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Overview

I Almost disjoint families: What are they, and why are they useful in the
study of Banach spaces and algebras?

I C(K)-spaces: Some background.
I C(K)-spaces with few operators.
I Some consequences and applications of the main result.
I The complemented subspace problem for C(K)-spaces.
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Almost disjoint families

Let [N]ω denote the set of infinite subsets of N.

Definition. A family A ⊂ [N]ω is almost disjoint if

|A ∩ B| <∞ (A,B ∈ A, A 6= B).

Key result. (Sierpiński, 1928.) Uncountable almost disjoint families exist!
In fact, there are almost disjoint families of cardinality c.

Moreover, they are “easy” to construct — once you know the trick!

Construction.
Starting point: We may replace N with any countably infinite set. We use Q.

For every r ∈ R \Q, choose a sequence (q
(r)
n )n∈N in Q which converges to r .

Define Ar = {q(r)
n : n ∈ N} ∈ [Q]ω.

Suppose that |Ar ∩ As | =∞ for some r , s ∈ R \Q.

Then (q
(r)
n )n∈N and (q

(s)
n )n∈N have an infinite subsequence in common, so r = s.

Hence |Ar ∩ As | <∞ for r 6= s.

Thus {Ar : r ∈ R \Q} is an almost disjoint family of cardinality c in [Q]ω. 2
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Almost disjoint families — applications

Almost disjoint families appear in many different branches of mathematics:

I Perhaps their most natural home is infinite combinatorics.
I They are closely connected with foundations/set theory because often, the

construction of an almost disjoint family with particular properties relies
on additional axioms (outside ZFC).

The continuum hypothesis (CH) — or its negation — are the most
“obvious” examples.

I Almost disjoint families also play a role in topology because every almost
disjoint family A ⊆ [N]ω induces a locally compact Hausdorff space KA.

This connection goes back to Alexandroff and Urysohn (1920’s), who
essentially gave the construction I showed you earlier.

I This links almost disjoint families to functional analysis: Let K = R or
K = C, and let K be a locally compact Hausdorff space. Then

C0(K) =
{
f : K → K : f is continuous and

{t ∈ K : |f (t)| > ε} is compact for every ε > 0
}

is a Banach space

/Banach algebra/C∗-algebra.
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The locally compact space induced by an almost disjoint family
(functional analytic approach)

Definition. Given an almost disjoint family A ⊆ [N]ω, define

XA = span{1A : A ∈ A ∪ [N]<ω} ⊆ `∞,

where 1A is the indicator function of A and [N]<ω the set of finite subsets of N.

Check: XA is a self-adjoint subalgebra of `∞.

Gelfand–Naimark Theorem: XA ∼= C0(KA) for some locally compact Hausdorff
space KA.

Origins:
I Banach spaces of the form XA were first studied by Johnson and Linden-

strauss (Israel J. Math. 1974).

I Locally compact Hausdorff spaces of the form KA were first studied by
Alexandroff and Urysohn (1920’s).

Terminology: AU-compactum, (Isbell–)Mrówka space, Ψ-space.

5



The locally compact space induced by an almost disjoint family
(functional analytic approach)

Definition. Given an almost disjoint family A ⊆ [N]ω, define

XA = span{1A : A ∈ A ∪ [N]<ω} ⊆ `∞,

where 1A is the indicator function of A and [N]<ω the set of finite subsets of N.

Check: XA is a self-adjoint subalgebra of `∞.

Gelfand–Naimark Theorem: XA ∼= C0(KA) for some locally compact Hausdorff
space KA.

Origins:
I Banach spaces of the form XA were first studied by Johnson and Linden-

strauss (Israel J. Math. 1974).

I Locally compact Hausdorff spaces of the form KA were first studied by
Alexandroff and Urysohn (1920’s).

Terminology: AU-compactum, (Isbell–)Mrówka space, Ψ-space.

5



The locally compact space induced by an almost disjoint family
(functional analytic approach)

Definition. Given an almost disjoint family A ⊆ [N]ω, define

XA = span{1A : A ∈ A ∪ [N]<ω} ⊆ `∞,

where 1A is the indicator function of A and [N]<ω the set of finite subsets of N.

Check: XA is a self-adjoint subalgebra of `∞.

Gelfand–Naimark Theorem: XA ∼= C0(KA) for some locally compact Hausdorff
space KA.

Origins:
I Banach spaces of the form XA were first studied by Johnson and Linden-

strauss (Israel J. Math. 1974).

I Locally compact Hausdorff spaces of the form KA were first studied by
Alexandroff and Urysohn (1920’s).

Terminology: AU-compactum, (Isbell–)Mrówka space, Ψ-space.

5



The locally compact space induced by an almost disjoint family
(functional analytic approach)

Definition. Given an almost disjoint family A ⊆ [N]ω, define

XA = span{1A : A ∈ A ∪ [N]<ω} ⊆ `∞,

where 1A is the indicator function of A and [N]<ω the set of finite subsets of N.

Check: XA is a self-adjoint subalgebra of `∞.

Gelfand–Naimark Theorem: XA ∼= C0(KA) for some locally compact Hausdorff
space KA.

Origins:
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The locally compact space induced by an almost disjoint family (continued)

There are other ways of defining the Mrówka space KA:

I You can give a “hands-on” definition:

KA = {xn : n ∈ N} ∪ {yA : A ∈ A},

where xn is isolated for every n ∈ N, and xn −→
A3n→∞

yA for every A ∈ A.
More precisely, the sets

U(A,F ) = {xn : n ∈ A \ F} ∪ {yA}, where F ∈ [N]<ω,

form a neighbourhood basis at yA.

I If you prefer abstract methods, you can view KA as the Stone space of the
Boolean subalgebra of P(N) generated by A ∪ [N]<ω.

Remark. ‖1A − 1B‖∞ = 1 for distinct A,B ⊆ N.
Hence, for an almost disjoint family A ⊆ [N]ω,

XA is separable ⇐⇒ A is countable.

Conclusion: In the “interesting” cases, C0(KA) is non-separable.
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The isomorphic classification of separable C (K )-spaces

Terminology. A C(K)-space is a Banach space of the form

C(K) = {f : K → K : f is continuous}

for some compact Hausdorff space K .

Fundamental fact. For a compact Hausdorff space K ,

C(K) is separable ⇐⇒ K is metrizable.

Theorem. Let K be a compact metric space.
(i) Suppose that K is finite. Then C(K) ∼= `n∞ for n = |K |.

Note: ∼= means “linearly homeomorphic”.

(ii) (Milutin) Suppose that K is uncountable. Then C(K) ∼= C({0, 1}N).
(iii) (Bessaga–Pełczyński, Studia Math. 1960) Suppose that K is countably

infinite. Then there is a unique countable ordinal α such that

C(K) ∼= C [0, ωω
α

],

where [0, ωω
α

] denotes set of all ordinals not exceeding ωω
α

, endowed
with the order topology.

The “modern” way of determining the ordinal α is
via the Szlenk index because

Sz(C [0, ωω
α

]) = ωα+1.

This result is due to Samuel (1983).
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C (K )-space with few operators: Koszmider’s first example

Starting point. Every C(K)-space admits multiplication operators:

Mf : g 7→ fg , C(K)→ C(K),

where f ∈ C(K).

Theorem (Koszmider, Math. Ann. 2004, assuming CH; Plebanek, Top. Appl.
2004, within ZFC).
There is an infinite compact Hausdorff space K such that

B(C(K)) = {Mf : f ∈ C(K)}+ W (C(K)),

where W (C(K)) is the ideal of weakly compact operators (= strictly singular
operators = operators not fixing c0).

Note: C(K) is a Grothendieck space, that is, every weak*-convergent
sequence in C(K)∗ converges weakly.

Consequence: C(K) does not contain any complemented subspaces isomorphic
to c0.
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C (K )-space with few operators: Koszmider’s second example

Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider–L, Adv. Math.
2021, within ZFC).
There is an uncountable, almost disjoint family A ⊆ [N]ω such that

B(C0(KA)) = K Id + X (C0(KA)),

where K = R or K = C is the scalar field and

X (C0(KA)) = {T ∈ B(C0(KA)) : T has separable range}.

Remarks. Let A ⊆ [N]ω be an almost disjoint family. Then:
I C0(KA) contains a complemented copy of c0, so it is not a Grothendieck

space.

I C0(KA) ∼= C(αKA), where αKA is the one-point compactification of KA.

In particular, C0(KA) is isomorphic to a C(K)-space.

I Every separable subspace of C0(KA) is contained in a subspace isomorphic
to c0

, so

X (C0(KA)) =
{
C0(KA)

S−→ c0
T−→ C0(KA) : S ∈ B(C0(KA), c0),

T ∈ B(c0,C0(KA))
}
.
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Consequences of the main theorem: Self-maps and decompositions

Recall:

Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider–L, Adv. Math.
2021, within ZFC).
There is an uncountable, almost disjoint family A ⊆ [N]ω such that

B(C0(KA)) = K Id + X (C0(KA)). (∗)

In the next few results, we assume that A ⊆ [N]ω is an uncountable, almost
disjoint family such that (∗) is satisfied. We say that “A admits few operators”.

Theorem (Koszmider–L). Let φ : KA → KA be a continuous self-map. Then:
I either φ has countable range,

I or φ fixes all but countably many points of KA.

Theorem (Koszmider 2005). C0(KA) has no non-trivial decompositions. More
precisely, suppose that C0(KA) = X ⊕ Y for some closed, ∞-dimensional
subspaces X and Y . Then X ∼= C0(KA) and Y ∼= c0, or vice versa.
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Consequences of main theorem: Closed ideal structure, automatic continuity
and uniqueness of norm

Theorem (Kania and Kochanek, J. Op. Th. 2014; Brooker, unpublished).
Let A ⊆ [N]ω be an uncountable, almost disjoint family which admits few
operators. Then B(C0(KA)) contains exactly four closed ideals:

{0} ⊂ K (C0(KA)) ⊂ X (C0(KA)) ⊂ B(C0(KA)).

Theorem (Koszmider–L). Let A ⊆ [N]ω be an uncountable, almost disjoint
family which admits few operators. Then every homomorphism from
B(C0(KA)) into a Banach algebra is continuous.

Theorem (Arnott–L, in preparation). Let A ⊆ [N]ω be an uncountable, almost
disjoint family which admits few operators. Then every quotient of B(C0(KA))
by a closed ideal has a unique algebra norm.
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Complemented subspaces of C (K )-spaces

Long-standing conjecture: Every complemented subspace of a C(K)-space is
isomorphic to a C(K)-space (not necessarily for the same K).

This conjecture has recently been disproved by Plebanek and Salguero Alarcón:

Theorem. (Plebanek and Salguero Alarcón, preprint 2021). There exists an
uncountable, almost disjoint family A ⊆ [N]ω such that C0(KA) contains a
complemented subspace which is not isomorphic to any C(K)-space.

The conjecture is still open for separable C(K)-spaces.

Evidence supporting it in the separable case:
I c0 is prime (Pełczyński, Studia Math. 1960), that is, every complemented,
∞-dimensional subspace of c0 is isomorphic to c0.

I Every complemented, ∞-dimensional subspace of C [0, ωω] is isomorphic
to either c0 or C [0, ωω] (Benyamini, Israel J. Math. 1978).
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Evidence supporting it in the separable case:
I c0 is prime (Pełczyński, Studia Math. 1960), that is, every complemented,
∞-dimensional subspace of c0 is isomorphic to c0.

I Every complemented, ∞-dimensional subspace of C [0, ωω] is isomorphic
to either c0 or C [0, ωω] (Benyamini, Israel J. Math. 1978).
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Some questions

Question. Which unital Banach algebras of density at most c are isomorphic to

B(C0(KA))/X (C0(KA))

for some uncountable, almost disjoint family A ⊆ [N]ω?

We propose this as a counterpart for Mrówka spaces of the

Calkin algebra question: Which unital Banach algebras are isomorphic to the
quotient B(X )/K (X ) for some Banach space X?

Question. Is there an uncountable, almost disjoint family A ⊆ [N]ω such that
B(C0(KA)) admits a discontinuous homomorphism into a Banach algebra?

Question. Within ZFC, is there a compact Hausdorff space K such that
B(C(K)) admits a discontinuous homomorphism into a Banach algebra?

Thank you!
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