3-space, the de Sitter 3-space, the null cone and
other numerous examples are described.
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1 Introduction

This paper grew out of the authors’s investigations into theory of surfaces which
could be represented in terms of holomorphic data on Riemann surfaces. Famous
examples are given by minimal surfaces in the euclidean 3-space, (see [6]), surfaces
of mean curvature one and flat surfaces in the hyperbolic 3-space (see [2], [5]). In all
these cases, the discovery of new examples and the recent progress in the study of
global properties has been motivated by the existence of a conformal representation
like the Weierstrass representation.

When the codimension is two, the problem seems to be more difficult than one
could expect. Here, we shall consider surfaces in the standard flat Lorentzian space
form L4.

Our main goal in this paper is to study (globally) flat surfaces Σ in L4 with flat
normal bundle. This particular kind of surfaces have also been studied in a local way
(see [4]). We show there exists a canonical conformal structure on Σ such that its
Gauss map (see Definition 1) is conformal. Then we prove a conformal representation
result that lets us recover our immersion by using a pair (f, ω) consisting of a
holomorphic function f and a holomorphic 1-form ω, ω 6= 0 everywhere and a closed
1-form θ.
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By using our representation we describe numerous examples of complete flat sur-
faces with flat normal bundle and characterize those who lies in some hyperquadrics
of L4.

2 Main Result

Let L4 be the Minkowski 4-space endowed with linear coordinates (x0, x1, x2, x3) and
the scalar product, 〈., .〉 given by the quadratic form −x2

0 +x2
1 +x2

2 +x2
3, and denote

by N3
+ its positive null cone. Then N3

+/R+ inherits a natural conformal structure
and it can be regarded as the boundary S2

∞ of the hyperbolic 3-space H3 in L4.
We also consider L4 identified with the space of 2×2 Hermitian matrices, Herm(2), in
the standard way (see [2], [5]). Under this identification, one has 〈m,m〉 = − det(m),
for all m ∈ Herm(2), and the complex Lie group SL(2,C) of 2×2 complex matrices
with determinant 1 acts naturally on L4 by the representation

g ·m = gmg∗,

where g ∈ SL(2,C) , g∗ = tg and m ∈ Herm(2). Consequently, SL(2,C) preserves
the scalar product and orientations.
The space N3

+ is seen as the space of positive semi-definite 2× 2 Hermitian matrices
of determinant 0 and its elements can be written as a ta, where ta = (a1, a2) is a non-
zero vector in C2 uniquely defined up to multiplication by an unimodular complex
number. The map a ta−→[(a1, a2)] ∈ CP1 becomes the quotient map of N3

+ on S2
∞

and identifies S2
∞ with CP1. So the natural action of SL(2,C) on S2

∞ is the action
of SL(2,C) on CP1 by Möbius transformations.

Now, we denote by Σ a simply connected surface and ψ : Σ−→L4 an immer-
sion with flat induced metric ds2 =< dψ, dψ >. Then, there exists an isothermal
coordinate immersion x + iy : Σ−→C such that

ds2 = dx2 + dy2.(1)

Lemma 1 Assume that ψ has flat normal bundle (e.g. R⊥ ≡ 0). Then there exist
an oriented orthonormal frame {ξ, ξ̃} of T⊥Σ and functions φ,φ̃ : Σ−→R, such that
the following structure equations hold,





ψxx = φxxξ + φ̃xxξ̃,

ψxy = φxyξ + φ̃xy ξ̃,

ψyy = φyyξ + φ̃yy ξ̃,

{
ξx = −φxxψx − φxyψy,
ξy = −φxyψx − φyyψy,

{
ξ̃x = φ̃xxψx + φ̃xyψy,

ξ̃y = φ̃xyψx + φ̃yyψy.
(2)

Moreover the integrability conditions for this system are

det(∇2φ) = det(∇2φ̃), φ̃xy(φxx − φyy) = φxy(φ̃xx − φ̃yy),(3)
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where by (∇2·), (·)x and (·)y we shall denote the hessian matrix and the usual partial
derivatives with respect to x and y, respectively.

Proof : We can choose an orthonormal frame {η, η̃} for the Lorentzian normal bundle
which satisfies

< η, η >= − < η̃, η̃ >= 1, < η, η̃ >= 0.

Then from (1), the structure equations of the immersion are given by





ψxx = Eη + Ẽη̃,

ψxy = Fη + F̃ η̃,

ψyy = Gη + G̃η̃,

{
ηx = −Eψx − Fψy − Aη̃,
ηy = −Fψx −Gψy −Bη̃,

{
η̃x = Ẽψx + F̃ψy − Aη,

η̃y = F̃ψx + G̃ψy −Bη,
(4)

for some smooth functions E, F , G, Ẽ, F̃ , G̃, A and B on Σ. From the Ricci and
Codazzi-Mainardi’s equations and using that R⊥ ≡ 0, we have

Bx − Ay = F̃ (E −G)− F (Ẽ − G̃) = 0.(5)

Thus, there exists µ : Σ−→R such that dµ = Adx + Bdy. The lemma follows from
(5) and the integrability conditions of the structure equations after rewritting (4)
with the new orthonormal frame {ξ, ξ̃}, where

ξ = cosh(µ)η + sinh(µ)η̃, ξ̃ = sinh(µ)η + cosh(µ)η̃.
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Definition 1 For every oriented orthonormal frame {η, η̃} of T⊥Σ, the map G =
(G+,G−) : Σ−→S2

∞ × S2
∞, where G+ = [η + η̃] and G− = [η − η̃] is well defined and

it is called Gauss map of the immersion.

Lemma 2 If G is regular (e.g. dG 6= 0 everywhere), then there exists a canonical
conformal structure on Σ such that G, G+ and G− are conformal maps.

Proof : Consider the complex functions, z, z̃, ϕ : Σ−→C given by

z = u + iv = (φ + φ̃)x + i(φ + φ̃)y,

z̃ = ũ + iṽ = (−φ + φ̃)x + i(φ− φ̃)y,(6)

ϕ = ϕ1 + iϕ2 = φ̃xxφyy − φxxφ̃yy + 2i(φ̃yyφxy − φyyφ̃xy).

Then, from (3) and (6), we have

∆+dz̃ − ϕdz = 0, ∆−dz + ϕdz̃ = 0, ∆+∆− + ϕϕ = 0,(7)
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where ∆+ = det(∇2(φ + φ̃)) and ∆− = det(∇2(φ− φ̃)).
Let denote by U (respectively, Ũ), the set of points where z (respectively, z̃) is a
local diffeomorphism. Combining again (3) and (6) we obtain

∂ũ

∂u
=

∂ṽ

∂v
=

ϕ1

∆+
, −∂ũ

∂v
=

∂ṽ

∂u
=

ϕ2

∆+

on U ∩ Ũ . Since G is regular, U ∪ Ũ = Σ and hence {(U, z), (Ũ , z̃)} induces a
canonical conformal structure on Σ. Now, from (7), there exists a meromorphic
function f : Σ−→C, such that,

dz̃ = fdz, with f = ϕ/∆+ = −∆−/ ϕ.(8)

Moreover, from (2), (6) and (8), we have

2(ξ̃ − ξ)z = ψx − iψy, 2(ξ̃ − ξ)z̃ =
1

f
(ψx − iψy),

2(ξ̃ + ξ)z̃ = ψx + iψy, 2(ξ̃ + ξ)z = f(ψx + iψy),

4(ξ̃ − ξ)zz = ξ̃ + ξ, 4(ξ̃ + ξ)z̃z̃ = ξ̃ − ξ,

(9)

which together with (1), let us to conclude that G, G+ and G− are conformal maps.
2

Remark 1 If f ≡ 0, then from (8) and (9), z̃ is constant, U = Σ and ν = ξ + ξ̃
is a constant null vector, that is, ψ(Σ) lies on a degenerate hyperplane with normal
vector ν. In this case, from (1) and (2) we can write the immersion as

ψ = φν + xA + yÃ + C0,(10)

for some constant vectors A, Ã, C0 in L4 such that

< A, ν >=< Ã, ν >=< A, Ã >= 0, |A| = |Ã| = 1.

Theorem (Conformal representation)

i) Let Σ be a simply connected surface and ψ : Σ−→L4 a flat immersion with flat
normal bundle. If the Gauss map G is regular and on Σ we consider the conformal
structure of Lemma 2, then either ψ(Σ) lies on a degenerate hyperplane and ψ is
as in (10) or there exists a holomorphic curve g : Σ−→ SL(2,C), a closed 1-form
θ and a pair (f, ω) consisting of a holomorphic function f , which does not vanish
identically, and a holomorphic 1-form ω on Σ, ω 6= 0 everywhere, satisfying

g−1dg =

(
0 f
1 0

)
ω,(11)

θ = bfω + aω, |bfω| 6= |aω| on Σ,(12)
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for some smooth real functions a, b : Σ−→R.
Moreover, the immersion can be recovered as

ψ = gΩg∗ + Ω̃,(13)

where

Ω =

(
a 0
0 b

)
and dΩ̃ + gdΩg∗ = 0.(14)

ii) Conversely, let Σ be a Riemann surface and (f, ω) a pair as above. If g :
Σ−→ SL(2,C) is a holomorphic curve and θ a closed 1-form such that g−1dg and θ
are as in (11) and (12), then ψ = gΩg∗ + Ω̃ : Σ−→L4, (Ω and Ω̃ as in (14)), is a
flat immersion with flat normal bundle and regular Gauss map.

Proof : It is clear from (8) that Σ\U (respectively, Σ\ Ũ) is the set of poles (respec-
tively, of zeros) of f . Then, it is not restriction to assume that U is dense in Σ and
z̃ is not a global coordinate immersion. (Otherwise, Ũ = Σ and the proof follows
with a similar argument by taking f̃ = 1/f instead of f and 2ω̃ = dz̃ instead of 2ω).

Since Σ is simply connected we have a global conformal parameter ζ. Thus, from
(8) and (9), there exists a holomorphic function h : Σ−→C, h 6= 0 on U , such that

dz = 2hdζ, dz̃ = 2fhdζ,

(ξ̃ − ξ)ζ = h(ψx − iψy), (ξ̃ + ξ)ζ = fh(ψx + iψy),

(ξ̃ − ξ)
ζζ

= |h|2(ξ̃ + ξ), (ξ̃ + ξ)
ζζ

= |fh|2(ξ̃ − ξ).
(15)

Using that G− and G+ are conformal maps, (15) and arguing as in [5] we see that
there exists a holomorphic curve g : Σ−→ SL(2,C) given by

g =


 C 1

h
Cζ

D 1
h
Dζ


 ,(16)

for some holomorphic linear independent solutions, C, D, of the following ordinary
linear differential equation

LX = Xζζ −
hζ
h

Xζ − fh2X = 0,(17)

or equivalently, g satisfies,

g−1dg =

(
0 f
1 0

)
hdζ,(18)
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such that
ξ̃ = gg∗, ξ = ge3g

∗, ψx = ge1g
∗, ψy = ge2g

∗,(19)

where

e1 =

(
0 1
1 0

)
, e2 =

(
0 −i
i 0

)
, e3 =

(
−1 0
0 1

)
.(20)

By writting the immersion as

ψ = mxψx + myψy + αξ − βξ̃,(21)

where 2m =< ψ, ψ >, α =< ψ, ξ >, β =< ψ, ξ̃ > and using (15) we have

(β − α)ζ = h(mx − imy),

(β + α)ζ = fh(mx + imy),(22)

(h(β + α))ζ = (fh(β − α))
ζ
.

From (19), (20), (21) and (22) we can recover the immersion as

ψ = g


 −(α + β) 1

h
(β − α)ζ

1
h
(β − α)

ζ
(α− β)


 g∗.(23)

If f vanishes identically on Σ, then from Remark 1, ψ is as in (10).
In other case, we observe that from (22) the zeros of h (respectively, fh) are also
zeros of (β − α)

ζζ
(respectively, (β + α)

ζζ
) and its partial derivatives respect to ζ.

Thus, there exist smooth real functions a, b : Σ−→R given by

|fh|2b = (β + α)
ζζ
− |fh|2(β − α), |h|2a = (β − α)

ζζ
− |h|2(β + α),(24)

such that θ = bfω + aω is closed, where ω = hdζ = 1
2
dz. Combining, (18), (23) and

(24) we see that (11), (13) and (14) hold.
It remains to prove that ω never vanishes on Σ. To see that, from (11), (13) and
(14) we have

ds2 = −det(dψ) = −det

(
0 θ
θ 0

)
= θθ(25)

and then, using the above expression of θ, the induced volume element of ds2 is
given by √

ds2 dζdζ =
∣∣∣ a2|h|2 − b2|fh|2

∣∣∣ dζdζ.(26)

Since z̃ is not a global coordinate immersion, (26) gives |ah| > |bfh| ≥ 0, that is,
(12) holds, ω 6= 0 everywhere, U = Σ and f is holomorphic, which concludes the
proof of i).

The converse follows by straight calculations from our hypothesis. 2
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Definition 2 The pair (f, ω) and the 1-form θ in the above Theorem will be called
Weierstrass data and metric 1-form associated to the immersion ψ.

3 Completeness and Some Examples

We show in this section how the complex representation given in §2 can be used for
constructing examples of complete flat surfaces in L4.
Recall from (26) that we can assume |bf | < a. Moreover, using (12) and (25) we
have that the induced metric ds2 satisfies

(a− |bf |)2|ω|2 ≤ ds2 ≤ (a + |bf |)2|ω|2 < 4a2|ω|2.(27)

3.1 Flat surfaces in hyperquadrics

Consider M3(c) = {v ∈ L4 | < v, v >= c}, that is, the hyperbolic 3-space H3 for
c = −1, the de Sitter 3-space S3

1 for c = 1 and the null cone N3 for c = 0.
Let Σ be a simply connected surface and ψ̃ : Σ−→M3(c) an immersion with flat
induced Riemannian metric. If i : M3(c)−→L4 denotes the usual inclusion, then it
is not difficult to prove that ψ = i ◦ ψ̃ has flat normal bundle and regular Gauss
map G.

Since we can take ξ̃ = ψ̃ for c = −1, ξ = −ψ̃ for c = 1 and ξ̃ − ξ = ψ̃ for
c = 0, from (2) and (9) we see that the conformal structure given in Lemma 2 is the
induced by the second fundamental form of ψ̃. Moreover, from (19) and (20), there
exists a holomorphic curve g : Σ−→ SL(2,C) satisfying (11) such that

ψ̃ = g

(
a 0
0 b

)
g∗,(28)

where a = b = 1 if c = −1, a = −b = 1 if c = 1 and a = 2, b = 0 if c = 0.
Observe that from (23), the above expression also holds when f vanishes identi-

cally on Σ. Thus, our representation extends the one given in [5] for flat surfaces in
H3.

Complete flat surfaces in M3(c) can be described in an easy way. In fact, if ψ̃ is
a complete immersion, then from (27) and (28), ds2 ≤ 4|ω|2. Therefore, Σ is con-
formally equivalent to C (see [6]) and we can assume that ω = dζ, for some global
parameter ζ. Since |bf | < a, one gets either b = 0 or f = d0 for some constant
d0 ∈ C.

1. When b=0, c = 0 and ds2 = 4|ω|2 is complete if and only if f is an entire
holomorphic function.
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2. If b 6= 0 and d0 = 0, one solution of (11) is given by

g(ζ) =

(
1 0
ζ 1

)

and the flat immersions are, up to isometries,

ψ(ζ) =

(
a aζ
aζ a|ζ|2 + b

)
.

3. If b, d0 6= 0, we consider the new parameter z = d1ζ, with d2
1 = d0. In this

case, a solution of (11) is

g(z) =
1√
2d1

(
e−z −d1e

−z

ez d1e
z

)
.

And the immersion is given, up to isometries, by

ψ(z) =
1

2
√
|d0|

(
(a + b|d0|) e−(z+z) (a− b|d0|) e−z+z

(a− b|d0|) ez−z (a + b|d0|) ez+z

)
.

Proposition 1 Let Σ be a simply connected surface and ψ : Σ−→L4 a flat im-
mersion with flat normal bundle and a regular Gauss map. Let us denote by H and
σH(., .) = < −dH(.), . > the mean curvature vector of the immersion and its induced
bilinear form. Then c0 trace(σH) + c1 det(σH) = 0, for some constants c0 and c1 if
and only if, up to a translation in L4, ψ(Σ) lies in a degenerate hyperplane of L4 or
in M3(c) for some c.

Proof : Let (f, ω) be the Weierstrass data associated to ψ, then from (11), (13), (14),
(19) and (20) we have

ξζ =
|f |2b + a

b2|f |2 − a2
ψζ −

(a + b)fh2

(b2|f |2 − a2)|h|2ψ
ζ
,(29)

ξ̃ζ =
|f |2b− a

b2|f |2 − a2
ψζ +

(b− a)fh2

(b2|f |2 − a2)|h|2ψ
ζ
,(30)

and the mean curvature vector of the immersion is given by

H = − |f |2b + a

b2|f |2 − a2
ξ − −|f |2b + a

b2|f |2 − a2
ξ̃.(31)
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Now, combining the above equations with (11), (13), (14), (19) and (20) we also see
that

det(σH) = − |f |2
(b2|f |2 − a2)2

, trace(σH) = − |f |2ab

(b2|f |2 − a2)2
.(32)

Therefore, c0 trace(σH) + c1 det(σH) = 0 if and only if f ≡ 0 or ab is constant.
In the first case, from Remark 1, ψ lies in a degenerate hyperplane and it is given

as in (10). If ab is constant, using that θ is closed one sees easily that a and b are
also constant and the result follows from (13) and (14). 2

3.2 Other examples

By using (27) we can also describe other families of complete flat surfaces which are
not contained in M3(c). For instance, since θ is closed, when f is constant, f ≡ 1,
one has b(ζ, ζ) = p(ζ + ζ)− q(ζ − ζ) and a(ζ, ζ) = p(ζ + ζ) + q(ζ − ζ) + c3 > 0, for
some constant c3. Thus, for any p and q bounded from below, we can choose c3 in
order to obtain a complete flat surface.
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