Relación de problemas 3

Matemáticas. Curso 2020-21

1. Calcula las siguientes integrales indefinidas:

1)
$$\int \frac{dx}{x^2}$$

2)
$$\int (2x^2 - 5x + 3) dx$$

2)
$$\int (2x^2 - 5x + 3) dx$$
 3) $\int \frac{x^3 + 5x^2 - 4}{x^2} dx$

$$4) \quad \int \frac{x^2}{\sqrt[4]{x^3 + 2}} \, dx$$

$$5) \quad \int \frac{dx}{2x-3}$$

$$6) \qquad \int e^{2x} \, dx$$

$$7) \quad \int \frac{dx}{1 + e^x}$$

8)
$$\int \cos(3x) \, dx$$

9)
$$\int \frac{\cos(x)}{\sin^3(x)} dx$$

10)
$$\int \operatorname{tg}(x) dx$$

11)
$$\int \operatorname{tg}^2(x) \, dx$$

12)
$$\int x \operatorname{tg}(x^2) dx$$

$$13) \quad \int \frac{dx}{\sqrt{4-x^2}}$$

$$14) \quad \int \frac{dx}{9+x^2}$$

$$15) \quad \int \frac{dx}{4x^2 + 9}$$

16)
$$\int \frac{x+1}{x^2-4x+8} dx$$
 17) $\int \frac{2x+3}{x^2+x+1} dx$

17)
$$\int \frac{2x+3}{x^2+x+1} \, dx$$

18)
$$\int x \operatorname{sen}(x) dx$$

19)
$$\int \arctan(x) dx$$
 20)
$$\int \frac{dx}{x^2 - 4}$$

$$20) \quad \int \frac{dx}{x^2 - 4}$$

$$21) \quad \int x^2 \, \ln(x) \, dx$$

22)
$$\int \arcsin(x) dx$$
 23)
$$\int x^2 e^{2x} dx$$

$$23) \quad \int x^2 e^{2x} \, dx$$

24)
$$\int \operatorname{sen}^2(x) dx$$

$$25) \quad \int \frac{3x+5}{x^3-x^2-x+1} \, dx$$

25)
$$\int \frac{3x+5}{x^3-x^2-x+1} dx$$
 26) $\int \frac{3x^2+2x+3}{(x-1)^2(x+1)^2} dx$ 27) $\int \frac{x^3}{x^3+2x^2+x+2} dx$

$$27) \quad \int \frac{x^3}{x^3 + 2x^2 + x + 2} \, dx$$

- 2. El ritmo de crecimiento de una población de bacterias es proporcional a \sqrt{t} , donde t es el tiempo medido en días. El tamaño inicial de la población es de 500. Al cabo de un día, la población es de 600. Calcula la población a los 7 días.
- 3. (Vaciado de un depósito) En general, si un objeto es desplazado por una fuerza F a lo largo de una distancia D, el trabajo W realizado por esa fuerza se define como W = FD. Supongamos ahora que tenemos un depósito cilíndrico, de r=5 metros de radio y h=10metros de altura que está lleno de agua hasta 6 metros de profundidad (el agua se supone con densidad 1). Pretendemos calcular el trabajo necesario para vaciar el depósito por succión. Cada "capa" de altura t y grosor dt requiere un trabajo para ser vaciada de $2\pi r (10-t) dt$.

Por tanto, el trabajo total quedará:

$$2\pi r \int_0^6 (10 - t) \, dt.$$

Calcúlese dicha integral.

- 4. Calcula el área comprendida entre la gráfica $y = x^3 6x^2 + 8x$ y el eje de abcisas.
- 5. Calcula el área comprendida entre la gráfica de las funciones $f(x) = x^2$ y $g(x) = 2\sqrt{x}$.
- 6. Calcula el área de la intersección de los círculos $x^2 + y^2 = 4$, $x^2 + y^2 = 4x$.
- 7. Calcula el área comprendida entre las gráficas $y=e^x$ e $y=e^{-x}$, y las rectas verticales x=0 y x=2.
- 8. Calcula el área limitada por la curva xy=36, el eje de abcisas y las rectas x=6 y x=12.