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Motivation

Functional analytic methods ~~ study combinatorial structures

— Non-local game: discrete object we study using operator algebraic techniques

— Similarity between non-local games? Strategy transport? Allow comparison for chance of
“winning"?

— Quantum homomorphisms of discrete structures ~ studied for graphs, but few others

— Can we do the same for non-local games?



Non-local games

— The (classical) definition of a non-local game is a tuple (X, Y, A, B,\) where X, Y, A, B
are finite sets and A : X X Y x A x B— {0,1} is a “verifier” function which encodes the
rules of the game.
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Hypergraphs

A hypergraph is a subset EC V x W, where V and W are finite sets.
— Forwe W, E(w) ={ve V: (v,w) € E} is an edge, and V are the vertices of a hypergraph.
— The dual E* is
E :={(w,v): (v,w) € E}.

— Reformulate non-local games: a non-local game on (Va, Wy, Vi, Wa) is a hypergraph
AQ V2W1 X V1W2.

— So A corresponds to the support of A in classical definition.
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Channels
When V, W are finite sets, a classical information channel from V to W is a positive trace preserving
linear map £ : Dy — Dy
— A channel £ : Dy — Dy defines a hypergraph
Ec(w)={(v,w) € VX W: E(w]v) > 0}.

(Here E(w|v) = (E(ev,v), €w,w) Where (-, -) is the trace of the matrix product and €,,,
are the basis elements for Dy,.)

— For a given hypergraph E C V x W, we form the collection
C(E) ={€ : Dy — D, a channel with Eg C E}.

— & is unital if £(ly) = lw; in this case, £* is also a channel.
— Channel &, hypergraph Eg <> channel £*, hypergraph Eg+ = (Eg)*



Correlations

Let V;, W, be finite sets with i = 1,2. A no-signalling (NS) correlation on the quadruple
(Va, Wi, Vi, Wh) is an information channel T': Dy,w, — Dy, w, for which marginal channels
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Let V;, W, be finite sets with i = 1,2. A no-signalling (NS) correlation on the quadruple
(Va, Wi, Vi, Wh) is an information channel T': Dy,w, — Dy, w, for which marginal channels

FV2—>V1 :DVZ - DVl? FV2—>V1(V1|V2) = Z F(Vh W2|V23 V'/l)a
wa € Wa

T2 Dy, = Dwy,, T W2 (wp|wy ) = Z I(vi, wa|vh, wy)
vieVr

are well-defined.

The collection of no-signalling correlations is denoted by Cs; other classes of correlations
(Cioc; Cq; Cqa, Cqc) are defined by additional restrictions we place on I' € Cys.
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Local correlations: I € Cjc is a convex combination of correlations
L(viwa|vowy) = T'1(vy|ve)Ta(wa|wy),

for probability distributions I'y (+|va), T'a(+|wy ).

Quantum commuting: I' € Cy. if
1_‘(V1W2|V2W1) - <Ev2v1 FW1W2§a§>
for mutually commuting POVM’s (E,,v, )vievys (Fuiws )weews, acting on H and € € H is a unit vector.
® POVM: (finite) family of positive operators (E;); with > E; = I.
i€l
Quantum correlations: I' € Cq if I' is quantum commuting, but we replace operator product E,,y, Fu,w,
with tensor product E,,,, ® Fy,w,, Where our operators act on H = Hy ® Hw with Hy, Hw
finite-dimensional.

Approximately quantum: I' € Cg, if it is a limit of quantum strategies.

Cloe C Cq C Cqa C Cac C Cns J
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Simulation paradigm

For an NS correlation I" on (Vo, Wi, V4, Wa) and a channel £ : Dy, — Dy, the map
I'[€] : Dy, — Dy, defined by

El(wa|ve) = Z Z (vi, wa|va, w1)E(wi|v1)

vieVi wmeW,
is another channel.

— We “wire" the output for the marginal channel I'y, .\, to the input for £, and the output of &

back into I'.
Vi > w,
A |
I |
¥
Vo EL

When T'[€] € C(Va x Wh) where T is the simulator, we write (Vi — W1) (Vo = Wh).
~ Gage Hoefer (University of Delaware) | | Banach Algebras and Applications July 2022 9/22
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Hypergraph homomorphisms

Fix finite sets V;, W; and hypergraphs E; C V; x W;, for i=1,2.
— Let
Ei & E = {(VQ, Wy, Vi, W2) : (V]_7 Wl) cEb = (VQ, WQ) S EQ}

- If Vi = Vo=V, W, = Wy = W, the class of no-signalling bicorrelations is the collection of
channels

CPl = (T € Cos (VW x VW) : T is unital and T'* € Cy. }.

— For t # ns, T' € C?* now has slight additional restriction: POVM'’s (E,, v, )vy,v € V and
(Fwy,wy )w, ,wpew are magic squares.

— Note: Cy(A) = C(A) NGy, CP(A) = C(A) N CP.

Definition

We say that
— E; is t-homomorphic to E; (denoted E; — Es) if Co(Ey <> Ea) # .
— E, is t-isomorphic to E, (denoted E; ~ Ey) if Vi = Vo, Wy = Wh with CPH(E; « Ey) # 0.
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Local homomorphisms

A map f: Vo — Vi is a (classical) homomorphism between hypergraphs E; and E; if pre-images
under f preserve edge relations; that is, fis a homomorphism if there exists a map g: W) — W5 so that

fHEi(w)) = Ex(g(wy)), for every w; € Wj.

— If Vi = Vo, Wy = W, then fis an isomorphism when it is a bijective homomorphism, with g
bijective as well.

— Perfect local strategies for hypergraph homomorphism (resp. isomorphism) E; — E; (resp.
E; ~ E5) correspond precisely with classical homo/isomorphisms f between E; and E,.

— If I is perfect for E; — Ez, assume I' is an extreme point in Cioc + no-signalling ~~ homomorphism
(f.g)

— If (f, g) a homomorphism between hypergraphs, let ® : Dy, — Dv,, ¥ : Dy, — Dw, where
CI>(V1|V2) = (5‘,1’{(‘/2) and ‘II(W2|W1) = 5wz,g(w1)- ThenI' =P R V¥ ¢ CloC(El <~ EQ).
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An operator system approach

Start with a finite set V, and a block operator matrix U = (u,,,/),,v/cv such that U and Ut are isometries. Let
Vv be the (universal) ternary ring of operators generated by u, , for v,V € V and the relations

Z[ua”,x”a Uz, x, Ua,x’} = 6x,x’ Uyt 7y Z[ua”,x”7 Ua, x, ua’,x] = 53’31 Uyt i
acVv xeV
— For a faithful ternary representation 6 : Vy — B(H, K) (where H, K are Hilbert spaces), for the right
C*-algebra Cy we have Cy ~ span(8(Vv)*0(Vv)).
— Write Cvi v va vl T utz,vl Uy vy V1, V2, ‘/1, ‘/2 eV

— The C*-algebra Cy is generated by elements €y, va,

v, for V,',V;E V,i=1,2.

— Set evy,v; = €1,v1,v0,v0 TOr V1, va € V and generate operator system Sy = span{e,, ., : vi,vo € V}.

— Consider J = span{ev,,v; @ fu;,wy : (v2, w1, vi,wa) € E1 <+ Ez} as a subspace in Sy ® Sw.
Theorem (H.-Todorov, in prep. 2022)

The map s — L's is an affine surjective correspondence between

® the states of Sy ®@max Sw which annihilate [J and the perfect ns-strategies of E; <> Es.
® the states of Sy ®c. Sw which annihilate .J and the perfect qc-strategies of E1 <> Es.
® the states of Sy ®min Sw which annihilate J and the perfect qa-strategies of E1 <> E;.




Note: Proof of previous theorem extends ideas of proof ([4] Lupini et. al. 2020) for correlations to
bicorrelations.



Note: Proof of previous theorem extends ideas of proof ([4] Lupini et. al. 2020) for correlations to
bicorrelations. For 7 € {min, ¢, max} and state s on Sy ®; Sw which annihilates 7, map

Ls(vi, walve, w1) = s(evy,vy @ fury wp)

gives us the correspondence with perfect t-strategies on E; <+ E> (for t € {qa, qc,ns}).



Note: Proof of previous theorem extends ideas of proof ([4] Lupini et. al. 2020) for correlations to
bicorrelations. For 7 € {min, ¢, max} and state s on Sy ®; Sw which annihilates 7, map

Fs(VI, W2|V27 Wl) = 5(eV2,V1 o2 fW17W2)

gives us the correspondence with perfect t-strategies on E; <+ E> (for t € {qa, qc,ns}).

Remark: When H is a Hilbert space, a quantum magic square over V on H is a block operator matrix
(Evy,vy )vy,vaev With positive entries, and

Z E‘/lv‘/z = Z Ev’l,vZ =1l vi,veV

vhev viev



Note: Proof of previous theorem extends ideas of proof ([4] Lupini et. al. 2020) for correlations to
bicorrelations. For 7 € {min, ¢, max} and state s on Sy ®; Sw which annihilates 7, map

Ls(vi, walve, w1) = s(evy,vy @ fury wp)

gives us the correspondence with perfect t-strategies on E; <+ E> (for t € {qa, qc,ns}).

Remark: When H is a Hilbert space, a quantum magic square over V on H is a block operator matrix
(Evy,vy )vy,vaev With positive entries, and

Z E‘/lv‘/z = Z Ev’l,vZ =1l vi,veV

vhev viev
Operator system Sy is universal for quantum magic squares:

ucp maps ¢ : Sv — B(H) <+ quantum magic square (Ey, v, ) v vocv Via Evy vy = d(evs,vs)
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Assume V; = W; = V,i=1,2. A bicorrelation T' € CP! is faithful if
T(viwa|vowy) = 0if (vi = wy & vo # we) or (vi # wy & vo = wa).

— Faithful isomorphism I" between E; and E; ~» we can mutually simulate noiseless channels
id: V; = W;,i=1,2 by each other.
Theorem (H.-Todorov, in prep. 2022)

Let t € {loc,q,qc}. TFAE:
e FE; is faithfully t-isomorphic to Es;
® there exists a unitary matrix P = (P, /)., cv where entries P, , € B(H) are projections, such that

P(Ag, @ ly) = (Ag, ® )P

where Ag, is the incidence matrix for E;, i =1, 2.

Note: The ideas for this proof were adapted from Atserias et. al ([5] 2019), where a similar result was
shown for graphs only.
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For a given finite graph G with vertex set X, we can form hypergraphs
EG:{(X’%): XN)J}’ FG:{((Xay)ay):XNGy}

in X x X and XX x X, respectively.
— There exists graphs Gy, G which are not locally isomorphic, but quantum isomorphic ([5] Atserias
et. al, 2019).

— Local: classical graph isomorphism between G; and Go.

— Quantum: we can interwine the adjacency matrices Ag,,Ag, by some unitary block permutation
matrix P whose entries act on finite-dimensional space H.

Theorem (H.-Todorov, in prep. 2022)

Let Gy, Gy be graphs with vertex set X such that Gy = Gy (quantum) but Gy 2 Gy. Then:
°* FEg, =4 Eg,, but Eg, #10c Eq,;
° Fg Saa Fe,, but Fg, %10c Fa,-
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(i) As G1 24 Ga, find permutation P € Mx ® My intertwining Ag, ® Iy and Ag, ® lg; this implies Eg, & Eg, .
To show local separation, assume towards contradiction we have an isomorphism (f, g) on X (f, g bijections

preserving edge relations). These induce an isomorphism from L(Gi) to L(G2) (by considering the confusability
graphs of Eg,). Use Whitney's Isomorphism Theorem to show G; 2 G- a contradiction.

(ii) Using permutation P = (Pyy)x,, as before, we know
PP, =0if rel(x,y) # rel(x, y).
For pairs (x,y), (a, b) € X x X, let Quy,ab = Py,5Px,aPy,5. We can show:
® (Quy,ab)abexx is a POVM for every xy € XX.
® Q.,aPy,c =0 for (xy,y) € Eg,, (ab, c) & Eg,.
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Local vs. quantum strategies

Proof: (Sketch)

(i) As G1 24 Ga, find permutation P € Mx ® My intertwining Ag, ® Iy and Ag, ® lg; this implies Eg, & Eg, .
To show local separation, assume towards contradiction we have an isomorphism (f, g) on X (f, g bijections
preserving edge relations). These induce an isomorphism from L(Gi) to L(G2) (by considering the confusability
graphs of Eg,). Use Whitney's Isomorphism Theorem to show G; 2 G- a contradiction.
(ii) Using permutation P = (Pyy)x,, as before, we know
PP, =0if rel(x,y) # rel(x, y).

For pairs (x,y), (a, b) € X x X, let Quy,ab = Py,5Px,aPy,5. We can show:

® (Quy,ab)abexx is a POVM for every xy € XX.

® QXy,abe,c =0 for (Xya y) € EGl? (aba C) f EGQ'
If £ € H® H is maximally entangled, set

p(ab7 C|Xy7 Z) = <(QX}’,3[7 Y P;,C)gv §>a X, Y, Z,a, b) cec X

Then p gives us a perfect approximately quantum strategy for Fg, = Fg,.
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We restrict ourselves to considering non-local games as hypergraphs. We assume:
- X, Yi, A, B; are finite sets, E; C X;Y; x A;B;,i= 1,2 are non-local games.
— Ordered pairs (x,y) € X x Y are abbreviated as xy.

A channel I : Dx,v,xA,8, — Dx, v, xA:B, is strongly no-signalling (SNS) if

> T(ayi, asbelxoys, aibi) = Y Ty, asbolxays, a1by),  bi, by € B,

byEBy by E€By
Z L(x1y1, azbz|xay2, a1b1) = Z D(x1y1, azba|xays, atbr), a1, a € A,
ag €A ag €Ay

Z L(x1y1, azbz2|xay2, a1b1) = Z L(xiy1, asbalxayh, aib1),  yo,¥5 € Yo,
y1€EY1 YiIEY]

Z F(lel, 32b2|X2y2, al b1) = Z F(X1y1, azbz‘Xéyz, al bl), X2, X/2 € Xa.
x1 €X1 x1 €X1

— Operator matrix P = (P, a) is NS if marginal operators Px = 3 Py 26 and P* = 3" P, o5 are
b a

well-defined.



SNS correlation classes

A NS operator matrix P = (Pyy,ab)xy,ab is dilatable if there is an isometry V: H — KC between Hilbert
spaces and mutually commuting POVM's (E,,)aca, (Fyb)bes on K with

Py.ab = V' EFpV, xeXyeY,acAbeB.



_Applications to non-local games IR R R
SNS correlation classes

A NS operator matrix P = (Pyy,ab)xy,ab is dilatable if there is an isometry V: H — KC between Hilbert
spaces and mutually commuting POVM's (E,,)aca, (Fyb)bes on K with

Py.ab = V' EFpV, xeXyeY,acAbeB.

We have corresponding classes for SNS correlations: SNS correlation T" € Cgy is



_Applications to non-local games IR R R
SNS correlation classes

A NS operator matrix P = (Pyy,ab)xy,ab is dilatable if there is an isometry V: H — KC between Hilbert
spaces and mutually commuting POVM's (E,,)aca, (Fyb)bes on K with

Py.ab = V' EFpV, xeXyeY,acAbeB.

We have corresponding classes for SNS correlations: SNS correlation T" € Cgy is

® quantum commuting if I'(x1y1, a2ba|x2y2, @1b1) = (Prays xays Qarby,a06,&5 €) for mutually
commuting dilatable operator matrices P, Q and unit vector £ € H.



SNS correlation classes

A NS operator matrix P = (Pyy,ab)xy,ab is dilatable if there is an isometry V: H — KC between Hilbert
spaces and mutually commuting POVM's (E,,)aca, (Fyb)bes on K with

Py.ab = V' EFpV, xeXyeY,acAbeB.
We have corresponding classes for SNS correlations: SNS correlation T" € Cgy is

® quantum commuting if I'(x1y1, a2ba|x2y2, @1b1) = (Prays xays Qarby,a06,&5 €) for mutually
commuting dilatable operator matrices P, Q and unit vector £ € H.

® quantum if we replace operator product by tensor product in quantum commuting case, with
quantum dilatable matrices M, N acting on H ® IC (where both are finite-dimensional).



SNS correlation classes

A NS operator matrix P = (Pyy,ab)xy,ab is dilatable if there is an isometry V: H — KC between Hilbert
spaces and mutually commuting POVM's (E,,)aca, (Fyb)bes on K with

Py.ab = V' EFpV, xeXyeY,acAbeB.

We have corresponding classes for SNS correlations: SNS correlation T" € Cgy is
® quantum commuting if I'(x1y1, a2ba|x2y2, @1b1) = (Prays xays Qarby,a06,&5 €) for mutually
commuting dilatable operator matrices P, Q and unit vector £ € H.

quantum if we replace operator product by tensor product in quantum commuting case, with
quantum dilatable matrices M, N acting on H ® IC (where both are finite-dimensional).

approximately quantum if T' is a limit of quantum SNS correlations.



SNS correlation classes

A NS operator matrix P = (Pyy,ab)xy,ab is dilatable if there is an isometry V: H — KC between Hilbert
spaces and mutually commuting POVM's (E,,)aca, (Fyb)bes on K with

Py.ab = V' EFpV, xeXyeY,acAbeB.

We have corresponding classes for SNS correlations: SNS correlation T" € Cgy is

® quantum commuting if I'(x1y1, a2ba|x2y2, @1b1) = (Prays xays Qarby,a06,&5 €) for mutually

commuting dilatable operator matrices P, Q and unit vector £ € H.

quantum if we replace operator product by tensor product in quantum commuting case, with
quantum dilatable matrices M, N acting on H ® IC (where both are finite-dimensional).

® approximately quantum if I is a limit of quantum SNS correlations.
local if " is quantum and individual entries in operator matrices P, @ commute with themselves as

well.
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Theorem (H.-Todorov, in prep. 2022)

Let T' be an SNS correlation over the quadruple (X2 Ya, A1B1, X1Y1,A2Bs) and € be an NS correlation
over (Xl, Yl,Al, Bl) Then

° T[&] € Crs;

® fT' € Coqc, € € Cyc then T'[E] € Cye;

® fT € Csqa, € € Cqa then T[] € Cya;

o ifI' € Csq, & € Cq thenT'[E] € Cy;

® jfT € Cyoc, € € Cioc then F[(‘:] € Cloc-
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Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)

Let T' be an SNS correlation over the quadruple (X2 Ya, A1B1, X1Y1,A2Bs) and € be an NS correlation
over (Xl, Yl,Al, Bl) Then
° T[&] € Crs;
ifT' € Csqe, € € Cqc then T'[E] € Cyc;
ifT' € Csqa, € € Cqa then T[E] € Cya;
ifT' € Coq, € €Cq then T €] € Cy;
if T' € Cyloc, € € Cioc then F[S] € Cloc-

Note: For I' € Coqc, £ € Cqe case, say I'(x1y1, azba|xay2, a1b1) = (Puyoq P27 Qay .2y QPP2E,€), and
E(a1, bi|x1, y1) = (Exy a1 Fy1,6:m,m) where £ € H,n € K are unit vectors, and families of operators are mutually
commuting POVM'’s on resp. Hilbert spaces. Set

~EX2,32 = Z Z sz,xl Qal,ag ® Ex1,31, }/2 by = Z Z Pz le b2 ® Fy1 by -

x1€Xy a1 €Ay Y1E€Y1 b1 €B;

We then have qc-decomposition T'[€](ag, bz|x2, y2) = (Exg,a5 Fys.bs (€ @ 1), € @ 1). (Others follow similarly).
~ Gage Hoefer (University of Delaware) | | Banach Algebras and Applications July 202219 /22



Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)

Let T' be an SNS correlation over the quadruple (XaYa, A1B1, X1Y1,AsBs) and € be an NS correlation
over (X1, Y1,A1,B1). Then

I[€] € Crs;

ifT € Csqey € € Cyc then T[E] € Cye;
IFT € Coga, £ € Cya then T[E] € Cya;
ifT" € Coq, € EC, thenT[E] € Cy;
if T € Cyloc, € € Cioc then F[g] € Cloc-

Holds for SNS bicorrelations as well.
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Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)

Let T' be an SNS correlation over the quadruple (XaYa, A1B1, X1Y1,AsBs) and € be an NS correlation
over (X1, Y1,A1,B1). Then

I[€] € Crs;

ifT € Csqey € € Cyc then T[E] € Cye;
IFT € Coga, £ € Cya then T[E] € Cya;
ifT" € Coq, € EC, thenT[E] € Cy;
if T € Cyloc, € € Cioc then F[g] € Cloc-

Holds for SNS bicorrelations as well.
Non-local games are now t-isomorphic if we can find perfect SNS strategies I' € CP(E, «» E).

If By =4t Eo or Ey ~¢ E5, we simulate optimal strategies for £, using SNS bicorrelation I" and
get strategies for Es.



Thank you for listening!
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