CENTRES OF IDEALS IN pgG

M. FILALI

1. PART I

G discrete (and abelian for simplicity).
BG is a compact right topological semigroup

e with the first Arens on ¢!(G)** restricted to 8G, or
e Using the property of SG:
For each s € GG, the continuous mapping

t— st . G— BG
extends to a continuous mapping
y— sy : BG — BG.

Then, for each y € SG, we extend the mapping s — sy defined from
G into SG to a continuous mapping

r—zy : BG — PG,

making SG a compact right topological semigroup.
(BG has the weak*-topology inherited from £*°(G)*).

The topological centre of SG is

Z(BG) ={z € BG; y+— yz : G — PG is continuous}.
The algebraic centre of SG

Z24(BG) = {z € BG; zy = yx for ally € BG}.
Since we are assuming that G is abelian, Z(5G) = Z,(8G).

If I is a left, right ideal or a subsemigroup of 8G,

2Z(I)={x€l; y—yx: 1 — 1 is continuous} = (when G is abelian)
Zo(I)={z €l :zy=yx forally eI}
(Again I is with the weak*-topology inherited from ¢*°(G)*.)
For example, G* = BG \ G is a closed ideal in SG.
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JOHN’S DRAWING: If G = Z, then BG is

OXXXXXXXXXXXXXXXXxXx(O

R and L are closed left ideals in 7, Z* = RU L is a closed ideal in SZ.
2(82) =7, Z2(Z*)=Z(RUL)=o

(—oo = limlim(n — m) # limlim(n — m) = o).

But how about Z(R) and Z(L)?

Theorem 1.1 (Hindman-Davenport-Strauss). Z(8G) = G and Z(G*) = @.

Sketch: For simplicity assume that G is countable.
van Douwen decomposition vD = {I} of G*: Partition G* into closed left
ideals G* = |J I.

re€G = zxel forsomel e vD—yrelbutzyeJ foryecJevD withJNIlI=a
= zy #yr —= 2z ¢ Z(BG) and z ¢ 2(G*) =
Z(BG) =G and Z(G*) = @.

A point p is right (left) cancellable in SG when
yp = 2p (py = pz) <=y = 2.

Theorem 1.2. If a left (right) ideal L in G (and so L C G*) has a right
(left) cancellable point p, then Z(L) = @.
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Sketch:

reZ(L), y € BG = (zy)p = x(yp) = (yp)z = y(px) = y(wp) = (yx)p
= zy =yr — z € Z(BG) =
Z(L) = @.

Theorem 1.3. p € BG right (left) cancellable = Z(BGp) = Z(G*p) = @
and Z(ppG) = Z(pG*) = @.
(Note that SGp and G*p are nowhere dense sets.)

Theorem 1.4. A left ideal L with a non-empty interior in SG has an empty
centre.

Sketch: A non-empty interior gives T C A C G with
TCACL

and T thin (|sT NtT| < |G| whenever s # t in G). Since T consists of right
cancellable points, the claim follows.

How about when p? =p, is it true that Z(BGp) = o?
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1.1. Algebra in £G.

In a semigroup S, an element p is an idempotent if pp = p?> = p.

The left and right preorderings of idempotents in a semigroup S (and so

in 8G),

induced by the inclusion relation on principal left and right ideals,

are given by

p<pq<=pg=p<= SpCSq

p<Rrq<=qp=p<=pS CqS.

In any compact right topological semigroup S, in particular when S = G

or G*,

idempotents exist in ZFC (Numakura 1952, Wallace 1952-1953-1955,
and Ellis 1969).
left minimal and right minimal idempotents are the same, and exist

in ZFC.

e right maximal idempotents exist in ZFC [Ruppert, 2.7-2.9].
e S has a smallest (2-sided) ideal K (S5).
o If E(K(S)) is the set of idempotents in K(S), then p € E(K(S5)) if

and only if it is minimal.
Each of the families

{Sp:pe E(K(9))}, {pS:pe E(K(S))}, {pSp:p e E(K(5))}

partitions K (.S), and they are, respectively, the set of minimal left
ideals of S, the set of minimal right ideals of S, and the set of
maximal subgroups of K(S).

There are 22°' many idempotents in G* [HS].

There are 22'°' many minimal idempotents in G* [HS].

BG (and so G*) contains 22'°! minimal left ideals [HS].

PG (and so G*) contains 22'“! minimal right ideals [Zelenyuk, 2009]

and [Filali-Galindo for G*Y¢, preprint]. [HS, at least 2¢], [Baker-
Milnes for G*UC€ at least 2].

Each minimal right ideal and each minimal left ideal contains 92/
many idempotents [Filali-Galindo for G*U¢, preprint]. [HS, at least
2¢].

When G is countable, there are 2¢ non-minimal idempotents in
K(BG) [HS, Theorem 8.65].
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e There are 2° many right maximal idempotents in N* [HS, Theorem
9.1].

e Right maximal idempotents are not in K (SG), so minimal idempo-
tents cannot be right maximal [HS, Theorem 9.8 or Exercise 9.1.4].

o Left maximal idempotents (which are minimal) exist in G in ZFC
when G is countable [Zelenyuk, 2014].
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Theorem 1.5 (HS). If G is countable (not necessarily abelian) and p is a
non-minimal idempotent in G, then Z(pBGp) C Gp.

Sketch: Beautiful long proof, based on
p non-minimal = p ¢ K(SG) = 3B C G such that
BGrip N BGrop = & for r1,# 1o € B* and
rp is right cancellable in SG for every r € B*.

Corollary 1.6 (HS). If G is countable and abelian and p € BG is non-
minimal, then

Z(pBGp) = Z(pG"p) = Gp.
Sketch: Note first that pSGp = pG*p since psp = p(sp)p € pG*p for any
s € G. Now if s € G, then
sp = spp = psp € pBGp,
and so for any y = pzp € pBGp,
(sp)y = (sp)(pxp) = sprp = sy = ys = (pxp)s = (pzp)ps = (pxp)(sp) = y(sp),
i.e., Gp C Z(pBGp) = L(pG™p).

Corollary 1.7. Let G be countable and L a left ideal in G not contained
in K(BG). Then Z(L) = @.

Sketch: Let z € L'\ K(BG). By [HS, Theorem 6.56], there exists r € G*
such that rz is right cancellable. Since rz € L, Z(L) = @ by Theorem 1.2.

What happens when the idempotent is minimal?
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Theorem 1.8. Z(K(SG)) = @.

Sketch: If xp € K(BG) for some = € BG and an idempotent p € K(SG),
then (zp)q € BGq and q(xp) € BGp for any other idempotent ¢ € K(B8QG)
with 8Gp N BGq = @.

In fact, in the same way, the centre of each of the left ideal SGp U BGq
and the right ideal pSG U ¢BG is empty whenever p and ¢ are not in the
same ideal.

SUMMARY:

Let L be a proper left ideal in SG.

IfL¢KQPBG) = Z(L) =2.

L C K(BG) and L = {J,cgBGp, where S C K(BG) and [S| > 1
= Z(L) = 2.

If L =pBGp for some minimal idempotent p =—77.
If R=pBG for some minimal idempotent p =—77.
If M = pBGp for some minimal idempotent p =—77.

It is known that each maximal group in SG, namely pSGp (and so each
BGp and pSG) for p a minimal idempotent contains a free group on 2°¢
generators. So these are very non-commutative subsemigroups of 5G.

(The proof works for discrete commutative semigroups)

Theorem 1.9. Let G be abelian and p be an idempotent in G*. Let Gp
has the topology induced by BG. Then Gp is an extremely disconnected,
Hausdorff, non-locally compact semitopological group, and

(J.W. Baker, 1979) B(Gp) = Gp = (G)p = (BG)p.

Proof. That Gp is a group is clear. To prove that Gp is extremely discon-
nected, let AN Gp and B N Gp be two disjoint open sets in Gp with A and
B open in SG. Define f on G by f(s) =1issp € A, f(sp)=—1if sp € B,

and f(s) = 0 otherwise. Extend f to a continuous function f on BG. Note
now that if x € AN Gp, then x = zp and fgx) =1, and so f(z) =1 for

every = € clgp(ANGp) = AN Gp. Similarly f(z) = —1if 2 € clgp(B N Gp.
Therefore, clg,(A N Gp) Nelgy(B N Gp) = .
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To show that Gp is not locally compact, we claim first that a subset Ep
in Gp is closed in BG if and only if E is finite. Suppose otherwise that E is
infinite and C' C E be countable. If Ep were closed, we would get

Ep=CpU(E\C)=CpU(E\C)p,

where Cp and (E\ C)p are disjoint by Veech’s Theorem (Ellis Theoem since
G is discrte). So, arguing as previously, we see that Cp and (E \ C)p are
also disjoint. Therefore, Cp = Cp and (E \ C)p = (E \ C)p. In particular,
Cp is closed in SG. This is not possible since the cardinality of a closed set
in AG must be at least 2¢ by [GJ76] Gillman and Jersion. 9.12, or see [4,
Theorem 3.59], while by Veech’s Theorem, Cp is countable.

It is now straightforward that a basic (closed) neighbourhood E N Gp of
p in Gp is not closed in SG and so it cannot be compact (in either SG or
Gp). To see this, use the fact that p is an idempotent and pick F' C G with
p € F and Fp C EN Gp. Use Veech’s Theorem to see that £ N Gp = E'p
for some infinite subset £’ in G, and apply the above.

Consider now P N Gp, where P is any neighbourhood of p in 3G. Pick
Q C G with p € Q and Qp C P. Then |@Qp| = |Q| by Veech’s Theorem (Ellis
Theorem since G is discrete) and Qp € P N Gp.

We claim that Gp is properly contained in G*p and SG....

Baker’s argument:

For a given continuous bounded function f on Gp, define ¢ on G by
g(s) = f(sp). Then extend g to a continuous function g on SG. The functions
g and f agree on Gp since

§(sp) = lim g(spa) = lim f(spap) = f(spp) = f(sp) for every s € G.

Since every continuous bounded function on Gp extends continuously to
Gp = (G)p = (BG)p, we see that S(Gp) and the left ideal (8G)p in SG are
the same. O

A TOPOLOGY ON (G INDUCED BY IDEMPOTENTS IN G*

Let G be an infinite group with identity e, and let p be an idempotent in
G*. We put
={P.=PU{e} CG:pe P}
Then (G, 7p) is a Hausdorff (due to Veech-Ellis Theorem, or apply directly
the 3-set lemma) left topological group. We denote (G,7,) by G(p). If
G is abelian, then G(p) is a semitopological group, but not necessarily a
topological group.
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Proposition 1.10. Let G be discrete with identity e. Let p € G be an
idempotent. Then the map rp: s — sp from G(p) onto Gp is a continuous
isomorphism.

Proof. We prove the continuity at the identity e. The continuity at any
other point in G will follow from G C Z(B8G). Let P C G such that p € P
(i.e., P is a neighbourhood of p in 3G). Since p = pp € A and the mapping
x+— xp: BG — BG is continuous, pick @ C G such that p € Q and Qp C P.
Then
"”p(Qe) =QpCQPpC P,

as wanted.

By Veech’s Theorem (see e.g. [?, Theorem 4.8.9]), the mapping r,: s — sp
is injective. Hence, the mapping 7, is a continuous isomorphism from G(p)

onto Gp.
O

Definition 1.11. An idempotent p € G* is
(i) strongly right mazimal when the equation xp = p is satisfied only

for x =p in BG.
(ii) strongly left maximal when the equation px = p is satisfied only for

x =pin BG.

e Strongly right maximal idempotents exist in ZFC [Protasov].

e Strongly right maximal are not in K (8G), so minimal idempotents
cannot be right maximal [HS].

e Minimal idempotents can be left maximal [Zelenyuk, 2014].

Theorem 1.12 (HS, Theorem 9.15 for example). Let G be an abelian dis-
crete group with identity e and let p be an idempotent in G*. Then TFAE
(i) 7 is regular.
(ii) p is strongly right mazimal.
(iii) G(p) and Gp are isomorphic and homeomorphic.

So here we have G(p) as a semitopological group such that S(G(p)) iden-
tified with the left ideal 8Gp of BG and

2(B(G(p)) = 2(PGp) = 2.

Let G be abelian and for a subset X of G, let
FP(X)={]]s: F C X, finite}.
sEF

It is well known that, if p is an idempotent, then every P C G with p € P,
contains a set of the form FP(X) for some infinite subset X of G. However,
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we do not normally expect that p € FP(X). So the following definition
states itself:

Definition 1.13. Let G be abelian. An element p € BG is strongly sum-

mable when for every P C G with p € P, there exists X C G such that
p€ FP(X)CP.

Strongly summable elements in SG are idempotents.

Strongly summable are not in K (SN) [HS, Theorem 12.21].

Their existence is established under Martin’s Axiom.

their existence cannot be established in ZFC.

Strongly summable = [HS, Theorem 12.39 (in SN)] Strongly right
maximal = Right maximal.

Right maximal % Strongly right maximal [Zelenyuk, 2016].

Theorem 1.14 (Protasov). Let G be a countable Boolean group, andp € G
be strongly summable. Then G(p) is a (mazximal) topological group.

Now under MA, we have G(p) as a topological group such that 5(G(p))
identified with the left ideal SGp of G and

Z(B(G(p)) = Z(BGp) = 2.

Theorem 1.15 (F-Vedenjuoksu 2010). Let G be a topological group which
is not a P-group. The Stone Cech compactification SG of G is a right
topological semigroup with G C Z(BG) if and only if G is pseudocompact.

By Protasov, G(p) is not totally bounded unless p is minimal.
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2. PART II

G a locally compact group.

GLUG

is a compact right topological semigroup.
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3. PART III

G a locally compact group.
LY(G)*™ and LUC(G)* are Banach algebras with the first Arens product.
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