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Gleason-Kahane-Żelazko theorem



As recalled by F. Schulz on tuesday....

[The Gleason-Kahane-Zelazko theorem, 1967-1968]
Let A be a (non necessarily unital nor commutative) complex Banach algebra, and let F :

A → C be a non-zero linear functional. The following are equivalent:

(a) F is unital if A contains a unit or there exits a unital extension of F to the unitization on
A, and F(a) ̸= 0 whenever a is invertible in A, that is, F maps invertible elements to
invertible elements;

(b) For each a ∈ A, F(a) belongs to the spectrum, σ(a), of a;

(c) F is multiplicative, that is F(ab) = F(a)F(b), for every a, b ∈ A.

Sadly, the result was not well understood;

“This striking result has apparently found no interesting applications as yet.”—— Rudin,
Functional Analysis, 1973 (page 250)
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Applications



This talk is not aimed to contradict Rudin’s book, but to let us look further with different
eyes (see the talks by F. Schulz and R. Brits).

We shall play with local and 2-local maps.

Local (linear) maps
Let S be a subset of the space L(X, Y) of all linear maps between Banach spaces X and Y (or
more generally a class of maps from X to Y). A linear map T : X → Y is called a local S map
if for each x ∈ X there exists Sx ∈ S, depending on x, such that T(x) = Sx(x).

2-local maps
A (non-necessarily linear nor continuous) mapping∆ : X → Y is said to be a 2-localS map if
for every x, y ∈ X there exists Tx,y ∈ S, depending on x and y, such that Tx,y(x) = ∆(x), and
Tx,y(y) = ∆(y). Let us say that at the cost of relaxing the hypothesis of linearity we require
a good behaviour of our mapping ∆ at every couple of points.
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During this talk we shall be mainly interested in the case in which S is the set Iso(X, Y) of
all surjective linear isometries from X onto Y (respectively, the class of all non-necessarily
linear surjective isometries from X onto Y), in this case local and 2-local S maps are called
local isometries and 2-local isometries, respectively (respectively, local
non-necessarily-linear isometries and 2-local non-necessarily-linear isometries). We can
similarly define local and 2-local automorphisms, derivations, Lie derivations, Jordan
derivations, etc... on a Banach algebra.

The game:
Finding conditions on S to assure that every local S map lies in S, respectively, each
2-local S map is linear and lies in S.

Be careful!!
If we take S = K(X, Y) (the class of compact linear operators) every 1-homogeneous
mapping ∆ : X → Y (i.e. ∆(λx) = λ∆(x)) is a 2-local S map.
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[Classic results: ]
✓ Every continuous local derivation from a von Neumann algebra M into a dual Banach
M-bimodule is a derivation (R. Kadison, J. Algebra’1990).

✓ H → infinite dimensional separable Hilbert space . Every local automorphism on B(H) is
an automorphism (D.R. Larson, A.R. Sourour, 1990, and M. Brešar, P. Šemrl, 1995).
✓ Every continuous local derivation on a C∗-algebra is a derivation (V. Shul’man,
Studia’1994).
✓ Every local derivation from a C∗-algebra A into a Banach A-bimodule is continuous and a
derivation (B. Johnson, Trans. AMS’2001).
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How can I apply the Gleason-Kahane-Zelazko theorem to play this game?
Every ∗-automorphism Φ : C(K) → C(K) is of the form Φ(a)(t) = a(φ(t)), where φ :

K → K is a homeomorphism on K.

Therefore, every local ∗-automorphism T : C(K) → C(K)
satisfies that for each a ∈ C(K), δtT(a) = T(a)(t) = a(φa(t)) ∈ σ(a), for all a ∈ C(K), t ∈ K.
Therefore the GKZ theorem (applied to δtT) affirms that T is multiplicative.

How to apply a similar argument to more general examples?
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Suppose K is a compact Hausdorff space. Any norm closed subalgebra of C(K) containing
the constant functions and separating the points of K is called a uniform algebra.

Abstract characterization
By the Gelfand theory and the Gelfand-Beurling formula, if A is a unital commutative com-
plex Banach algebra such that ∥a2∥ = ∥a∥2 for all a in A, then there is a compact Hausdorff
space K such that A is isomorphic, as Banach algebra, to a uniform subalgebra of C(K).

Nice concrete examples:
Suppose K is a compact subset of Cn, the algebra A(K) of all complex valued continuous
functions on K which are holomorphic on the interior of K, is an example of uniform algebra.
When K = D is the closed unit ball of C, A(D) is precisely the disc algebra.
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We recall that every surjective linear isometry of a uniform algebra A is an algebra automor-
phism of A multiplied by an element of A whose spectrum is contained inT = S(C) (see, for
example, Fleming and Jamison’s book on Isometries on Banach Spaces).

The Gleason-Kahane-Żelazko theorem plays a protagonist role in the following result

[Cabello Sánchez, Molnár, Rev. Mat. Iberoamericana’2002]
Let K ⊆ C be a compact set whose complement has finitely many components. Then ev-
ery local isometry (respectively, every local automorphism) on A(K) is a surjective isometry
(respectively, an automorphism). This applies, in particular, to the disc algebra.
Every local isometry on a uniform algebra is a unimodular weighted composition homomor-
phism.

Before dealing with the next result we recall some additional notions.

8 / 38



We recall that every surjective linear isometry of a uniform algebra A is an algebra automor-
phism of A multiplied by an element of A whose spectrum is contained inT = S(C) (see, for
example, Fleming and Jamison’s book on Isometries on Banach Spaces).

The Gleason-Kahane-Żelazko theorem plays a protagonist role in the following result

[Cabello Sánchez, Molnár, Rev. Mat. Iberoamericana’2002]
Let K ⊆ C be a compact set whose complement has finitely many components. Then ev-
ery local isometry (respectively, every local automorphism) on A(K) is a surjective isometry
(respectively, an automorphism). This applies, in particular, to the disc algebra.
Every local isometry on a uniform algebra is a unimodular weighted composition homomor-
phism.

Before dealing with the next result we recall some additional notions.

8 / 38



We recall that every surjective linear isometry of a uniform algebra A is an algebra automor-
phism of A multiplied by an element of A whose spectrum is contained inT = S(C) (see, for
example, Fleming and Jamison’s book on Isometries on Banach Spaces).

The Gleason-Kahane-Żelazko theorem plays a protagonist role in the following result

[Cabello Sánchez, Molnár, Rev. Mat. Iberoamericana’2002]
Let K ⊆ C be a compact set whose complement has finitely many components. Then ev-
ery local isometry (respectively, every local automorphism) on A(K) is a surjective isometry
(respectively, an automorphism). This applies, in particular, to the disc algebra.

Every local isometry on a uniform algebra is a unimodular weighted composition homomor-
phism.

Before dealing with the next result we recall some additional notions.

8 / 38



We recall that every surjective linear isometry of a uniform algebra A is an algebra automor-
phism of A multiplied by an element of A whose spectrum is contained inT = S(C) (see, for
example, Fleming and Jamison’s book on Isometries on Banach Spaces).

The Gleason-Kahane-Żelazko theorem plays a protagonist role in the following result

[Cabello Sánchez, Molnár, Rev. Mat. Iberoamericana’2002]
Let K ⊆ C be a compact set whose complement has finitely many components. Then ev-
ery local isometry (respectively, every local automorphism) on A(K) is a surjective isometry
(respectively, an automorphism). This applies, in particular, to the disc algebra.
Every local isometry on a uniform algebra is a unimodular weighted composition homomor-
phism.

Before dealing with the next result we recall some additional notions.

8 / 38



We recall that every surjective linear isometry of a uniform algebra A is an algebra automor-
phism of A multiplied by an element of A whose spectrum is contained inT = S(C) (see, for
example, Fleming and Jamison’s book on Isometries on Banach Spaces).

The Gleason-Kahane-Żelazko theorem plays a protagonist role in the following result

[Cabello Sánchez, Molnár, Rev. Mat. Iberoamericana’2002]
Let K ⊆ C be a compact set whose complement has finitely many components. Then ev-
ery local isometry (respectively, every local automorphism) on A(K) is a surjective isometry
(respectively, an automorphism). This applies, in particular, to the disc algebra.
Every local isometry on a uniform algebra is a unimodular weighted composition homomor-
phism.

Before dealing with the next result we recall some additional notions.

8 / 38



We recall that every surjective linear isometry of a uniform algebra A is an algebra automor-
phism of A multiplied by an element of A whose spectrum is contained inT = S(C) (see, for
example, Fleming and Jamison’s book on Isometries on Banach Spaces).

The Gleason-Kahane-Żelazko theorem plays a protagonist role in the following result

[Cabello Sánchez, Molnár, Rev. Mat. Iberoamericana’2002]
Let K ⊆ C be a compact set whose complement has finitely many components. Then ev-
ery local isometry (respectively, every local automorphism) on A(K) is a surjective isometry
(respectively, an automorphism). This applies, in particular, to the disc algebra.
Every local isometry on a uniform algebra is a unimodular weighted composition homomor-
phism.

Before dealing with the next result we recall some additional notions.
8 / 38



Let E and F denote two metric spaces. A mapping f : E → F is called Lipschitzian if

L(f) := sup

{
dF (f(x), f(y))

dE(x, y)
: x, y ∈ E, x ̸= y

}
<∞.

When F = Y is a Banach space, the symbol Lip(E, Y) will denote the space of all bounded
Lipschitz functions from E into Y . The space Lip(E, Y) is a Banach space with respect to the
following (equivalent) complete norms

∥f∥L := max{L(f), ∥f∥∞}, and ∥f∥s := L(f) + ∥f∥∞.

During this talk F will either stand for R or C, and we shall write Lip(E) for the space
Lip(E,C).

For every metric space E, (Lip(E), ∥.∥s) is a unital commutative complex Banach algebra
with respect to pointwise multiplication. However, the norm ∥.∥L does not satisfy the
usual hypothesis of Banach algebras that ∥fg∥ ≤ ∥f∥∥g∥.

9 / 38



Let E and F denote two metric spaces. A mapping f : E → F is called Lipschitzian if

L(f) := sup

{
dF (f(x), f(y))

dE(x, y)
: x, y ∈ E, x ̸= y

}
<∞.

When F = Y is a Banach space, the symbol Lip(E, Y) will denote the space of all bounded
Lipschitz functions from E into Y . The space Lip(E, Y) is a Banach space with respect to the
following (equivalent) complete norms

∥f∥L := max{L(f), ∥f∥∞}, and ∥f∥s := L(f) + ∥f∥∞.

During this talk F will either stand for R or C, and we shall write Lip(E) for the space
Lip(E,C).

For every metric space E, (Lip(E), ∥.∥s) is a unital commutative complex Banach algebra
with respect to pointwise multiplication. However, the norm ∥.∥L does not satisfy the
usual hypothesis of Banach algebras that ∥fg∥ ≤ ∥f∥∥g∥.

9 / 38



Let E and F denote two metric spaces. A mapping f : E → F is called Lipschitzian if

L(f) := sup

{
dF (f(x), f(y))

dE(x, y)
: x, y ∈ E, x ̸= y

}
<∞.

When F = Y is a Banach space, the symbol Lip(E, Y) will denote the space of all bounded
Lipschitz functions from E into Y . The space Lip(E, Y) is a Banach space with respect to the
following (equivalent) complete norms

∥f∥L := max{L(f), ∥f∥∞}, and ∥f∥s := L(f) + ∥f∥∞.

During this talk F will either stand for R or C, and we shall write Lip(E) for the space
Lip(E,C).

For every metric space E, (Lip(E), ∥.∥s) is a unital commutative complex Banach algebra
with respect to pointwise multiplication. However, the norm ∥.∥L does not satisfy the
usual hypothesis of Banach algebras that ∥fg∥ ≤ ∥f∥∥g∥.

9 / 38



If E is a compact metric space, Lip(E) is self-adjoint and separates the points of E, so it is
dense in C(E) with respect to the sup norm (Stone-Weierstrass theorem). There exist
continuous functions which are not Lipschitz. Lip(E) is not, in general, a uniform algebra.

Surjective linear isometries
Given a surjective isometry φ : F → E between two metric spaces F and E, and an element
τ ∈ SF, the mapping

Tτ,φ : Lip(E) → Lip(F), Tτ,φ(f)(s) = τ f(φ(s)), (f ∈ Lip(E)),

is an element in Iso(Lip(E), Lip(F)).

Fortunately or not, there exist elements in Iso(Lip(E), Lip(F)) which cannot be written as
weighted composition operator via a surjective isometry φ and τ ∈ SF.
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The elements in Iso(Lip(E), Lip(F)) which can be written as weighted composition
operators via a surjective isometry φ : F → E and τ ∈ SF as above are called canonical.
The set Iso(Lip(E), Lip(F)) is called canonical if every element in this set is canonical.

It is perhaps worth to revisit what is known about canonical surjective isometries.

This property is related to the own nature of themetric spaces [N. Weaver, Canad. Math.
Bull.’1995]
Let E = {t1, t2} be the metric space formed by two points with distance d(t1, t2) = 1. Then
(Lip(E), ∥ · ∥L) is (isometrically isomorphic to) F2 with norm

∥(α1, α2)∥ = max{|α1|, |α2|, |α1 − α2|},

and the linear mapping T : (Lip(E), ∥ · ∥L) → (Lip(E), ∥ · ∥L), T(α1, α2) = (α1, α1 − α2) is
an isometric isomorphism which does not arise by composition with an isometry of E. The
problem is the composition map, not the weight!
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(✓) Iso(Lip([0, 1]), ∥.∥s) is canonical (N.V. Rao and A.K. Roy, Pacific J. Math.’1971),

(✓) For any compact and connected metric space E with diameter at most 1,
Iso(Lip(E), ∥.∥L) is canonical (A.K. Roy, Canad. J. Math.’1968, M.H. Vasavada, Ph.D
Thesis’1969),

(✓) For every compact metric space E, Iso(Lip(E), ∥.∥s) is canonical (K. Jarosz and V.
Pathak, Trans. Amer. Math. Soc.’1988, N. Weaver pointed out a gap in 1995, O. Hatori
and S. Oi, Acta Sci. Math. (Szeged)’2018, provided an antidote),

(✓) E and F are complete metric spaces of diameter ≤ 2 and 1-connected (i.e. they cannot
be decomposed into two nonempty subsets A and B such that d(t, s) ≥ 1 for every
t ∈ A and s ∈ B) then Iso((Lip(E), ∥.∥L), (Lip(F), ∥.∥L)) is canonical (N. Weaver,
Canad. Math. Bull.’1995). Actually we can restrict our study to the class of complete
metric spaces of diameter ≤ 2.
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Another result in which the Gleason-Kahane-Żelazko theorem also plays a protagonist role
is the following result:

[Jiménez-Vargas, Morales-Campoy, Villegas-Vallecillos, J. Math. Anal. Appl.’2010]
Let E be a compact metric space. Then every local isometry on (Lip(E), ∥.∥s) is a surjective
isometry, and hence a uni-modular weighted composition operator via a surjective isome-
try on E.

The conclusions on 2-local isometries are much more limited.
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Some known results for other 2-local maps.

✓ H → an infinite-dimensional separable Hilbert space. Then every 2-local automorphism
(respectively, every 2-local derivation) T : B(H) → B(H) is an automorphism (respectively,
a derivation) (Šemrl, Proc. Amer. Math. Soc.’1997).
✓ Every 2-local derivation on a von Neumann algebra is a derivation (Ayupov,

Kudaybergenov, Positivity’2014).
✓ Every (not necessarily linear nor continuous) 2-local ∗-homomorphism from a von
Neumann algebra into a C∗-algebra is linear and a ∗-homomorphism. The same
conclusion remains valid when the domain is a dual or compact C∗-algebra (Burgos,

Fernández-Polo, Garcés and Pe., RACSAM’2015).
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2-local isometries

The Gleason-Kahane-Żelazko theorem was revisited in 1980 by Kowalski and Słodkowski,
who established an attractive variant.

[Kowalski, Słodkowski, Studia’1980]
Suppose A is a complex Banach algebra (non necessarily commutative nor unital). Let
∆ : A → C be a (non-necessarily linear) mapping satisfying the following hypotheses:

(a) ∆(0) = 0;

(b) ∆(x)−∆(y) ∈ σ(x − y), for every x, y ∈ A.

Then ∆ is multiplicative and linear.
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In 2010, Hatori, Miura, Oka and Takagi studied 2-local isometries and 2-local
automorphisms between uniform algebras, they applied the Kowalski-Słodkowski
theorem to establish the following results.

[Hatori, Miura, Oka and Takagi, Int. Math. Forum’2010]
For each uniform algebra A, every 2-local automorphism∆on A is an isometric isomorphism
from A onto ∆(A). Furthermore, if the group of all automorphisms on A is algebraically re-
flexive (i.e., if every local automorphism on A is an automorphism), then every 2-local auto-
morphism on A is an automorphism.

The same authors also showed the existence of non-surjective 2-local automorphisms on
C(K) spaces.
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Another interesting conclusion is the following:

[Hatori, Miura, Oka and Takagi, Int. Math. Forum’2010]

Let K ⊆ C be a compact subset such that int(K) is connected and int(K) = K. Then every
local isometry (respectively, every local automorphism) on A(K) is a surjective isometry
(respectively, is an automorphism).

Furthermore, under certain topological restrictions on a compact set K ⊂ C or K ⊂ C2,
every 2-local isometry (respectively, every 2-local automorphism) on A(K) is a surjective
linear isometry (respectively, an automorphism).

Hatori, Miura, Oka and Takagi posed the following problem:

Problem:
Is every 2-local isometry on a uniform algebra linear?
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To study this problem we introduced and considered a more general class of mappings.

[Essaleh, Pe., Ramirez, Linear Multilinear Algebra’2016]
Let X and Y be a Banach spaces, and let S be a subset in L(X, Y) (or more generally, a subset
of maps from X to Y). A linear mapping T : X → Y is called a weak-local S map if for each x
in X and each ϕ ∈ Y∗ there exists Tx,ϕ ∈ S, depending on x and ϕ, such that

ϕ(T(x)− Tx,ϕ(x)) = 0.

[Essaleh, Pe., Ramirez, Linear Multilinear Algebra’2016]
A mapping ∆ : X → Y will be called a weak-2-local S map if

for each x, y ∈ X and each ϕ ∈ Y∗, there exists Tx,y,ϕ ∈ S, (1)

depending on x, y and ϕ, such that

ϕ(∆(x)− Tx,y,ϕ(x)) = 0, and ϕ(∆(y)− Tx,y,ϕ(y)) = 0.
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These new notions are strictly weaker than those given before.

[Jordá, Pe., Integral Equations Operator Theory’2017]
Let X and Y be Banach spaces such that Y is infinite dimensional. Suppose F is a proper
norm-dense subspace of Y . Let S be the set of all finite rank operators S in L(X, Y) such that
S(X) ⊂ F.

Then the local S maps are the linear maps from X to Y whose image is contained in F, while
the set of weak-local S maps is the whole L(X, Y).

The 2-localS maps are precisely the 1-homogeneous maps from X to Y whose image is con-
tained in F, while the set of weak-2-localS maps is the set of all 1-homogeneous maps from
X to Y .

Even in the setting of C(K) spaces, weak-local and weak-2-local isometries cannot be stud-
ied via Gleason-Kahane-Żelazko and Kowalski-Słodkowski theorems. For this purpose, we
developed appropriate spherical variants of these theorems.
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Some results concerning derivations

✓ Every (not necessarily linear nor continuous) weak-2-local derivation on a finite
dimensional C∗-algebra is linear and a derivation (Niazi, Pe., FILOMAT’2015).
✓ Every weak-2-local symmetric map between C∗-algebras is linear (Cabello, Pe., Linear
Algebra Appl.’2016).
✓ Every weak-2-local ∗-derivation on a C∗-algebra is a linear ∗-derivation (Cabello, Pe.,
Linear Algebra Appl.’2016).
✓ Every 2-local ∗-homomorphism between C∗-algebras is a linear ∗-homomorphism
(Cabello, Pe., Linear Algebra Appl.’2016).
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Spherical versions



Spherical versions of Gleason-Kahane-Żelazko and
Kowalski-Słodkowski theorems

We can motivate the new hypotheses with a similar example provided by a classic
theorem.

By the Banach–Stone theorem every surjective isometry Φ : C(K) → C(K) is of the form
Φ(a)(t) = u(t)a(φ(t)), where φ : K → K is a homeomorphism on K and u is a unitary
element in C(K). Therefore, every local isometry T : C(K) → C(K) satisfies that for each
a ∈ C(K), δtT(a) = T(a)(t) = u(t)a(φa(t)) ∈ Tσ(a).
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We state first the spherical variant of the Gleason-Kahane-Żelazko theorem.

[Li, Pe., Wang, Wang, Publ. Mat.’2019]
Let F : A → C be a linear map, where A is a unital complex Banach algebra. Suppose that
F(a) ∈ T σ(a), for every a ∈ A. Then the mapping F(1)F is multiplicative.

The proof follows classical methods based on tools of holomorphic functions like
Hadamard’s Factorization theorem.
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This new version gives more freedom to consider more general questions on local maps.

[Li, Pe., Wang, Wang, Publ. Mat.’2019]
Let T : A → B be a weak-local isometry between uniform algebras. Then there exists a
unimodular element u ∈ B and a unital algebra homomorphism ψ : A → B such that

T(f) = u ψ(f), ∀f ∈ A,

that is, T is a weighted algebra homomorphism multiplied by a unitary element.

The new tool can be also applied in the setting of Lipschitz algebras.
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[Li, Pe., Wang, Wang, Publ. Mat.’2019]
Let E and F be metric spaces. Then the following statements hold:

(a) Suppose that the set Iso((Lip(E), ∥.∥s), (Lip(F), ∥.∥s)) is canonical. Then every
weak-local isometry T : (Lip(E), ∥.∥s) → (Lip(F), ∥.∥s) is almost canonical, i.e., it can
be written in the form T(f) = τ ψ(f), for all f ∈ Lip(E),where τ ∈ Lip(F) is
unimodular, and ψ : Lip(E) → Lip(F) is an algebra homomorphism;

(b) Suppose that the set Iso((Lip(E), ∥.∥L), (Lip(F), ∥.∥L)) is canonical. Then every
weak-local isometry T : (Lip(E), ∥.∥L) → (Lip(F), ∥.∥L) can be written in the form
T(f) = τ ψ(f), for all f ∈ Lip(E),where τ ∈ Lip(F) is unimodular, and
ψ : Lip(E) → Lip(F) is an algebra homomorphism.
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The previous spherical variant of the Gleason-Kahane-Żelazko theorem and abstract
measure theory on Banach spaces to determine zero sets are the main ingredients to
establish the following spherical variant of the Kowalski-Słodkowski theorem.

[Li, Pe., Wang, Wang, Publ. Mat.’2019]
Let A be a unital complex Banach algebra, and let ∆ : A → C be a mapping satisfying the
following hypotheses:

(a) ∆ is 1-homogeneous;

(b) ∆(x)−∆(y) ∈ T σ(x − y), for every x, y ∈ A.

Then ∆ is linear, and there exists λ0 ∈ T such that λ0∆ is multiplicative.
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The applications of this result are just to come. For the moment we can present the follow-
ing conclusions.

[Li, Pe., Wang, Wang, Publ. Mat.’2019]
Let E and F be metric spaces, and let us assume that the set Iso((Lip(E), ∥.∥s), (Lip(F), ∥.∥s))

is canonical. Then every weak-2-local Iso((Lip(E), ∥.∥s), (Lip(F), ∥.∥s))-map ∆ from Lip(E)
to Lip(F) is a linear map. Furthermore, the same conclusion holds when the norm ∥.∥s is
replaced with the norm ∥.∥L .
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The following extension of a result by Jiménez-Vargas and Villegas-Vallecillos can be also
deduced via the spherical Kowalski-Słodkowski theorem combined with the result by these
authors.
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Iso((Lip(E), ∥.∥L), (Lip(F), ∥.∥L))-map ∆ from Lip(E) to Lip(F) is a linear isometric
map. Furthermore, there exist a closed subset F0 ⊂ F, a Lipschitz map φ : F0 → E with
L(φ) ≤ max{1, diam(E)} and τ ∈ T such that

∆(f)(s) = τ f(φ(s)), for all f ∈ Lip(E), s ∈ F0.
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Another combination of our spherical variant with the result by Jiménez-Vargas, Morales
and Villegas gives the following:

[Li, Pe., Wang, Wang, Publ. Mat.’2019]
Let K be a compact metric space. Suppose that the group Iso(Lip(K), ∥.∥s) is canonical.
Then every 2-local isometry ∆ : (Lip(K), ∥.∥s) → (Lip(K), ∥.∥s) is a surjective linear isome-
try.

Suppose K is connected with diameter at most 1 (or satisfies certain separation prop-
erty to guarantee that Iso(Lip(K), ∥.∥L) is canonical). Then every 2-local isometry ∆ :

(Lip(K), ∥.∥L) → (Lip(K), ∥.∥L) is a surjective linear isometry.
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In the case of uniform algebras the conclusion throw new light to the study of weak-2-local
isometries

[Li, Pe., Wang, Wang, Publ. Mat.’2019]
Let A be a uniform algebra, let Q be a compact Hausdorff space, and suppose that B is a
norm closed subalgebra of C(Q) containing the constant functions. Then every weak-2-local
isometry (respectively, every weak-2-local (algebraic) isomorphism)∆ : A → B is a linear
map.

And finally, a solution to the problem posed by Hatori, Miura, Oka and Takagi.

[Li, Pe., Wang, Wang, Publ. Mat.’2019]
Let A and B be uniform algebras. Then every 2-local isometry (respectively, every 2-local
(algebraic) isomorphism)∆ : A → B is a linear map.
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The original statement of the GKZ and KS theorems remained unaltered for almost fifty
years. The new spherical versions have raised a renewed interest.

[S. Oi, J. Aust. Math. Soc.’2021]
Let A be a unital complex Banach algebra, and let ∆ : A → C be a mapping satisfying the
following properties:

(a) ∆(0) = 0;

(b) ∆(x)−∆(y) ∈ T σ(x − y), for every x, y ∈ A.

Then ∆ is linear, and ∆(1)∆ is multiplicative.

This new result provides the tool to consider a new variant of our problem, which was al-
ready posed by L. Molnár. Namely, let S denote in this case the set of all (non-necessarily
linear) surjective isometries between two Banach spaces X and Y . 2-localS-maps are called
2-local non-necessarily linear surjective isometries.
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The setting of semisimple commutative Banach algebras offers a good framework to play.

B → a unital semisimple commutative Banach algebra, M → maximal ideal space of B.
The Gelfand transform is a continuous isomorphism identifying B with its image inside
C(M). On C(M) we have well-known evaluation functionals δt with t ∈ M.

Pointwise 2-locality as a particular case of weak 2-locality
Let S be a class of maps from B1 to B2, where B1,B2 are unital semisimple commutative
Banach algebras. A mapping ∆ : B1 → B2 is pointwise 2-local in S if for every trio f , g ∈ B1

and t ∈ M2 there exists Tf ,g,t ∈ S, depending on f , g, t, such that

∆(f)(t) = Tf ,g,t(f)(f), and ∆(g)(t) = Tf ,g,t(g)(t).

There are examples of pointwise 2-local isometries which fail to be surjective or an
isometry.
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We shall focus on a very interesting class of maps

S = GWC :=

T : B1 → B2 :


there exists b, a ∈ B2 with |a| = 1 on M2,

π : M2 → M1, ε : M2 → {±1} continuous

such that T(f) = b + a[f ◦ π]ϵ for every f ∈ B1

 ,

where for each f ∈ B1 and ε : M2 → {±1}we set [f ]ε(t) := f(t) if ε(t) = 1 and [f ]ε(t) := f(t)
if ε(t) = −1 (t ∈ M1).

Why is this class so interesting?
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As shown by S. Oi the class GWC is very stable under pointwise 2-local perturbations.

[S. Oi, J. Aust. Math. Soc.’2021]
Every pointwise 2-local GWC mapping ∆ : B1 → B2 is itself an element in GWC.

Let A1, A2 be uniform algebras on compact Hausdorff spaces X1, X2, respectively. It is known
that every (non-necessarily linear) surjective isometry ∆ : A1 → A2 is in the class GWC.

[S. Oi, J. Aust. Math. Soc.’2021]
Let A1, A2 be uniform algebras on compact Hausdorff spaces X1, X2, respectively. Then
every pointwise 2-local non-necessarily linear isometry from A1 to A2 is a map in the class
GWC.
Assuming that Xj is first countable compact Hausdorff space for j = 1, 2, then every 2-local
non-necessarily linear surjective isometry is a surjective isometry.
Every 2-local non-necessarily linear surjective isometry on the disk algebra A(D) is a
surjective isometry.
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Oi’s theorem can be also applied to

1. Lipschitz algebras Lip(E);

2. The algebra of continuously differentiable functions C1([0, 1]) with
∥f∥σ = ∥f∥∞ + ∥f ′∥∞;

3. Some algebras of analytic functions on the disc.

Additional applications of the spherical KS theorem have been found for the study of 2-local
isometries on

1. The Banach space AC(X) of all absolutely continuous complex-valued functions on a
compact subset X of the real line with at least two points (Hosseini, Jiménez-Vargas,
Results Math.’2021).

2. The algebra Lip(X, C(Y)) of all C(Y)-valued Lipschitz maps on a compact metric space
X equipped with the sum norm, where Y is a compact Hausdorff space
(Cabrera-Padilla, Jiménez-Vargas, J. Math. Anal. Appl.’2022).
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Open problem:
✓ Can we extend the spherical versions of the GZK and KS theorems to the case of
non-unital complex Banach algebras?

✓ Is every weak-local ∗automorphism on a C∗-algebra or on a von Neumann algebra a
Jordan ∗-homomorphism?

[Essaleh, Pe., Ramírez, Linear Multilinear Algebra’2015]
Every strong-local ∗-automorphism on a von Neumann algebra is a Jordan
∗-homomorphism.
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Thanks for spending part of your time listening this talk!!!

38 / 38


	Gleason-Kahane-Żelazko theorem
	Applications
	2-local isometries
	Spherical versions

