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Central sequences

Definition A bounded sequence (x,) in a C*-algebra A is central if

[xn,a] — 0, foranyac A.
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Central sequences

Definition A bounded sequence (x,) in a C*-algebra A is central if

[xn,a] — 0, foranyac A.
Separable C*-algebra setting: I[xn, a]|| — O

Von Neumann algebra setting: I[xn, a]||2 — O

Example Take z, € Z(A), b, — 0. Then
(zn + bn)

is a central sequence. Such central sequences are called trivial.
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Central sequences

Definition A bounded sequence (x,) in a C*-algebra A is central if

[Xn, a] =4 0, for any a € A.
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Central sequence algebras

Ao = {(xn) | xn € A, sup||xn|| < o0}
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Central sequence algebras

Ao = {(xn) | xn € A, sup||xn|| < o0}

Cw = {(xn) € Ao | Xn = 0}
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Central sequence algebras

Ao = {(xn) | xn € A, sup||xn|| < o0}
Cw =A{(xn) € Ax | Xn —w 0}

Aw = Aoo/co.u
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Central sequence algebras

Ao = {(xn) | xn € A, sup||xn|| < o0}
Cw =A{(xn) € Ax | Xn —w 0}

Av =Ax/Cu, T:Ax —> Ay
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Central sequence algebras

Ao = {(xn) | xn € A, sup||xn|| < o0}
Cw =A{(xn) € Ax | Xn —w 0}

Av =Ax/Cu, T:Ax —> Ay

A=A, a—7((a aa,...))
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Central sequence algebras

Ao = {(xn) | xn € A, sup||xn|| < o0}
Cw = {(xn) € Ao | Xn = 0}

Av =Ax/Cu, T:Ax —> Ay

A=A, a—7((a aa,...))

Definition Central sequence algebra F(A) of a unital C*-algebra A
is

I !/
F(A) = A () As.
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Central sequence algebras: non-unital case

If A'is non-unital, A’ A, is too big.
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Central sequence algebras: non-unital case

If A'is non-unital, A’ A, is too big.

Ann(A, Ay) == {m((xn)) | ||xnal| = 0, ||axa|| — O, for any a € A}
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Central sequence algebras: non-unital case

If A'is non-unital, A’ A, is too big.

Ann(A, Ay) == {m((xn)) | ||xnal| = 0, ||axa|| — O, for any a € A}

E.g. let (e,), (e],) be two approximate units. Then

7((en — €,)) € Ann(A, Ay).
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Central sequence algebras: non-unital case

If A'is non-unital, A’ A, is too big.

Ann(A, Ay) == {m((xn)) | ||xnal| = 0, ||axa|| — O, for any a € A}

E.g. let (e,), (e],) be two approximate units. Then

7((en — €,)) € Ann(A, Ay).

Definition For a non-unital C*-algebra A, its central sequence
algebra F(A) is

- (A’ﬂA )/AnnA AL).
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von Neumann algebra

Let A be a /l1-factor.
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von Neumann algebra

Let A be a /l1-factor.

F(A) is trivial < A has no property I

F(A) is abelian & A% A® R (McDuff 69)
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/I;-factors separable C*-algebras

F(A) is trivial | No property I

F(A)is abelian | AZAQR
(McDuff 69)
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/I;-factors separable C*-algebras

F(A) is trivial | No property I Continuous trace C*-algebras
(Akemann and Pedersen 79)

F(A)is abelian | AZAQR
(McDuff 69)
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/I;-factors separable C*-algebras

F(A) is trivial | No property I Continuous trace C*-algebras
(Akemann and Pedersen 79)

F(A)is abelian | AZAQR
(McDuff 69) ?
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/l;-factors separable C*-algebras

F(A) is trivial | No property I Continuous trace algebras
(Akemann and Pedersen 79)

F(A) is abelian | A2 ARQR
(McDuff 69) ?

J. Phillips 1988:  If A is unital and either simple or A D K(H),
then F(A) is not abelian.
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Central sequence algebras in the classification program

Kirchberg 2006 ...
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Central sequence algebras in the classification program

Kirchberg 2006 ...

Properties of A «~  properties of F(A)
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Central sequence algebras in the classification program

Kirchberg 2006 ...

Properties of A «~  properties of F(A)

E.g. a separable nuclear A is simple purely infinite <  F(A)is
simple and F(A) 2 C.
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Central sequence algebras in the classification program

Kirchberg 2006 ...

Properties of A «~  properties of F(A)

E.g. a separable nuclear A is simple purely infinite <  F(A)is
simple and F(A) 2 C.

E.g. a unital separable A is Z-absorbing (AZX A® Z) &
Z — F(A).
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/l1-factors separable C*-algebras

F(A) is trivial | No property I Continuous trace algebras
(Akemann and Pedersen 79)

F(A)is abelian | AZAQR
(McDuff 69) 7

J. Phillips 1988:  If A is unital and either simple or A > K(H),
then F(A) is not abelian.
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/l1-factors separable C*-algebras

F(A) is trivial | No property I Continuous trace algebras
(Akemann and Pedersen 79)

F(A) is abelian | AZ2AQR
(McDuff 69) 7

J. Phillips 1988:  If A is unital and either simple or A > K(H),
then F(A) is not abelian.

Theorem (Ando-Kirchberg 2014)
If Ais not type |, then F(A) is not abelian.
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/l1-factors separable C*-algebras

F(A) is trivial | No property I Continuous trace algebras
(Akemann and Pedersen 79)

F(A) is abelian | AZ2AQR
(McDuff 69) 7

J. Phillips 1988:  If A is unital and either simple or A > K(H),
then F(A) is not abelian.

Theorem (Ando-Kirchberg 2014)
If Ais not type |, then F(A) is not abelian.

Ozawa 2014: different proof in unital case.
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Question: When is F(A) abelian?
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Question: When is F(A) abelian? n-subhomogeneous?
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/l1-factors separable C*-algebras

F(A) is trivial | No property I Continuous trace algebras
(Akemann and Pedersen 79)

F(A) is abelian | AZ2AQR
(McDuff 7?) 7

J. Phillips 1988:  If A is unital and either simple or A > K(H),
then F(A) is not abelian.

Theorem (Ando-Kirchberg 2014)
If Ais not type |, then F(A) is not abelian ( not subhomogeneous).

Ozawa 2014: different proof in unital case.
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Question: When is F(A) abelian? n-subhomogeneous?
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Question: When is F(A) abelian? n-subhomogeneous?

Can assume A is type |.
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Definition A C*-algebra A is type | (or GCR) if for any 7 € A,

7(A) 2 K(H).
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Definition A C*-algebra A is type | (or GCR) if for any 7 € A,

7(A) 2 K(H).

Example: Toeplitz algebra.
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Definition A C*-algebra A is type | (or GCR) if for any 7 € A,

7(A) 2 K(H).

Example: Toeplitz algebra.

Definition A C*-algebra A is CCRif for any 7 € A,
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Definition A C*-algebra A is type | (or GCR) if for any 7 € A,

7(A) 2 K(H).

Example: Toeplitz algebra.

Definition A C*-algebra A is CCRif for any 7 € A,

Example: the algebra of all continuous matrix-valued functions on
some compact metric space...
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Definition A C*-algebra A is type | (or GCR) if for any 7 € A,

7(A) 2 K(H).

Example: Toeplitz algebra.

Definition A C*-algebra A is CCRif for any 7 € A,

Example: the algebra of all continuous matrix-valued functions on
some compact metric space...
Toeplitz algebra is type | but not CCR.
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Extensions by compact operators

Step 1: Ais type | but not CCR = F(A) is not
abelian/subhomogeneous.
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Extensions by compact operators

Step 1: Ais type | but not CCR = F(A) is not
abelian/subhomogeneous.

Sufficient:  to prove that

AD K(H) = F(A) is not abelian/subhomogeneous.
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Extensions by compact operators

Step 1: Ais type | but not CCR = F(A) is not
abelian/subhomogeneous.

Sufficient:  to prove that

AD K(H) = F(A) is not abelian/subhomogeneous.

Phillips 88: if A D K(H) is unital, then F(A) is not abelian
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Extensions by compact operators

Step 1: Ais type | but not CCR = F(A) is not
abelian/subhomogeneous.

Sufficient:  to prove that

AD K(H) = F(A) is not abelian/subhomogeneous.

Phillips 88: if A D K(H) is unital, then F(A) is not abelian

One needs some other technique for the non-unital case and to
show non-subhomogeneity
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Nilpotents

An element x € A is nilpotent of order n if x" = 0.
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Nilpotents

An element x € A is nilpotent of order n if x" = 0.

Theorem (Olsen-Pedersen 1989)

Nilpotents are liftable: suppose x € A/l with x” = 0, then x lifts
to a € A with a" = 0.
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Nilpotents

An element x € A is nilpotent of order n if x" = 0.

Theorem (Olsen-Pedersen 1989)

Nilpotents are liftable: suppose x € A/l with x” = 0, then x lifts
to a € A with a" = 0.

Theorem (Sh. 2008)

Nilpotent contractions are liftable.
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Nilpotents

An element x € A is nilpotent of order n if x" = 0.

Theorem (Olsen-Pedersen 1989)

Nilpotents are liftable: suppose x € A/l with x” = 0, then x lifts
to a € A with a" = 0.

Theorem (Sh. 2008)

Nilpotent contractions are liftable.

Corollary

Given n € N and € > 0, there exists § such that the following
holds: for any C*-algebra A and any x € A satisfying ||x"|| < ¢ and
|Ix|]| <1 thereis y € Asuch that y" =0, |ly| <1 and

ly =xl[ <e
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Nilpotents

Folklore:

A C*-algebra is commutative if and only if it does not contain any
non-trivial nilpotent elements.
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Nilpotents

Folklore:

A C*-algebra is commutative if and only if it does not contain any
non-trivial nilpotent elements.

Theorem (Hadwin 1997)

A C*-algebra A is n-subhomogeneous if and only if each nilpotent
element in A has order not larger than n.
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Nilpotents

Theorem (V. Shulman-Y. Turovsky 2014 + Sh. 2019)

Let A be a C*-algebra. The following are equivalent:

(i) Ais type |;
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Nilpotents

Theorem (V. Shulman-Y. Turovsky 2014 + Sh. 2019)

Let A be a C*-algebra. The following are equivalent:
(i) Ais type [;
(ii) The closure of nilpotents in A consists of quasinilpotents.

(ii) The spectral radius function a — p(a) is continuous on A;
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Nilpotents

Theorem (V. Shulman-Y. Turovsky 2014 + Sh. 2019)

Let A be a C*-algebra. The following are equivalent:
(i) Ais type [;
(ii) The closure of nilpotents in A consists of quasinilpotents.

(ii) The spectral radius function a — p(a) is continuous on A;
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Nilpotents

Theorem (V. Shulman-Y. Turovsky 2014 + Sh. 2019)

Let A be a C*-algebra. The following are equivalent:
(i) Ais type [;
(ii) The closure of nilpotents in A consists of quasinilpotents.

(ii) The spectral radius function a — p(a) is continuous on A;

Proposition (Sh. 2019)

If the closure of nilpotents in a C*-algebra A contains a normal
element, then A is not residually type I.
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Extensions by compact operators

Step 1:  to prove that
A is type | but not CCR = F(A) is not subhomogeneous.
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Extensions by compact operators

Step 1:  to prove that
A is type | but not CCR = F(A) is not subhomogeneous.

Sufficient:  to prove that

AD K(H) = F(A) is not abelian/subhomogeneous.
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Extensions by compact operators

q: B(H) — B(H)/K(H)
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Extensions by compact operators

q: B(H) — B(H)/K(H)

For A C B(H), q(A) is the commutant of g(A) in the Calkin
algebra.
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Extensions by compact operators

q: B(H) — B(H)/K(H)

For A C B(H), q(A) is the commutant of g(A) in the Calkin
algebra.

Strategy: For A D K(H), an element of g(A)’ gives rise to an
element of F(A).
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Extensions by compact operators

q: B(H) — B(H)/K(H)

For A C B(H), q(A) is the commutant of g(A) in the Calkin
algebra.

Strategy: For A D K(H), a nilpotent element of g(A)’ gives rise
to a nilpotent element of F(A).
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Extensions by compact operators

a: B(H) — B(H)/K(H)
For A C B(H), q(A) is the commutant of g(A) in the Calkin
algebra.

Strategy: Prove that for A D K(H), a convergent sequence of
nilpotent elements of g(A)’ gives rise to a convergent sequence of
nilpotent elements of F(A).
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Extensions by compact operators

q: B(H) — B(H)/K(H)

For A C B(H), q(A) is the commutant of g(A) in the Calkin
algebra.

Strategy: Prove that for A D K(H), a convergent sequence of
nilpotent elements of g(A)’ gives rise to a convergent sequence of
nilpotent elements of F(A).

If a sequence of nilpotent elements of g(A)’ converges to a normal
element, then the corresponding sequence of nilpotent elements of
F(A) converges to a normal element.
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Extensions by compact operators

q: B(H) = B(H)/K(H)

For A C B(H), q(A) is the commutant of g(A) in the Calkin
algebra.

Strategy: For A D K(H), a convergent sequence of nilpotent
elements of g(A)’ gives rise to a convergent sequence of nilpotent
elements of F(A). If a sequence of nilpotent elements of g(A)’
converges to a normal element, then the corresponding sequence of
nilpotent elements of F(A) converges to a normal element.

Lemma

Let A C B(H) be a separable C*-algebra, then g(A)’" contains a
copy of B(H).
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Extensions by compact operators

Step 1:  to prove that A is type | but not CCR = F(A) is not
subhomogeneous.

Sufficient:  to prove that A D K(H) = F(A) is not
subhomogeneous.

Theorem

Let A C B(H) be a separable C*-algebra such that A > K(H).
Then F(A) is not residually type I.
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Extensions by compact operators

Step 1:  to prove that A is type | but not CCR = F(A) is not
subhomogeneous.

Sufficient:  to prove that A D K(H) = F(A) is not
subhomogeneous.

Theorem

Let A C B(H) be a separable C*-algebra such that A > K(H).
Then F(A) is not residually type . In particular F(A) is not type |
and not RFD.
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Extensions by compact operators

Step 1:  to prove that
A is type | but not CCR = F(A) is not abelian/subhomogeneous.

Sufficient:  to prove that

AD K(H) = F(A) is not abelian/subhomogeneous.
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Question: When is F(A) abelian? n-subhomogeneous?

Can assume A is type |.
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Question: When is F(A) abelian? n-subhomogeneous?

Can assume A is type |.

Can assume A is CCR.
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Fell's condition

Definition 7o € A satisfies Fell’s condition if there exist b € AT
and an open neighbourhood U of 7y in A such that 7o(b) # 0 and

rank m(b) =1

whenever T € U.
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Fell's condition

Definition 7o € A satisfies Fell’s condition if there exist b € AT
and an open neighbourhood U of 7y in A such that 7o(b) # 0 and

rank m(b) =1

whenever T € U.

Example 1

A={f e C([0,1], M) | f(1) is diagonal }, mo(f) = (F(1))11
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Fell's condition

Definition 7o € A satisfies Fell’s condition if there exist b € AT
and an open neighbourhood U of 7y in A such that 7o(b) # 0 and

rank m(b) =1

whenever T € U.

Example 1
A= {f € C([0,1], M) | f(1) is diagonal }, mo(f) = (f(1))11

Then m satisfies Fell's condition.
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Fell's condition

Definition 7o € A satisfies Fell’s condition if there exist b € AT
and an open neighbourhood U of 7y in A such that 7o(b) # 0 and

rank m(b) =1

whenever T € U.

Example 1
A= {f € C([0,1], M) | f(1) is diagonal }, mo(f) = (f(1))11
Then m satisfies Fell's condition.

Take b := any function s.t. b(t) = < L ) in a nbhd of 1.

0
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Example 2

A={f e C([0,1], M) | f(1) € C1}, mo(f) = (f(1))11
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Example 2
A={f e C([0,1], M) | f(1) € C1}, mo(f) = (f(1))11

Then 7y does not satisfy Fell's condition.
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Example 2
A={f e C([0,1], M) | f(1) € C1}, mo(f) = (f(1))11

Then 7y does not satisfy Fell's condition.

Indeed if mo(b) # 0, then rank b(1) = 2.
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Example 2
A={f e C([0,1], M) | f(1) € C1}, mo(f) = (f(1))11

Then 7y does not satisfy Fell's condition.

Indeed if mo(b) # 0, then rank b(1) = 2. Since rank is lower
semicontinuous, rank m(b) = 2 in a nbhd of 7.
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Fell's condition

Definition A C*-algebra A is said to satisfy Fell's condition (also is
called Fell algebra) if every irreducible representation of A satisfies
Fell's condition.
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Fell's condition of higher order

Definition An irreducible representation my of A satisfies Fell’s
condition of order n if there exist b € AT and an open
neighbourhood U of m in A such that m(b) # 0 and

rank m(b) < n

whenever m € U.
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Fell's condition of higher order

Definition An irreducible representation my of A satisfies Fell’s
condition of order n if there exist b € AT and an open
neighbourhood U of m in A such that m(b) # 0 and

rank m(b) < n
whenever 7 € U.

Definition A C*-algebra A is said to satisfy Fell's condition of
order n if every irreducible representation of A satisfies Fell’s
condition of order n.
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Example 3

A={f e C([0,1],M3) | f(1) = A AueCl
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Example 3

A
A={f e C([0,1],M3) | f(1) = A AueCl
7

Then A satisfies Fell's condition of order 2 but not of order 1.
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Example 4 Consider the UHF algebra
CcMcCcMyC...C My,
and its telescopic algebra

T (Maw) = {f € C([0,00], Mae) | t < i = F(t) € My}
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Example 4 Consider the UHF algebra
CcMcCcMyC...C My,
and its telescopic algebra
T (Max) = {f € C([0,00], Mao) | t < i = f(t) € Myi}.

Let
A={f € T (M) | f(c0) € C1}.
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Example 4 Consider the UHF algebra
CcMcCcMyC...C My,
and its telescopic algebra
T (Max) = {f € C([0,00], Mao) | t < i = f(t) € Myi}.

Let
A={f € T (M) | f(c0) € C1}.

Then A is CCR but does not satisfy Fell's condition of order n, for
any ne€ N.
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Reformulation of Fell’s condition of order n

Definition An element x € A has global rank not larger than n if
for each irreducible representation 7 of A

rank mw(a) < n.
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Reformulation of Fell’s condition of order n

Definition An element x € A has global rank not larger than n if
for each irreducible representation 7 of A

rank mw(a) < n.

Proposition

The following are equivalent:
(i) A satisfies Fell's condition of order n;

(ii) A is generated by elements of global rank not larger than n.
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Reformulation of Fell’s condition of order n

Definition An element x € A has global rank not larger than n if
for each irreducible representation 7 of A

rank mw(a) < n.

Proposition

The following are equivalent:
(i) A satisfies Fell's condition of order n;

(ii) A is generated by elements of global rank not larger than n.

Case n = 1: an Huef, Kumjian, Sims 2011
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Step 2: For CCR-algebras, F(A) is n-subhomogeneous < Fell's
condition of order n
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Step 2: For CCR-algebras, F(A) is n-subhomogeneous < Fell's
condition of order n

Will show strategy for <.
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Fell's condition of order n = F(A) is n-subhomogeneous
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Fell's condition of order n = F(A) is n-subhomogeneous

Observation: If in B(H) we have x>=0, e > 0 is of rank 1, then

[x,e] =0 = ex=0, xe=0.
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Fell's condition of order n = F(A) is n-subhomogeneous

Observation: If in B(H) we have x>=0, e > 0 is of rank 1, then

[x,e] =0 = ex=0, xe=0.

Lemma

For any € > 0 there is a 6 > 0 such that whenever e € (B(H))+1
with rank e = 1 and x € (B(H))1 with x> = 0, then

I ell <6 = fexl| < cand [|xe] < e.
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Fell's condition of order n = F(A) is n-subhomogeneous

Observation: If in B(H) we have x>=0, e > 0 is of rank 1, then

[x,e] =0 = ex=0, xe=0.

Lemma

For any € > 0 there is a 6 > 0 such that whenever e € (B(H))+1
with rank e < N and x € (B(H)); with x"N*! =0, then

el <6 = Jlex"| <eand x"e| <e.

Joint work with Dominic Enders Central sequence algebras via nilpotent elements



Fell's condition of order N = F(A) is N-subhomogeneous
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Fell's condition of order N = F(A) is N-subhomogeneous

A is generated by elements of global rank N.
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Fell's condition of order N = F(A) is N-subhomogeneous

A is generated by elements of global rank N. Suppose F(A) is not
N-subhomogeneous.
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Fell's condition of order N = F(A) is N-subhomogeneous

A is generated by elements of global rank N. Suppose F(A) is not
N-subhomogeneous.

x € F(A) with xN*t1 = 0.
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Fell's condition of order N = F(A) is N-subhomogeneous

A is generated by elements of global rank N. Suppose F(A) is not
N-subhomogeneous.

x € F(A) with xN*t1 = 0.

Lift it to a central sequence (x1, x2, ...) with x,-NJrl =0.
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Fell's condition of order N = F(A) is N-subhomogeneous

A is generated by elements of global rank N. Suppose F(A) is not
N-subhomogeneous.

x € F(A) with xN*t1 = 0.

Lift it to a central sequence (x1, x2, ...) with x,-NJrl =0.

Take e > 0 of global rank N.
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Fell's condition of order N = F(A) is N-subhomogeneous

A is generated by elements of global rank N. Suppose F(A) is not
N-subhomogeneous.

x € F(A) with xN*t1 = 0.
Lift it to a central sequence (x1, x2, ...) with x,-NJrl =0.

Take e > 0 of global rank N.

[xi,e] = 0
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Fell's condition of order N = F(A) is N-subhomogeneous

A is generated by elements of global rank N. Suppose F(A) is not
N-subhomogeneous.

x € F(A) with xN*t1 = 0.

Lift it to a central sequence (x1, x2, ...) with x,-NJrl =0.

Take e > 0 of global rank N.

[xi,e] = 0

[o(xi), p(e)] = O
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Fell's condition of order N = F(A) is N-subhomogeneous

A is generated by elements of global rank N. Suppose F(A) is not
N-subhomogeneous.

x € F(A) with xN*t1 = 0.
Lift it to a central sequence (x1, x2, ...) with x,-NJrl =0.

Take e > 0 of global rank N.
[xi,e] = 0
[p(xi), p(e)] = O

p(xi)Vp(e) =0, p(e)p(i)" — 0.
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Fell's condition of order N = F(A) is N-subhomogeneous

A is generated by elements of global rank N. Suppose F(A) is not
N-subhomogeneous.

x € F(A) with xN*t1 = 0.
Lift it to a central sequence (x1, x2, ...) with x,-NJrl =0.

Take e > 0 of global rank N.

[xi,e] = 0

[o(xi), p(e)] = O

p(xi)Vp(e) =0, p(e)p(i)" — 0.

X,-Ne — 0, eX,-N —0
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Fell's condition of order N = F(A) is N-subhomogeneous

A is generated by elements of global rank N. Suppose F(A) is not
N-subhomogeneous.

x € F(A) with xN*t1 = 0.
N+1 — 0

Lift it to a central sequence (xi, X2, ...) with x;

Take e > 0 of global rank N.

[xi,e] = 0

[p(xi), p(e)] — 0
p(e) =0, p(e)p(x)" — 0.
N

X,-e—>0, eX,-N—>0

xN'=0in F(A
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Theorem

Let A be a separable CCR C*-algebra. Then F(A) is

n-subhomogeneous if and only if A satisfies Fell's condition of
order n.
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Let A be a separable C*-algebra. Then F(A) is n-subhomogeneous
if and only if A satisfies Fell's condition of order n.
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/I;-factors separable C*-algebras

F(A) is trivial | No property I Continuous trace algebras
(Akemann and Pedersen 79)

F(A)is abelian | AZAQR
(McDuff 69) 7
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Il;-factors separable C*-algebras

F(A) is trivial | No property I Continuous trace algebras
(Akemann and Pedersen 79)

F(A) is abelian | A2 AQR
(McDuff 69) Fell's condition
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One application

If a C*-algebra A satisfies Fell's condition but does not have
continuous trace, then A has an outer derivation.
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Thank you!
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