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e An intrinsic difficulty: The lack of well-known examples (Halmos)
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® = {{an}n>1 CC: Z lan|? < oo}

n=1
® {¢,}n>1 canonical bases in £2

Sen = ent1, n>1

Characterization of the invariant subspaces of S in ¢2

Classical Beurling Theory:

Inner-outer factorization of the functions in the Hardy space

Arne Beurling (1905-1986)
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Classes of operators with known invariant subspaces:

® Normal operators (Spectral theorem).

® Compact operators.
o(T) ={A;};>1U{0}

* 1951, J. von Neumann (Hilbert space case).
* 1954, Aronszajn and Smith (general case),

® Polinomially compact operators
* 1966, Bernstein y Robinson (Hilbert spaces).
* 1967, Halmos.
* 1960’s Gillespie, Hsu, Kitano, Pearcy, ...
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® “Lomonosov operators”

Theorem (Lomonosov; 1973)

Let T be a linear bounded operator on H, T # CId. If T commutes with a non-zero
compact operator, then T has a non-trivial closed invariant subspace. Moreover, T
has a non-trivial closed hyperinvariant subspace.

® Not every operator satisfy “Lomonosov Hypotheses”

Theorem (Hadwin, Nordgren, Radjavi, Rosenthal; 1980)

There exists a “quasi-analytic” shift S on a weighted £* space which has the following
property: if K is a compact operator which commutes with a monzero, non scalar
operator in the commutant of S, then K = 0.
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e 1985, C. Read, A solution to the invariant subspace problem on the space ¢*,
Bull. London Math. Soc. 17 (1985) 305-317.

¢ Remark: Known counterexamples are built up over non-reflexive Banach spaces

Invariant subspace problem: current status

Invariant subspace problem

Given any linear bounded operator T' acting on a separable infinite-dimensional
reflexive complex Banach space, does there exist a non-trivial closed invariant
subspace?
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An operator Q : H — H acting on a separable infinite-dimensional complex Hilbert
space is said to be quasitriangular whenever there exists an increasing sequence
(Pn)nen of finite-rank projections converging strongly to the identity I and such that

|QP, — P.QP,|| — 0, asn — oco.

® Quasitriangular operators were conceived as an attempt to transfer some of the most
important features of triangular operators into a more general context.

® Note that, given a triangular operator T': H — H, there exists an increasing sequence
(Pn)nen of finite-rank projections converging strongly to the identity I and satisfying

TP, — P,TP, =(I - P,)TP, =0, foreachn=1,2,...
® Roughly speaking, the definition of quasitriangularity means that @ has a sequence of
“approximately invariant” finite-dimensional subspaces.

® Examples of quasitriangular operators: compact operators, normal operators,
compact perturbations of normal operators,...

® An example of non-quasitriangular operator: Shift operator acting on ¢2(N).
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Quasitriangularity and invariant subspaces

A remarkable theorem due to Apostol, Foiag and Voiculescu (1973) reduced the
Invariant Subspace Problem in Hilbert spaces to the class of quasitriangular
operators.

Theorem (Apostol, Foias and Voiculescu, 1973)

If T € L(H) is not a quasitriangular operator, then T has non-trivial closed
invariant subspaces.

¢ Initial goal: Understand quasitriangular operators from the standpoint of
view of invariant subspaces.
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Question

It is still unknown if every rank-one perturbation of a diagonal operator
(T = D+ u®w), has non-trivial invariant subspaces (problem explicitly posed by
Pearcy in 1979).
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An old problem

® The study of the existence of nontrivial closed invariant subspaces for the
perturbation of a Hermitian (self-adjoint) operator A by a compact operator of a
Schatten class Cp, 1 < p < oo (1960’s)

e Kitano generalized the previous results to the case where A was a normal
operator with spectrum on a C? Jordan curve (1968).

Theorem (Radjabalipour and Radjavi, 1975)

Let T = N + K be a bounded linear operator in a complex Hilbert space, where N is a
normal operator with spectrum on a C* Jordan curve v and K a compact operator
belonging to a Schatten class Cp for 1 < p < co. Then T is decomposable if and only
if o(T) does not fill the interior of ~y.

® The situation turns out to be drastically different if the assumption on the
spectra being contained in a curve is dropped off since, in such a case, it is still
an open question if every compact perturbation of a normal operator has
non-trivial closed invariant subspaces. Even, in particular, it is still open if every
rank-one perturbation of a normal operator whose eigenvectors span the Hilbert
space H has non-trivial closed invariant subspaces.
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If Dy € L(H) is a diagonal operator, that is, there exists an orthonormal basis
(en)n>1 of H and a bounded sequence of complex numbers A = (An)n>1 C C such
that

DAen = )\nen,

a rank-one perturbations of Dy can be written as
T=Dx+u®v, (1)

where u, and v are non-zero vectors in H and u ® v(z) = (x,v) u for every x € H.

Rank-one perturbations of normal operators whose eigenvectors span H belongs are
unitarily equivalent to those expressed by (1).
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Theorem (Foias, Ko, Jung and Pearcy, JFA 2007)
Let T =Dax+u®v in L(H)\ CI where u =7 | anen, V=2 - fnen and

> Janl*® 418422 < 0.

n=1

Then, T has non-trivial hyperinvariant subspaces.



Invariant Subspaces for Rank-One Perturbations of Diagonal Operators

Note that if {an} € €7 and {8, } € £?, Foias, Jung, Ko and Pearcy Theorem can be
“seen”:

p=2

p=1

p=2/3

q=2/3 g=1 g=2

T=D+4+u®uv
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A Riesz functional calculus unconventional because it involves integration over
contours that may intersect the spectrum.

Figure: Spectrum of T
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Theorem (Fang and Xia, JFA 2012)
Let T=Dpx+u®v in L(H)\ CI where u=> 7" anen, V=2 Bnen and

oo
S Jetal + 1] < oo

n=1

Then, T' has non-trivial closed hyperinvariant subspaces.

p=2

q=2/3 g=1 =2
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e The authors show the decomposability for a subclass of the rank-one perturbations
that satisfy the summability assumption.

e An operator T € L(H) is decomposable if for every open cover Uy, Uz C C such
that o(T) C Ui U U, there exists invariant subspaces M, N for T such that
H=M+N and o(T |m) C Uy and o(T |n) C Us.

1 a(T |m)

o(T |n) J

Us U,

Figure: A decomposable operator.
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Theorem (GG,Gonzalez-Dona, 2021)

Let T =Dy +u®wv € L(H)\ CIdy be any rank-one perturbation of a diagonal
normal operator respect to an orthonormal basis (én)n>1 where u =Y " | omen and
v =132 Bnen. If either

oo o0
Z|Ozn|<oo or Z|Bn|<oo,
=1 n=1

then T has non-trivial closed hyperinvariant subspaces.

a=2/3 a=1 a2



Invariant Sub s For Rank-One Perturbations: straightforward cases




Invariant Subspaces For Rank-One Perturbations: straightforward cases

Theorem (Ionascu, 2001)

Suppose T = D +u®v € L(H) where A = (An)n>1 CC, u=> 7" anen and
v =73 " Bnen are nonzero vectors in H.




Invariant Subspaces For Rank-One Perturbations: straightforward cases

Theorem (Ionascu, 2001)

Suppose T = D +u®v € L(H) where A = (An)n>1 CC, u=> 7" anen and
v =73 " Bnen are nonzero vectors in H.

o lthere exists n € N such that a8, = 0, then either A\, is an eigenvalue of T' or
An 15 an eigenvalue of the adjoint T™.




Invariant Subspaces For Rank-One Perturbations: straightforward cases

Theorem (Ionascu, 2001)

Suppose T = D +u®v € L(H) where A = (An)n>1 CC, u=> 7" anen and
v =73 " Bnen are nonzero vectors in H.

o lthere exists n € N such that a8, = 0, then either A\, is an eigenvalue of T' or
An 15 an eigenvalue of the adjoint T™.

© If there exists m # n € N such that A\, = A\, then A\, is an eigenvalue of T'.




Invariant Subspaces For Rank-One Perturbations: straightforward cases

Theorem (Ionascu, 2001)
Suppose T = D +u®v € L(H) where A = (An)n>1 CC, u=> 7" anen and
v =73 " Bnen are nonzero vectors in H.

o lthere exists n € N such that a8, = 0, then either A\, is an eigenvalue of T' or
An 15 an eigenvalue of the adjoint T™.

© If there exists m # n € N such that A\, = A\, then A\, is an eigenvalue of T'.

@ If the derived set of (An)n>1 reduces to a single point, then the commutant of T
contains a mon-zero compact operator.




Invariant Subspaces For Rank-One Perturbations: straightforward c

Theorem (Ionascu, 2001)
Suppose T = D +u®v € L(H) where A = (An)n>1 CC, u=> 7" anen and
v =73 " Bnen are nonzero vectors in H.

o lthere exists n € N such that a8, = 0, then either A\, is an eigenvalue of T' or
An 15 an eigenvalue of the adjoint T™.

© If there exists m # n € N such that A\, = A\, then A\, is an eigenvalue of T'.

@ If the derived set of (An)n>1 reduces to a single point, then the commutant of T
contains a mon-zero compact operator.

If T satisfies any of the previous conditions, T has a non-trivial closed hyperinvariant
subspace. J



The class (RO)

Definition (Class (RO))

Fized an orthonormal basis € = (en)n>1 of H and consider a bounded sequence of
complex numbers A = (An)n>1 C C. If Dp denotes the diagonal operator associated
to A respect to &€, the rank-one perturbation of Dy

T=Dyx+u®v
with u = 220:1 QAp€n, V= fo’:l Bren nonzero vectors in H, belongs to the class
(RO) if:
(1) anBn #0 for every n € N;
(ii) the map n € N A\, € A is injective;

(iii) the derived set A’ is not a singleton.
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Spectrum ¢(7) and point spectrum o,(7") of operators T € (RO)

Let T € (RO) and denote by fr the Borel series (or Denjoy series) associated to
T:

mnE
EpIpe

for those z € C such that the series converges.
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Definition

Let {zn}n>1 be a bounded sequence of distinct points in C and A = {z,},>1. If
{en}n>1 € 2 the Borel series is the function defined by

oo
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n=1




A “brief” overview on Borel series

Definition

Let {zn}n>1 be a bounded sequence of distinct points in C and A = {z,},>1. If
{en}n>1 € 2 the Borel series is the function defined by

o0
>
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whenever |z| > sup |z, | for some non-trivial {c,} € £! if and only if there exists a closed
invariant subspace for the diagonal operator D having eigenvalues {z5} which is not
invariant for the adjoint D*.
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Spectrum o(7T) and point spectrum o,(7T") of operators T € (RO)

Let T € (RO) and denote by fr the Borel series (or Denjoy series) associated to
T:

_ Qnm
fT(Z) - n=1 An - Z7

for those z € C such that the series converges.

Theorem (Ionascu, 2001)

Let T =Dpy+u®v € (RO). Then z € C belongs to op(T) if and only if
(1) z€ A,

(i) Yo, sl <o,

(i) fr(z)+1=0.

Moreover,

o(T)=ANU{zeC\A: fr(z) +1=0},

and the essential spectrum

Oess(T) = A'.



Rank-One Perturbations Of Diagonal Operators

Theorem (GG,Gonzélez-Dona, 2021)
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Rank-One Perturbations Of Diagonal Operators

Theorem (GG,Gonzédlez-Dona, 2021)

Let T =Dy +u®wv € L(H)\ CIdy be any rank-one perturbation of a diagonal
normal operator respect to an orthonormal basis (6n)n21 where u = ZZ‘;I nen and
v =" Bnen. If either

oo o0
Z|o¢n|<oo or Z|Bn|<oo,
=1 n—=1

then T has non-trivial closed hyperinvariant subspaces. Moreover, for those
T € (RO) with o(T) connected and o,(T) U op(T*) = 0, it follows that they do have
non-zero spectral subspaces which are no longer dense.
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Recall that a linear bounded operator 17" on a Banach space X has the single-valued
extension property (SVEP) if for every connected open set G C C and every
analytic function f: G — X such that

(T — A f(\) =0

on G, one has f =0 on G.

The local spectrum of T at the vector z € X, denoted by or(z), is the complement
of the set of all A € C for which there exists an open neighbourhood Uy 3 A and an
analytic function f: Uy — X such that

(T — zI)f(z) = = for every z € U.

® For every operator T € L£(X) and z € X, the local spectrum o7 (z) is a compact
subset of o(T).



A closer look to the invariant subspaces: local spectral subspaces

Definition (Local spectral manifold)

Given an operator T' € £(X) and any subset Q2 C C, the local spectral manifold is
defined by

Xr(Q):={z e X : or(z) CQ}.




A closer look to the invariant subspaces: local spectral subspaces

Definition (Local spectral manifold)

Given an operator T' € £(X) and any subset Q2 C C, the local spectral manifold is
defined by

Xr(Q):={z e X : or(z) CQ}.

* Xr(Q) is always a (non-necessarily closed. ..) T-hyperinvariant linear manifold!!
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Definition (Local spectral manifold)

Given an operator T' € £(X) and any subset Q2 C C, the local spectral manifold is
defined by

Xr(Q):={z e X : or(z) CQ}.

* Xr(Q) is always a (non-necessarily closed. ..) T-hyperinvariant linear manifold!!

® Those operators T € B(X) such that X7 () is norm-closed for every closed
subset 2 C C are said to satisfy Dunford property (C).



SVEP for operators in (RO)

Proposition (GG, Gonzdlez-Dona, 2021)
Let T=Dx+uQ®uv € (RO), where u=>.>" | 0nen, v =y - Pnen € H. The
following conditions are equivalent:
(i) T has the SVEP.
(ii) op(T) does not fill any hole of A.
(ili) fr + 1 4s not constantly 0 on any hole of A.
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Strategy: characterizing particular spectral subspaces

Given T'= Dy +u ® v € (RO) where A = (A\,) C C and provided any set A C C, we
will denote by N4 the set of positive integers:

Na={neN:X, e AN A}

Given an open set U, a holomorphic map g on U and w € U, we define

O
e ={ ot 2

I'(g)(z,w) is continuous in U x U and for every w € U, the map z — I'(g)(z,w) is,
indeed, holomorphic in U.
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Strategy: characterizing particular spectral subspaces

Theorem (GG, Gonzilez-Dona, 2021)

Let T=Dpy+u®v € (RO) withu=> " anen, and v => - | fne, nonzero
vectors in H. Assume T has the SVEP and the spectrum o(T) is connected. Let F be
a non-empty closed set such that F'No(T) # 0. A vector x € H belongs to the

spectral subspace Hr(F) if and only if there exists a holomorphic map g in F° such
that:

(i) Ifx =3, ®Tnen, then
for every n € Npe.
(ii) The function
zEF°— Z I'(g2)(2, An)anen

nENpe
is a vector-valued holomorphic function on F€.
(iii) The identity

el mae) | 3 1) - 5 T e

neNg neNg " neNpc

holds for every z € F°.
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Example

Observe that for u =Y o2 ane, and v =" Bnen,
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Example

Observe that for u =Y o2 ane, and v =" Bnen,

gu() = T and g = 4 b

for every z € p(T).

Let T =Dy +u®v € (RO) withu=7> ", anen, and v => - | fne, nonzero
vectors in H. Assume o(T') is connected and both op(T) and op(T™) are empty. Let

F be a non-empty closed set contained in o(T). Then the vector w € Hr(F) if and
only if F = o(T).




A few remarks

Let T=Dy+u®v € (RO) withu=7> > anen, and v => -, Bne, nonzero
vectors in H. Assume o(T) is connected and both o,(T) and op(T*) are empty. Then

limsup ||(Da 4+ u ® v)"ul|"/™ = max{|2| : z € A’} = #(T), (2)

n— oo

and, analogously,

limsup ||(Dax 4+ v ® u)™||"/™ = max{|z| : z € A'} = r(T"). (3)

n—o0
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Strategy: constructing spectral subspaces

Theorem (GG, Gonzilez-Donia, 2021)

Let T=Dpy+u®v € (RO) withu=73 > anen, and v => . | Bne, nonzero
vectors in H. Assume o(T) is connected and both o,(T) and op(T™) are empty.
Assume that there ezists a closed, simple, piecewise differentiable curve v in C not
intersecting A such that

(i) o(T) Nint(y) £ 0.
(ii) The map

é‘ Ev— #
1+ fr(£)

is well defined and continuous on .

(iif)
i(f he )20‘"'2<°°'

Then, Hr(int(y)) s a non-zero spectral subspace.
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Yo
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Strategy: constructing spectral subspaces

Yoo Yo

.

Final step: If both T and T enjoy the SVEP, and Fi, F» C C are disjoint closed
sets, then
Hr(Fy) C Hr-(F3)™,






Question

q=2/3

[m]



Rank-One Perturbations Of Diagonal Operators: a step further

Theorem (GG,Gonzalez-Donia, 2022)

With the notation as introduced above, the linear bounded operator T'= DA + u ® v
has non trivial closed invariant subspaces provided that either w or v have a Fourier
coefficient which is zero or uw and v have non zero Fourier coefficients and

L

N < oo. (4)

= 1
> Jan[* log — + |8, log
|oen |

n=1

Moreover, if T is not a scalar multiple of the identity, it has non trivial closed
hyperinvariant subspaces.
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Finite Rank Perturbations Of Diagonal Operators

Let (én)n>1 be an orthonormal basis in H and w1, -+ ,un,v1, - Uy nON-zero vectors
in H. Let us we denote their Fourier coefficients by

we =Y alen, wv=1 BVen
n=1 n=1

for each 1 < k < N.



Finite Rank Perturbations Of Diagonal Operators

Let (en)HZI be an orthonormal basis in H and u1,- - ,un, 1, vN non-zero vectors
in H. Let us we denote their Fourier coefficients by

Uk = Z a;’%m Vg = Z ﬁ,(lk)en
n=1 n=1
for each 1 < k < N.

We consider operators that can be expressed by

N
T=Da+) ux®uvi € L(H),
k=1

where D, is a diagonal operator with respect to (en)n>1 with eigenvalues A = (An)n
and N € N fixed.



Finite Rank Perturbations Of Diagonal Operators

Theorem (GG, Gonzélez-Dona, 2022)

Let T =Dp+ > o, uk Q@ui € L(H) \ CIdu be any finite rank perturbation of a
diagonal normal operator D with respect to an orthonormal basis € = {en }n>1

where ui = Z —a aﬁl )en and vy = Zn 1 Bn en are non zero vectors in H. Then T
has non trivial closed hyperinvariant subspaces provided that

> |
neN

1
(k)’ log ® < 00
(%]

where
N={neN: a;k);é(),ﬁ,(f);éOforlgng}.




Invariant Subspace Problem

Question

Given any linear bounded operator T' acting on a separable infinite-dimensional
Hilbert space (or reflexive Banach space), does there exist a non-trivial closed
invariant subspace?

e An intrinsic difficulty: The lack of well-known examples



Thank you for your attention
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