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Setup Motivating questions

Motivation

Functional analytic methods ⇝ study combinatorial structures

– Non-local game: discrete object we study using operator algebraic techniques
– Similarity between non-local games? Strategy transport? Allow comparison for chance of

“winning”?
– Quantum homomorphisms of discrete structures ⇝ studied for graphs, but few others

– Can we do the same for non-local games?
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Setup Motivating questions

Non-local games

– The (classical) definition of a non-local game is a tuple (X,Y,A,B, λ) where X,Y,A,B
are finite sets and λ : X× Y× A× B → {0, 1} is a “verifier” function which encodes the
rules of the game.
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Setup Hypergraphs and channels

Hypergraphs

A hypergraph is a subset E ⊆ V×W, where V and W are finite sets.

– For w ∈ W, E(w) = {v ∈ V : (v,w) ∈ E} is an edge, and V are the vertices of a hypergraph.
– The dual E∗ is

E∗ := {(w, v) : (v,w) ∈ E}.

– Reformulate non-local games: a non-local game on (V2,W1,V1,W2) is a hypergraph
Λ ⊆ V2W1 × V1W2.

– So Λ corresponds to the support of λ in classical definition.
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Setup Hypergraphs and channels

Channels

When V,W are finite sets, a classical information channel from V to W is a positive trace preserving
linear map E : DV → DW.

– A channel E : DV → DW defines a hypergraph

EE(w) = {(v,w) ∈ V×W : E(w|v) > 0}.

(Here E(w|v) = 〈E(ϵv,v), ϵw,w〉 where 〈·, ·〉 is the trace of the matrix product and ϵv,v
are the basis elements for DV.)

– For a given hypergraph E ⊆ V×W, we form the collection

C(E) = {E : DV → DW, a channel with EE ⊆ E}.

– E is unital if E(IV) = IW; in this case, E∗ is also a channel.
– Channel E, hypergraph EE ⇐⇒ channel E∗, hypergraph EE∗ = (EE )∗
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Setup Hypergraphs and channels

Correlations

Let Vi,Wi be finite sets with i = 1, 2. A no-signalling (NS) correlation on the quadruple
(V2,W1,V1,W2) is an information channel Γ : DV2W1

→ DV1W2
for which marginal channels

ΓV2→V1 : DV2 → DV1 , ΓV2→V1(v1|v2) :=
∑

w2∈W2

Γ(v1,w2|v2,w′
1),

ΓW1→W2 : DW1
→ DW2

, ΓW1→W2(w2|w1) :=
∑

v1∈V1

Γ(v1,w2|v′2,w1)

are well-defined.

The collection of no-signalling correlations is denoted by Cns; other classes of correlations
(Cloc, Cq, Cqa, Cqc) are defined by additional restrictions we place on Γ ∈ Cns.
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Setup Hypergraphs and channels

Local correlations: Γ ∈ Cloc is a convex combination of correlations

Γ(v1w2|v2w1) = Γ1(v1|v2)Γ2(w2|w1),

for probability distributions Γ1(·|v2),Γ2(·|w1).

Quantum commuting: Γ ∈ Cqc if

Γ(v1w2|v2w1) = 〈Ev2v1Fw1w2
ξ, ξ〉

for mutually commuting POVM’s (Ev2v1)v1∈V1
, (Fw1w2

)w2∈W2
acting on H and ξ ∈ H is a unit vector.

• POVM: (finite) family of positive operators (Ei)i with
∑
i∈I

Ei = I.

Quantum correlations: Γ ∈ Cq if Γ is quantum commuting, but we replace operator product Ev2v1Fw1w2

with tensor product Ev2v1 ⊗ Fw1w2 , where our operators act on H = HV ⊗HW with HV,HW
finite-dimensional.

Approximately quantum: Γ ∈ Cqa if it is a limit of quantum strategies.

Cloc ⊂ Cq ⊂ Cqa ⊂ Cqc ⊂ Cns
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Setup Simulation paradigm

Simulation paradigm
For an NS correlation Γ on (V2,W1,V1,W2) and a channel E : DV1

→ DW1
, the map

Γ[E ] : DV2
→ DW2

defined by

Γ[E ](w2|v2) =
∑

v1∈V1

∑
w1∈W1

Γ(v1,w2|v2,w1)E(w1|v1)

is another channel.

– We “wire” the output for the marginal channel ΓV2→V1
to the input for E , and the output of E

back into Γ.

When Γ[E ] ∈ C(V2 ×W2) where Γ is the simulator, we write (V1 7→ W1)
Γ−→ (V2 7→ W2).
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Hypergraph homomorphisms Homomorphisms and bicorrelations

Hypergraph homomorphisms
Fix finite sets Vi,Wi and hypergraphs Ei ⊆ Vi ×Wi, for i = 1, 2.

– Let

E1 ↔ E2 = {(v2,w1, v1,w2) : (v1,w1) ∈ E1 ⇐⇒ (v2,w2) ∈ E2}.

– If V1 = V2 = V,W1 = W2 = W, the class of no-signalling bicorrelations is the collection of
channels

Cbi
ns = {Γ ∈ Cns(VW× VW) : Γ is unital and Γ∗ ∈ Cns}.

– For t 6= ns, Γ ∈ Cbi
t now has slight additional restriction: POVM’s (Ev2,v1)v1,v2 ∈ V and

(Fw1,w2)w1,w2∈W are magic squares.

– Note: Ct(Λ) = C(Λ) ∩ Ct, Cbi
t (Λ) = C(Λ) ∩ Cbi

t .
Definition
We say that

– E1 is t-homomorphic to E2 (denoted E1 →t E2) if Ct(E1 ↔ E2) 6= ∅.
– E1 is t-isomorphic to E2 (denoted E1 't E2) if V1 = V2,W1 = W2 with Cbi

t (E1 ↔ E2) 6= ∅.
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Hypergraph homomorphisms Homomorphisms and bicorrelations

Local homomorphisms

A map f : V2 → V1 is a (classical) homomorphism between hypergraphs E1 and E2 if pre-images
under f preserve edge relations; that is, f is a homomorphism if there exists a map g : W1 → W2 so that

f−1(E1(w1)) = E2(g(w1)), for every w1 ∈ W1.

– If V1 = V2,W1 = W2 then f is an isomorphism when it is a bijective homomorphism, with g
bijective as well.

– Perfect local strategies for hypergraph homomorphism (resp. isomorphism) E1 → E2 (resp.
E1 ' E2) correspond precisely with classical homo/isomorphisms f between E1 and E2.

– If Γ is perfect for E1 → E2, assume Γ is an extreme point in Cloc + no-signalling ⇝ homomorphism
(f, g).

– If (f, g) a homomorphism between hypergraphs, let Φ : DV2 → DV1 ,Ψ : DW1 → DW2 where
Φ(v1|v2) = δv1,f(v2) and Ψ(w2|w1) = δw2,g(w1). Then Γ = Φ⊗Ψ ∈ Cloc(E1 ↔ E2).
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Hypergraph homomorphisms Operator algebraic tools

An operator system approach
Start with a finite set V, and a block operator matrix U = (uv,v′)v,v′∈V such that U and Ut are isometries. Let
VV be the (universal) ternary ring of operators generated by uv,v′ for v, v′ ∈ V and the relations∑

a∈V
[ua′′,x′′ , ua,x, ua,x′ ] = δx,x′ua′′,x′′ ,

∑
x∈V

[ua′′,x′′ , ua,x, ua′,x] = δa,a′ua′′,x′′ .

– For a faithful ternary representation θ : VV → B(H,K) (where H,K are Hilbert spaces), for the right
C∗-algebra CV we have CV ' span(θ(VV)

∗θ(VV)).
– Write ev1,v′1,v2,v′2 := u∗

v2,v1uv′2,v′1 , v1, v2, v′1, v′2 ∈ V.
– The C∗-algebra CV is generated by elements ev1,v′1,v2,v′2

for vi, v′i ∈ V, i = 1, 2.

– Set ev2,v1 := ev1,v1,v2,v2 for v1, v2 ∈ V and generate operator system SV = span{ev1,v2 : v1, v2 ∈ V}.
– Consider J = span{ev2,v1 ⊗ fw1,w2 : (v2,w1, v1,w2) 6∈ E1 ↔ E2} as a subspace in SV ⊗ SW.

Theorem (H.-Todorov, in prep. 2022)
The map s 7→ Γs is an affine surjective correspondence between

• the states of SV ⊗max SW which annihilate J and the perfect ns-strategies of E1 ↔ E2.
• the states of SV ⊗c SW which annihilate J and the perfect qc-strategies of E1 ↔ E2.
• the states of SV ⊗min SW which annihilate J and the perfect qa-strategies of E1 ↔ E2.
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Hypergraph homomorphisms Operator algebraic tools

Note: Proof of previous theorem extends ideas of proof ([4] Lupini et. al. 2020) for correlations to
bicorrelations.

For τ ∈ {min, c,max} and state s on SV ⊗τ SW which annihilates J , map

Γs(v1,w2|v2,w1) = s(ev2,v1 ⊗ fw1,w2)

gives us the correspondence with perfect t-strategies on E1 ↔ E2 (for t ∈ {qa, qc, ns}).

Remark: When H is a Hilbert space, a quantum magic square over V on H is a block operator matrix
(Ev2,v1)v1,v2∈V with positive entries, and∑

v′2∈V

Ev1,v′2 =
∑
v′1∈V

Ev′1,v2 = I, v1, v2 ∈ V.

Operator system SV is universal for quantum magic squares:

ucp maps ϕ : SV → B(H) ↔ quantum magic square (Ev1,v2)v1,v2∈V via Ev1,v2 = ϕ(ev1,v2)
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Hypergraph homomorphisms Operator algebraic tools

Assume Vi = Wi = V, i = 1, 2. A bicorrelation Γ ∈ Cbi
t is faithful if

Γ(v1w2|v2w1) = 0 if (v1 = w1 & v2 6= w2) or (v1 6= w1 & v2 = w2).

– Faithful isomorphism Γ between E1 and E2 ⇝ we can mutually simulate noiseless channels
id : Vi → Wi, i = 1, 2 by each other.

Theorem (H.-Todorov, in prep. 2022)
Let t ∈ {loc, q, qc}. TFAE:

• E1 is faithfully t-isomorphic to E2;
• there exists a unitary matrix P = (Pv,v′)v,v′∈V where entries Pv,v′ ∈ B(H) are projections, such that

P(AE1
⊗ IH) = (AE2

⊗ IH)P

where AEi is the incidence matrix for Ei, i = 1, 2.
Note: The ideas for this proof were adapted from Atserias et. al ([5] 2019), where a similar result was
shown for graphs only.
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Hypergraph homomorphisms Strategy separation

Local vs. quantum strategies
For a given finite graph G with vertex set X, we can form hypergraphs

EG = {(x, x′) : x ∼ x′}, FG = {((x, y), y) : x ∼G y}

in X× X and XX× X, respectively.

– There exists graphs G1,G2 which are not locally isomorphic, but quantum isomorphic ([5] Atserias
et. al, 2019).

– Local: classical graph isomorphism between G1 and G2.
– Quantum: we can interwine the adjacency matrices AG1

,AG2
by some unitary block permutation

matrix P whose entries act on finite-dimensional space H.
Theorem (H.-Todorov, in prep. 2022)
Let G1,G2 be graphs with vertex set X such that G1

∼=q G2 (quantum) but G1 6∼= G2. Then:
• EG1

∼=q EG2
, but EG1

6∼=loc EG2
;

• FG1
∼=qa FG2

, but FG1
6∼=loc FG2

.
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Hypergraph homomorphisms Strategy separation

Local vs. quantum strategies
Proof: (Sketch)

(i) As G1
∼=q G2, find permutation P ∈ MX ⊗ Md intertwining AG1 ⊗ Id and AG2 ⊗ Id; this implies EG1

∼=q EG2 .

To show local separation, assume towards contradiction we have an isomorphism (f, g) on X (f, g bijections
preserving edge relations). These induce an isomorphism from L(G1) to L(G2) (by considering the confusability
graphs of EGi ). Use Whitney’s Isomorphism Theorem to show G1

∼= G2- a contradiction.

(ii) Using permutation P = (Px,y)x,y as before, we know
Px,x′Py,y′ = 0 if rel(x, y) 6= rel(x′, y′).

For pairs (x, y), (a, b) ∈ X × X, let Qxy,ab = Py,bPx,aPy,b. We can show:
• (Qxy,ab)ab∈XX is a POVM for every xy ∈ XX.
• Qxy,abPy,c = 0 for (xy, y) ∈ EG1 , (ab, c) 6∈ EG2 .

If ξ ∈ H⊗H is maximally entangled, set
p(ab, c|xy, z) = 〈(Qxy,ab ⊗ Pt

y,c)ξ, ξ〉, x, y, z, a, b, c ∈ X.
Then p gives us a perfect approximately quantum strategy for FG1

∼= FG2 .
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Applications to non-local games SNS correlations

Strong no-signalling correlations
We restrict ourselves to considering non-local games as hypergraphs. We assume:

– Xi,Yi,Ai,Bi are finite sets, Ei ⊆ XiYi × AiBi, i = 1, 2 are non-local games.
– Ordered pairs (x, y) ∈ X× Y are abbreviated as xy.

A channel Γ : DX2Y2×A1B1 → DX1Y1×A2B2 is strongly no-signalling (SNS) if∑
b2∈B2

Γ(x1y1, a2b2|x2y2, a1b1) =
∑

b2∈B2

Γ(x1y1, a2b2|x2y2, a1b′
1), b1, b′

1 ∈ B1,∑
a2∈A2

Γ(x1y1, a2b2|x2y2, a1b1) =
∑

a2∈A2

Γ(x1y1, a2b2|x2y2, a′
1b1), a1, a′

1 ∈ A1,∑
y1∈Y1

Γ(x1y1, a2b2|x2y2, a1b1) =
∑

y1∈Y1

Γ(x1y1, a2b2|x2y′2, a1b1), y2, y′2 ∈ Y2,∑
x1∈X1

Γ(x1y1, a2b2|x2y2, a1b1) =
∑

x1∈X1

Γ(x1y1, a2b2|x′2y2, a1b1), x2, x′2 ∈ X2.

– Operator matrix P = (Pxy,ab) is NS if marginal operators Pxa =
∑
b

Pxy,ab and Pyb =
∑
a

Pxy,ab are
well-defined.
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Applications to non-local games SNS correlations

SNS correlation classes

A NS operator matrix P = (Pxy,ab)xy,ab is dilatable if there is an isometry V : H → K between Hilbert
spaces and mutually commuting POVM’s (Exa)a∈A, (Fyb)b∈B on K with

Pxy,ab := V∗ExaFybV, x ∈ X, y ∈ Y, a ∈ A, b ∈ B.

We have corresponding classes for SNS correlations: SNS correlation Γ ∈ Csns is

• quantum commuting if Γ(x1y1, a2b2|x2y2, a1b1) = 〈Px2y2,x1y1Qa1b1,a2b2ξ, ξ〉 for mutually
commuting dilatable operator matrices P,Q and unit vector ξ ∈ H.

• quantum if we replace operator product by tensor product in quantum commuting case, with
quantum dilatable matrices M,N acting on H⊗K (where both are finite-dimensional).

• approximately quantum if Γ is a limit of quantum SNS correlations.
• local if Γ is quantum and individual entries in operator matrices P,Q commute with themselves as

well.
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Applications to non-local games Homomorphisms of non-local games

Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)
Let Γ be an SNS correlation over the quadruple (X2Y2,A1B1,X1Y1,A2B2) and E be an NS correlation
over (X1,Y1,A1,B1). Then

• Γ[E ] ∈ Cns;
• if Γ ∈ Csqc, E ∈ Cqc then Γ[E ] ∈ Cqc;
• if Γ ∈ Csqa, E ∈ Cqa then Γ[E ] ∈ Cqa;
• if Γ ∈ Csq, E ∈ Cq then Γ[E ] ∈ Cq;
• if Γ ∈ Csloc, E ∈ Cloc then Γ[E ] ∈ Cloc.

Note: For Γ ∈ Csqc, E ∈ Cqc case, say Γ(x1y1, a2b2|x2y2, a1b1) = 〈Px2,x1Py2,y1Qa1,a2Qb1,b2ξ, ξ〉, and
E(a1, b1|x1, y1) = 〈Ex1,a1Fy1,b1η, η〉 where ξ ∈ H, η ∈ K are unit vectors, and families of operators are mutually
commuting POVM’s on resp. Hilbert spaces. Set

Ẽx2,a2 =
∑

x1∈X1

∑
a1∈A1

Px2,x1Qa1,a2 ⊗ Ex1,a1 , F̃y2,b2 =
∑

y1∈Y1

∑
b1∈B1

Py2,y1Qb1,b2 ⊗ Fy1,b1 .

We then have qc-decomposition Γ[E ](a2, b2|x2, y2) = 〈Ẽx2,a2 F̃y2,b2(ξ ⊗ η), ξ ⊗ η〉. (Others follow similarly).
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– Holds for SNS bicorrelations as well.

– Non-local games are now t-isomorphic if we can find perfect SNS strategies Γ ∈ Cbi
t (E1 ↔ E2).

– If E1 →st E2 or E1 'st E2, we simulate optimal strategies for E1 using SNS bicorrelation Γ and
get strategies for E2.
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Thank you for listening!
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