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Abstract

CSpace is a program for the graphical and algebraic analysis of composition relations within chemical systems.

The program is particularly suited to the needs of petrologists, but could also prove useful for mineralogists,
geochemists and other environmental scientists. A few examples of what can be accomplished with CSpace are the
mapping of compositions into some desired set of system/phase components, the estimation of reaction/mixing
coe�cients and assessment of phase-rule compatibility relations within or between complex mineral assemblages.

The program also allows dynamic inspection of compositional relations by means of barycentric plots. CSpace
provides an integrated workplace for data management, manipulation and plotting. Data management is done
through a built-in spreadsheet-like editor, which also acts as a data repository for the graphical and algebraic

procedures. Algebraic capabilities are provided by a mapping engine and a matrix analysis tool, both of which are
based on singular-value decomposition. The mapping engine uses a general approach to linear mapping, capable of
handling determined, underdetermined and overdetermined problems. The matrix analysis tool is implemented as a

task ``wizard'' that guides the user through a number of steps to perform matrix approximation (®nding nearest
rank-de®cient models of an input composition matrix), and inspection of null-reaction space relationships (i.e. of
implicit linear relations among the elements of the composition matrix). Graphical capabilities are provided by a

graph engine that directly links with the contents of the data editor. The graph engine can generate sophisticated 2-
D ternary (triangular) and 3D quaternary (tetrahedral) barycentric plots and includes features such as interactive re-
sizing and rotation, on-the-¯y coordinate scaling and support for automated drawing of tie lines. 7 2000 Published
by Elsevier Science Ltd.
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1. Introduction

Manipulating the compositional variables that de®ne
the ``composition space'' of chemical systems (either

homogenous or heterogeneous) is frequently required
to solve or clarify many mineralogical and petrologic
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problems (Spear et al, 1982). Applications di�er
widely, from illustration to sophisticated analysis and

modeling of extensive phase relationships, all of which
are currently facilitated by the general availability of
reliable techniques of mineral and rock analysis. How-

ever, manipulating compositional variables and
inspecting compositional relationships can be time-con-
suming, particularly when the need arises in working

with large natural data sets and in the application of
the more advanced graphical and algebraic techniques.
Fortunately, many of these tasks are amenable to com-

puter treatment and, following theoretical work by
Thompson (1957), Korzhinskii (1959), Greenwood
(1967) and others, a number of algorithms and special-
ized computer programs have been devised to help

with many speci®c applications and issues (e.g., Albar-
ede and Provost, 1977; Ball and Robin, 1990; Fisher,
1989, 1993; Fletcher and Greenwood, 1979; Green-

wood, 1968, 1975; Pigage, 1976; Powell, 1990; Rock
and Carroll, 1989; Rock et al., 1991; Spear, 1980;
Spear et al., 1991).

CSpace is a 32-bit Windows2 application aimed at
further facilitating the use of state-of-the-art techniques
in the analysis of compositional relationships by pro-

viding a self-contained and interactive data manage-
ment and analysis environment. The program
integrates a set of general tools for the algebraic ma-
nipulation and modeling of n-dimensional composition

space and includes advanced capabilities for the
graphical representation of composition relations using
barycentric plots. CSpace is primarily intended as a

research aid in the analysis of phase assemblages; its
functionality, however, extends to many related miner-
alogical and geochemical purposes and should prove

equally suitable for training. The purpose of this paper
is to introduce the main program features, with
emphasis on the underlying procedures and algorithms.
Program usage is described in more detail in the online

documentation (help) that is linked to the program
itself.

2. Main interface elements

CSpace's main interface elements consist of three
resizeable linked windows, titled CSpaceData, CSpace-

Graphs and TextPad, each having speci®c command
menus and purposes that are brie¯y introduced in the
following sections. Other important interface elements

include a number of dialogs that are presented to the

user in response to menu commands that require ad-
ditional input. These dialogs and their usage are

described in the online documentation.

2.1. CSpaceData window

The CSpaceData window (Fig. 1) is the main pro-
gram window and provides access to application-level
features such as global options, help browsing and

program exit. As its name implies however, the main
purpose of the CSpaceData window is data manage-
ment and manipulation. These tasks are handled by

the DataSheet, a spreadsheet-like grid that stores a
two-dimensional data table (i.e., data that is organized
into cases and variables, arranged into rows and col-

umns). The DataSheet is both an editor and the live
repository of data that is to be processed by CSpace.
As an editor, it allows creating, opening, editing and
saving data ®les, and its usage is similar to that of

standard spreadsheets, including in-place editing of cell
values, range selection procedures and clipboard
exchange of data to/from most commercial spread-

sheets or text editors. The DataSheet cells, however,
only contain values (either numeric or text), and col-
umns are referred to by the names of the contained

variables. As a data repository, the DataSheet includes
facilities for marking or selecting the cases and vari-
ables that are to be used at any time for plotting or

manipulation. Operation on the data is interactive.
Once the data to be acted upon are de®ned, the user
can select a command or procedure from menus, then
examine (and eventually save) the results.

2.2. CSpaceGraphs window

The CSpaceGraphs window (Fig. 2) houses the

graph engine of CSpace. The essential controls on this
window are its toolbar and the plot area. The toolbar
facilitates selecting plot variables and some popular

graph options (such as whether to display point labels
or tie lines). On-screen display in the plot area faith-
fully represents what is printed, either actual size or

scaled to ®t the window. Clicking the tabbed control
at the bottom of the plot area allows instantly chan-
ging the type of plot displayed.
Working with plots is just a matter of selecting

which variables (i.e. DataSheet columns) should be
plotted and adjusting plot appearance. The graphs can
be con®gured for a variety of properties and settings

by means of dialogs or commands that are accessible
from the main menu of the CSpaceGraphs window.
The File and Edit menus give access to commands for

printing, exporting and clipboard-copying the dis-
played graph. Either exporting or copying can be done
in vector (meta®le) or raster (bitmap) formats. The

2 Windows is a trademark of Microsoft Corporation. To

run CSpace, a PC-compatible machine using either Windows

9x or Windows NT (4.0 or higher) is required. CSpace is

available from the Web at http://www.ugr.es/0cspace.
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capabilities of the graph engine are described in a later

section.

2.3. TextPad window

The TextPad window (Fig. 3) contains a simple,

line-oriented, text editor, similar to the Windows Note-
pad. Unlike the Windows Notepad, however, the Text-
Pad can handle large ®les and has no option for

wrapping lines. The TextPad main function is as the
location where results are output by the procedures
under the Matrix menu of the CSpaceData window,
although it can be used as a standard editor for exist-

ing ®les, as a scratchpad for notes or temporary data,
or even to create or edit CSpace data ®les as an
alternative to the DataSheet itself.

Algebraic manipulation and analysis of n-dimensional

composition space

Cspace's algebraic capabilities revolve around the
notion of ``composition space'' (Spear et al. 1982;
Thompson, 1982a), which refers to a Cartesian space

whose coordinates represent the amounts of the chemi-
cal species or components. Within a given composition
space, speci®c compositions are regarded as coordinate

locations with as many dimensions (i.e. coordinates) as
the number of components used to describe them.
Components are de®ned in terms of their chemical for-

mula and unit of measurement and, as expected for an

orthogonal Cartesian axis, they should be able to vary
independently from each other (i.e., be linearly inde-
pendent). For a heterogeneous system containing n

phases, for example, composition space can be math-
ematically de®ned from the Phase Rule as the range of
A (see below) in the context of a linear system of
equations of the type

A � x � b, �1�

where A is a m by n matrix describing the composition

of the n phases (arranged into columns) in terms of m
system components (arranged into rows), and both x

and b are vectors that equally describe the composition

of the system in terms of the proportions of the n
phases and m system components, respectively (Fisher,
1989). The notion of composition space is particularly

useful because, as noted by Spear et al. (1982), almost
all the petrologic applications of linear algebra depend
on appropriate handling of ``mapping'' systems of
equations such as Eq. (1), notwithstanding the di�erent

ways in which problems can be formulated. In general,
one will be interested in solving the system of
equations to express compositions in terms of an alter-

nate component set, and or in assessing the properties
of matrix A, such as its e�ective range and any implicit
linear relations among the compositions described by

its columns. For these purposes Cspace provides two
generic tools: the Mapping Engine (ME) and the
Matrix Analysis Wizard (MAW), each being speci®-

Fig. 1. CspaceData window, with view of DataSheet after performing constrained mapping of hypothetical quartz (Qtz), orthopyr-

oxene (Opx) and olivine (Ol) analyses from SiO2-MgO-FeO to SiO '2-MgO '-FeMgÿ1 molar coordinate systems. Variables tagged

with `+' were added to original data to constrain additive components in new set by means of di�erential weighting according to

procedure suggested by Fisher (1993), from which example is taken. Note that transformation matrix is speci®ed by last three cases

(selected). Numeric values along message bar at bottom of window indicate (from right to left) number of cases (a) contained in

DataSheet, (b) selected for plotting or mapping and (c) those that could actually be plotted using current set of plot variables (in

example, all cases minus one de®ning composition of MgFeÿ1 exchange component that has barycentric zero sum). Note that cur-

rent plot set is marked with capital letters along header row containing variable names.
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cally adapted for multiple coordinate mapping and
matrix modeling and analysis, respectively. Although
primarily intended for the analysis of phase assem-

blages, the ME and the MAW impose no constraints
to their use and should be ¯exible enough for a wide
range of geochemical applications. Still, a basic under-

standing of their common fundamental algorithm
(SVD) and general behavior is required. A brief intro-
duction to these is made next.

3.1. Matrix subspaces and SVD

Textbooks on linear algebra often describe matrix A

of Eq. (1) as a kind of operator that ``maps'' (trans-
lates) one location between Cartesian spaces that di�er

with regard to the coordinate sets used (i.e., it de®nes
an operation that is called a linear mapping from vec-
tor space x to vector space b). In translating between

these spaces, however, much depends on the relation-
ship between both coordinate sets as portrayed by the
properties of matrix A. If A is square and non-singular

then all of the b space can be ``reached'' by A, so that

any location in space x can be uniquely mapped into a

corresponding location in b. If A is singular, however,

then there is a portion of space b that cannot be

``reached'' by A, and ``points'' in space x cannot be

uniquely mapped into space b but rather into an inde®-

nite position with regard to the corresponding sub-

space of x that cannot be mapped. This latter subspace

is often referred to as the null space of A and its num-

ber of dimensions is the nullity of A. The subspace of

b that can be reached by A, on the other hand, is

termed the range of A and its dimensions are the rank

of A or r(A). Rank plus nullity always equal n, so non-

singular matrices have rank=n and singular (or rank-

de®cient) matrices have rank <n. Note that rank and

nullity refer to the number of linearly independent vec-

tors (analogous to orthogonal Cartesian axes) that can

be found in each subspace and would be su�cient to

describe any location within it. The set of independent

vectors spanning the range fully de®nes the space that

can be reached by A (i.e. the composition space),

Fig. 2. CspaceGraphs window, showing plot area with example stereoscopic plot of phases within CMAS system. Note that current

plot variables (from those contained in DataSheet) are speci®ed in comboboxes located in toolbar. Clicking tabs along bottom of

plot area changes type of plot displayed. Indicators at bottom-left of window show whether optional plotting of `negative' points

(np) and coordinate scaling (sc) is active.
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whereas the analogous vector set spanning the null

space speci®es existing linear dependencies in A (if
any). As pointed out by Fisher (1989), the null space is
analogous to the reaction space of Thompson (1982b)

in that it could represent ``reaction'' relationships
among the elements described by the columns of A

when they represent phase components. More gener-
ally, null-reaction space simply represents linear com-
positional relations, analogous to mass-balances, that

are implicit in the matrix of compositions A. Algebraic
analysis of matrix A (that is, assessing its range and

®nding and inspecting any implicit linear relations) is
thus a powerful technique in deciphering compositional
relations within systems of any complexity. For that

purpose, CSpace uses singular value decomposition
(SVD) which was ®rst introduced to petrologic appli-

cations by Fisher (1989; see this paper for a discussion
of the relative merits of SVD with regard to other alge-
braic techniques). SVD encompasses a most useful

family of methods in linear algebra which derives from
a theorem that states that any m by n matrix A (m >

=n ) can be written as the product of an m by n col-
umn-orthogonal matrix U, an n by n diagonal matrix

W with positive or zero elements, and the transpose of
an n by n orthogonal matrix V:

A � U � diag�W� � VT: �2�

The usefulness of SVD derives from several of its fun-

damental properties. The SVD of a matrix can always
be obtained, whether it is singular or not, and is
almost unique (up to same permutations of columns of
U, W and V, or linear combinations of U and V col-

umns with equal corresponding elements of W). Both
U and V are orthogonal, so their inverse is simply
their transpose (i.e., UT � U � VT � V � I, the identity

matrix). The number of non-zero diagonal elements of
W (called singular values ) gives the rank of A, whereas
U and V each contain a set of independent vectors

(also called ``orthonormal basis'') that fully character-
ize the range and null space of A, respectively. Of par-
ticular interest is that the columns of V whose same-
numbered elements of W are zero form an orthonor-

mal basis for the null space, thus directly giving coe�-
cients for any linear dependencies in A. These, or any
linear combination thereof, fully represent the range of

linear relations (such as reactions or mass-balances)
implicit in a matrix of compositions. A major advan-
tage of SVD is that it allows robust handling of linear

systems of equations such as Eq. (1) because of its
ability to diagnose problems when the matrix of com-

Fig. 3. TextPad window, where results from matrix routines and Matrix Analysis Wizard are written. TextPad allows editing, sav-

ing or transferring results, as appropriate.
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positions A is nearly singular through simple inspec-
tion of its singular values. Further, SVD also allows

approximating nearly singular matrices with a nearest
singular model by reversely computing Eq. (2) after
replacing the smaller Wjs by zero. These important

subjects are discussed in the next section. The math-
ematics and computation of SVD are discussed by,
e.g., Golub and Van Loan (1983) and Press et al.

(1989).

3.2. SVD zero threshold and matrix modeling

From the de®nition of the SVD it follows that the
inverse of matrix A is given by

Aÿ1 � V � diag�1=Wj � � UT �3�

(where UT refers to the transpose of U), which can be
computed inasmuch as no Wj is zero. If there are any
Wj zero values then A is singular (rank-de®cient) and

contains as many linear dependencies. Numerically,
however, ascertaining whether a matrix is singular may
be compounded by computational roundo� and, more
important in practice, by uncertainties in the values of

the elements of A. This often results in some of the
computed Wjs being small or very small instead of
zero, e�ectively masking singularities as a consequence

of the ``noise'' introduced by analytical or other errors
associated to the way in which compositions were esti-
mated.

Appropriately deciding at what threshold a small
singular value should be regarded as zero is thus essen-
tial for estimating the rank of a matrix and related

algebraic procedures that are based on SVD. Having
the opportunity to decide on this matter, on the other
hand, is one of the main advantages of using SVD
with regard to other techniques such as LU decompo-

sition or Gaussian elimination. The mapping engine of
CSpace, for instance, computes the inverse of the given
transformation matrix through its SVD by means of

Eq. (3) and can automatically replace 1/Wj by zero
whenever Wj is zero or small enough as to be regarded
as zero. In doing this, the mapping engine can diag-

nose and eliminate constraints that are useless or
almost useless in computing the desired new coordi-
nates.
Cspace's algebraic tools manage the SVD zero

threshold at two levels, referred to as computational (or
default) and user-speci®ed. At the computational level
the tools always estimate a numeric zero threshold that

is based on the ratio of the largest to the smallest
singular value and the number of operations required
to compute the SVD of the working matrix. This com-

putational zero threshold (typically a very small num-
ber, often smaller than 1e-10) is appropriate for
®ltering out spurious non-zero singular values resulting

from roundo� errors, and should not need to be over-
ridden when working with model/theoretical compo-

sitions that have no associated uncertainties.
To adapt for data uncertainties, a (larger) zero

threshold can be speci®ed to replace the default com-

putational estimate. What size of zero threshold should
be employed (if any) depends on the extent and distri-
bution of likely errors in the elements of the working

matrix. There are several approaches to estimating a
suitable zero threshold. In most instances a simple
inspection of the singular values can be used as a

guide, given that obviously non-zero singular values
will generally be orders of magnitude larger than sus-
pect ones. A more rigorous assessment can be based
on the data uncertainties themselves, either directly

through the error propagation approach described by
Powell (1990), or indirectly through matrix modeling.
Matrix modeling is a most intuitive method that relies

on the fact that reversely computing the SVD of a
matrix after replacing the smallest non-zero singular
values by zero e�ectively results in a ``model'' matrix

that has a correspondingly reduced rank (contains as
many additional singularities) and whose elements are
``nearest'' in the least-squares sense (i.e. one that mini-

mizes the sum of the squared residuals) to the original
values. If the model matrix so obtained does not di�er,
within likely error, from the original matrix, then it is
likely that the original matrix contained as many

masked singularities and the model matrix can be used
to inspect the linear relations (i.e., the null-reaction
space) that were ``hidden'' in the original matrix (see

Fisher, 1989, for a more thorough discussion).
CSpace's Matrix Analysis Wizard can be directed to
use this technique, and includes facilities for rapid test-

ing of di�erent matrix models against the known or
estimated uncertainties in the original data.

4. The mapping engine (ME)

The transformation, or mapping, of a set of compo-
sitional coordinates into another, is useful or required
in solving problems that depend on how compositions

are expressed (i.e., on the component set used). Petro-
logic applications (see Spear et al., 1982) include the
re-calculation of mineral analyses in terms of phase
components, rock norms, mixing problems, preparing

for projective graphical analysis and the balancing of
reactions. The ME is particularly suitable for appli-
cations that require the mapping of multiple compo-

sitions. Some applications, such as balancing a
reaction or exploring a mixing problem, might be bet-
ter handled with the MAW, which also facilitates test-

ing di�erent formulations or input data sets.
In a general situation, coordinate transformation

involves solving a set of m linear equations and n
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unknowns that relate the new components to the old
ones. In matrix notation this is analogous to Eq. (1)

where x and b are column vectors containing the n
new and m old coordinates, respectively, and A is an
m by n matrix of coe�cients whose n columns de®ne

the composition of each new component in terms of
the old component set. Matrix A (in this instance
called the transformation matrix) can be used to map

any number of objects already described with the old
coordinate set by changing vector b and solving repeat-
edly for x. The solution is given by:

x � Aÿ1 � b, �4�

so that the kind of mapping that can be obtained
depends primarily on the properties of A. If A is
square and non-singular then the system of equations

is determined and has a unique exact solution. Other-
wise, it may or not have exact solution(s) depending
on whether vector b lies in the range of A. If it does,
as when there are fewer equations than unknowns and/

or there are any degeneracies among them, then the
system is underdetermined and has multiple exact sol-
utions, one family of them for each corresponding vec-

tor in the null space of A. If b does not lie in the range
of A, then the system of equations is incompatible and
has no (exact) solution. In the latter situation, which

happens when the system is overdetermined (has more
independent equations than unknowns), the problem
can still be handled by using least-squares minimiz-

ation techniques whose goal is to ®nd an approximate
solution that best ®ts the constraints of all equations.
Because of its SVD-based approach, the mapping

engine of CSpace is capable of handling all these map-

ping problems, automatically adapting to the proper-
ties of the transformation matrix that is provided by
the user. To that end the ME ®rst checks the trans-

formation matrix and, based on a suitable zero
threshold that is accepted or supplied by the user, will
determine on the ¯y whether the system is determined,

underdetermined or overdetermined, then compute
Aÿ1 as in Eq. (3) and use it to solve repeatedly for the
new requested coordinates of all compositions to be

mapped using Eq. (4). The results of the mapping and
the behavior of the ME will be as follows:

. If the system is determined, the ME will perform a
regular mapping. For each composition that is to be

mapped the exact solution vector x is computed and
appended to the current database as a new set of
variables.

. If the system is underdetermined then the ME will
issue a warning and optionally output an exact sol-
ution vector x for each composition. If a solution is

requested the one provided is that with smallest
length vxv2. The full set of solutions can then be
obtained through linear combinations of this sol-

ution and the set of independent vectors in the null
space of the transformation matrix A.

. If the system is overdetermined then no vector x

exists that can exactly solve Eq. (1). What the ME
will ®nd instead for each composition to be mapped

is the vector x ' that best ®ts all constraints in the
least squares sense, i.e. one that minimizes the re-
sidual vA � x 'ÿbv, analogous to regression for n par-

ameters (see Fisher, 1989). Mapping to a reduced set
of components is one way of projecting a compo-
sition into a composition space of less dimensions

(cf. Greenwood, 1968), an alternative to projection
by re-normalization or condensation (see Spear,
1988, for a discussion of the di�erent projection
methods). Also, because of the least-squares con-

straint, overdetermined mapping is sensitive to
di�erential weighting, which may be useful to con-
trol mapping so that some of the equations are ®t

preferentially, or to impose certain constraints to the
solution vector (Fisher, 1993).

5. The matrix analysis wizard (MAW)

The MAW is a general-purpose computational tool
for matrix approximation and analysis of matrix sub-

spaces, suitable for the algebraic analysis of mineral
assemblages in rocks as well as for general mixing/
mass balance problems. The MAW provides a guiding

interface to the techniques and procedures advocated
by Fisher (1989), and provides functionality that is
equivalent to that of the DOS utilities SVDMOD and
MULTI by the same author. The MAW consists of a

multi-page dialog (Fig. 4) that can be walked forth
and back through a number of steps up to performing
complete analysis of the null-reaction space of any

given matrix of compositions. MAW output is written
to the TextPad, from where it can be saved or trans-
ferred to other applications including the DataSheet

itself. Using the MAW is basically a four-step process,
involving:

5.1. Building an input matrix

The ®rst step is to build a collection of cases from

the DataSheet containing the compositions (e.g. a
phase assemblage or set of phase components) that is
to be worked. Once this collection is built, the actual

MAW input matrix will consist of the values of all cur-
rently active variables (which will be arranged into
rows) pertaining to the collected cases (which will be

arranged into columns). The input matrix may have up
to 60 rows/columns. Assume, for example, that we
have collected three datasheet cases, corresponding to
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Fig. 4. Several views of pages from MAW. Top-left: Weights and tolerances page allows specifying whether input matrix is to be

weighted and, if so, weights for each component (row). Pre-computed matrix of tolerances can also be examined and modi®ed at

this stage. Top-right: Modeling page displays singular values of input matrix and rank information, from which user can choose

whether matrix is to be approximated by nearest rank-de®cient model and, if so, test model matrix against estimated uncertainties

in original data (matrix of tolerances that was speci®ed in previous step). Test results will be output to TextPad as matrix of re-

sidual/tolerance ratios and can optionally include model matrix and residuals. Bottom-left: Modeling page can also display graphi-

cal plot of singular values of input matrix that includes position of currently selected zero threshold (ZT). Bottom-right: Last page

of MAW is devoted to analysis of null (reaction) space of input/model matrix as built in preceding steps. Grid at top allows speci-

fying what columns (i.e. phases or phase components) are to be included in computations (working set), which is useful if matrix is

not model but rather matrix of theoretical phase or phase component compositions that is already rank-de®cient. If problem is to

®nd whether composition spaces of two assemblages intersect, then grid also allows specifying assemblage to which each phase

belongs (either A, B or unde®ned). Below grid, dynamically updated information on both input/model matrix and current working

set is provided, including number of selections comprising rank+1 phases (called `univariants'). Once all setup is done, clicking on

lower row of buttons directs MAW to output desired properties of current working set, which may consist of basic vectors of null

space, list of all implicit `univariant' relationships (either complete or duplicate-®ltered) and list of `univariants' implying incompat-

ibilities between speci®ed assemblages (intersections).
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hypothetical compositions of quartz, orthopyroxene
and olivine, within the three-component system SiO2-

MgO-FeMgÿ1. The hypothetical phase compositions
were previously mapped with the ME from original
SiO2-FeO-MgO molar coordinates so as to impose

stoichiometric constraints on the additive components
of the new set, as illustrated in Fig. 1. Upon advancing
to the next MAW page, the input matrix is output to

the TextPad:

1 2 3 (Case numbers)
Qtz Opx Ol Label#

INPUT MATRIX:

1.0000 1.0000 1.0000 SiO2 '
0.0000 1.0000 2.0000 MgO '
0.0000 0.7485 1.5020 FeMgÿ1

5.2. Setting up component weights and tolerances

Next to building the input matrix, the user is asked
to specify whether it is to be weighted and, if so, the

weights to be applied to each component (Fig. 4, top-
left). Weights can be speci®ed to adjust for analytical
uncertainties and/or to impose stoichiometric con-

straints if the matrix is to be approximated by a near-
est, rank-de®cient model. Weighting is optional and is
limited to components (matrix rows). Although more
rigorous weighting based on the full set of matrix

uncertainties is theoretically required for best matrix
approximation, the ways to do it are yet under
research and may not be essential in practice (e.g.,

Powell, 1990; Lang, 1991; Whitney et al., 1995). At
this stage the user can also customize the default
matrix of tolerance values that has already been com-

puted by the MAW based on the actual data in the
input matrix. The matrix of tolerances is a matrix of
the estimated absolute uncertainties in the original
data, and is used to compute the matrix of residual/tol-

erance ratios when testing model matrices in the next
step.

5.3. Matrix modeling

After having completed all the input, the user is pre-

sented with summary information on the current
matrix, including its complete array of singular values
and rank estimates based on the computational and

user-speci®ed zero thresholds (Fig. 4, top-right). The
same information is also written to the TextPad, as in
the following example, which continues developing the

example matrix (data from Fisher, 1993). Note that, to
keep constraining stoichiometry of additive com-
ponents and force errors on the exchange component,

the former were weighted one hundred times as com-
pared with the latter.

����ROW WEIGHTING IS ENABLED
�� New weights are in e�ect.

Current Row Weights:
100.0000 100.0000 1.0000

MATRIX U:
ÿ0.5847 0.8113 0.0000
ÿ0.8112 ÿ0.5847 0.0075

ÿ0.0061 ÿ0.0044 ÿ1.0000

SINGULAR VALUES [W]:
267.6293 91.5281 0.0020

MATRIX V:
ÿ0.2185 0.8863 ÿ0.4082
ÿ0.5216 0.2475 0.8165
ÿ0.8247 -0.3913 ÿ0.4082

Absolute rank of Input Matrix is 3 (up to a compu-
tational zero threshold of 8.02887836168743160E-12).
Possible rank of Input Matrix is 3 (up to speci®ed zero

threshold: 0.0009).

Based on this information (which includes a graphi-
cal display of singular values; Fig. 4, bottom-left), the
user may decide whether searching for a model matrix

of lower rank is appropriate and, if so, test models
against the original input matrix. Testing involves a
comparison of both matrices, and evaluating the re-

siduals in terms of the estimated uncertainties in the
original data (i.e. the matrix of tolerances). Most use-
ful for this purpose is the matrix of residual/tolerance

ratios, which is computed as ��Mij ÿ Aij �=Tij �, were A

is the input matrix, M the model matrix being tested
and T the matrix of tolerances that was computed or
supplied in the previous step. An example test output

for a suitable model matrix of rank 2 obtained from
the above input matrix is as follows:

TEST: Model matrix of rank 2

Model matrix:
Qtz Opx Ol Label#
1.0000 1.0000 1.0000 SiO2 '
0.0000 1.0000 2.0000 MgO '
ÿ0.0008 0.7502 1.5012 FeMgÿ1
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Matrix of residuals (Model-Input):

Qtz Opx Ol Label#
0.0000 0.0000 0.0000 SiO2 '
0.0000 0.0000 0.0000 MgO '
ÿ0.0008 0.0017 ÿ0.0008 FeMgÿ1

Matrix of residual/tolerance ratios:

Qtz Opx Ol Label#
0.0000 0.0000 0.0000 SiO2 '
0.0001 0.0000 0.0000 MgO '
ÿ0.8333 0.0742 ÿ0.0185 FeMgÿ1

5.4. Inspection of matrix relationships

Once an input/model matrix has been accepted, and
provided that it contains a null (or reaction) space, the
MAW will allow proceeding to its last page (Fig. 4, bot-

tom-right), where the user can inspect the corresponding
properties, either as a whole or for any working subset
of matrix columns in the situation of matrices that are

not models (e.g., matrices of phase components that are
already rank-de®cient). In each instance, the MAW can
®nd and display the set of linearly independent basis

vectors characterizing the null space in the form of lin-
ear equations among compositions (matrix columns), as
well as report all or the unique (i.e. duplicate-®ltered) set
of ``univariant'' linear relationships (that is, linear re-

lationships among phase subsets each containing
rank+1 phases) that is implicit in this reaction space.
For the model matrix of rank 2 in the previous step, out-

put of ``univariants'' would be as follows:

``UNIVARIANT'' RELATIONS (null/reaction space
of rank+1 column selections)

Matrix is a working set of 3 columns out of 3 in the
current input model.
Working Set:

(Working set is derived from weighted input)

Qtz Opx Ol
1.0000 1.0000 1.0000 SiO2 '
0.0000 1.0000 2.0000 MgO '
ÿ0.0008 0.7502 1.5012 FeMgÿ1

Rank of Working Set is: 2
Working Set contains 1 rank+1 column selections
(``univariants'')

``Univariant'' relation(s): (un®ltered)

Qtz Opx Ol
[ ]

1.0000 ÿ2.0000 1.0000 j 1:0000 Qtz�1:0000 Ol

� 2:0000 Opx

Note that the previous simpli®ed description and
example cannot fully illustrate the MAW capabilities
and range of applications. For matrices that describe

theoretical phases or phase components, for instance,
the MAW can be easily directed to ®nd univariant re-
lations around any invariant (sub)assemblage or
among a set of phase components. If the matrix is

de®ned as a composite of two assemblages, the MAW
can also search for ``univariant'' relationships between
them, to see whether their composition spaces intersect

(see an actual example in Table 1). For additional dis-
cussion on the procedures the reader is referred to
George Fisher's papers, as well as to actual research

examples using SVD techniques (e.g., Gordon et al.,
1991; Lang, 1991; Whitney et al., 1995). Additional
details on MAW usage are also provided in the on-line
documentation.

Composition diagrams

CSpace's graph engine is capable of generating tri-
angular and 3D single and stereoscopic tetrahedral
barycentric plots (in the latter example using a slightly

modi®ed implementation of the tetrahedral to 3D-car-
tesian coordinate transformation algorithm described
by Spear, 1980), and includes a number of conven-

iences that should greatly facilitate their use for both
analysis and illustration. The main features are as fol-
lows:

. The graph engine is dynamically linked to the Data-
Sheet, and can be easily directed to use any set of
variables contained therein. The DataSheet is fully

fuctional during plotting, and any changes in the
data are immediately re¯ected in the display. Up to
5000 cases can be plotted, and cases can be excluded
or included from the plots at any time, either manu-

ally or based on the contents of any variable.
. The appearance of the diagrams can be customized

interactively with regard to what is plotted (diagram

outline, points, point and apex labels, tie lines), as
well as to what line styles or label fonts are to be
used. Re-sizing and or rotating (in the example of

the 3D plots) is also done interactively either
through the keyboard or by directly dragging with
the mouse.

. The way points are drawn (symbol, color, size) is

customizable both for a global default and individu-
ally, in the latter situation by means of suitable `uti-
lity variables' that are also stored in the DataSheet.

The contents of any variable (including numeric
variables) can be used to label points.

. The handling of barycentric coordinates includes

commutable on-the-¯y scaling, Z-ordered rendering
(for the 3D diagrams), and negative projection (for

R.L. Torres-Roldan et al. / Computers & Geosciences 26 (2000) 779±793788



T
a
b
le

1

C
o
m
p
o
si
ti
o
n
m
a
tr
ix
,
a
ss
o
ci
a
te
d
S
V
D

d
a
ta
,
re
a
ct
io
n
sp
a
ce
,
a
n
d
a
ss
em

b
la
g
e-
in
co
m
p
a
ti
b
il
it
y
re
la
ti
o
n
s
fo
r
sa
m
p
le

T
3
4
8
,
co
rd
ie
ri
te
-b
ea
ri
n
g
p
el
it
ic

g
n
ei
ss

fr
o
m

T
o
rr
o
x
u
n
it

(B
et
ic

B
el
t,
se
e
G
a
rc
õÂ a
-C

a
sc
o
&

T
o
rr
es
-R

o
ld
aÂ
n
,
1
9
9
6
).
T
a
b
le

co
n
te
n
t
w
a
s
a
ss
em

b
le
d
fr
o
m

a
ct
u
a
l
o
u
tp
u
t
fr
o
m

M
A
W

C
o
m
p
o
si
ti
o
n
m
a
tr
ix

(a
to
m
s
p
.f
.u
.)

R
ea
ct
a
n
t
a
ss
em

b
la
g
e

(A
)

P
ro
d
u
ct

a
ss
em

b
la
g
e

(B
)

U
n
d
e®
n
ed

S
t

G
rt

ri
m

h
ig
h
-C

a
B
t

(A
)
m
a
tr
ix

M
s

(A
)
h
ig
h
-S
i

P
I

(A
)
p
o
rp
h
.

R
t

C
rd

a
ft
er

S
t

B
t

(B
)
h
ig
h
-T
i

M
s

(B
)
lo
w
-S
i

P
I

(B
)
m
a
tr
ix

Il
m

a
ft
er

S
t

H
2
O

Q
tz

S
i

7
.5
9
5

2
.9
9
1

5
.4
0
6

6
.5
6
2

2
.8
1
6

0
.0
0
0

5
.0
1
3

5
.3
9
4

6
.1
2
5

2
.6
4
1

0
.0
0
0

0
.0
0
0

1
.0
0
0

A
l

1
7
.9
3
5

1
.9
7
0

3
.6
0
1

4
.7
8
3

1
.1
8
7

0
.0
0
0

3
.9
8
0

3
.4
3
4

5
.7
0
7

1
.3
5
3

0
.0
0
0

0
.0
0
0

0
.0
0
0

T
i

0
.1
3
6

0
.0
0
6

0
.3
0
4

0
.1
1
8

0
.0
0
0

1
.0
0
0

0
.0
0
1

0
.5
2
4

0
.0
5
0

0
.0
0
0

2
.0
1
5

0
.0
0
0

0
.0
0
0

F
e

2
.9
7
4

1
.8
7
5

2
.7
0
1

0
.2
2
3

0
.0
0
0

0
.0
0
0

0
.8
8
0

2
.6
8
5

0
.0
9
4

0
.0
0
0

1
.8
7
4

0
.0
0
0

0
.0
0
0

M
n

0
.0
6
2

0
.0
2
3

0
.0
2
2

0
.0
0
3

0
.0
0
0

0
.0
0
0

0
.0
2
9

0
.0
1
6

0
.0
0
1

0
.0
0
0

0
.0
9
7

0
.0
0
0

0
.0
0
0

M
g

0
.5
0
5

0
.6
2
5

1
.6
0
8

0
.3
7
6

0
.0
0
0

0
.0
0
0

1
.0
4
8

1
.4
6
3

0
.0
7
5

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

C
a

0
.0
0
0

0
.5
2
8

0
.0
0
1

0
.0
0
0

0
.2
0
0

0
.0
0
0

0
.0
0
4

0
.0
0
1

0
.0
0
3

0
.3
8
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

N
a

0
.0
0
0

0
.0
0
0

0
.0
7
4

0
.0
8
2

0
.7
4
7

0
.0
0
0

0
.0
7
3

0
.0
5
9

0
.1
4
0

0
.5
9
8

0
.0
0
0

0
.0
0
0

0
.0
0
0

K
0
.0
0
0

0
.0
0
0

1
.5
9
7

1
.6
2
0

0
.0
2
7

0
.0
0
0

0
.0
0
3

1
.6
2
2

1
.6
9
2

0
.0
1
5

0
.0
0
0

0
.0
0
0

0
.0
0
0

H
3
.8
2
9

0
.0
0
0

4
.0
0
0

4
.0
0
0

0
.0
0
0

0
.0
0
0

1
.4
0
0

4
.0
0
0

4
.0
0
0

0
.0
0
0

0
.0
0
0

2
.0
0
0

0
.0
0
0

S
V
D

d
a
ta

o
f
w
o
rk
in
g
se
t
(S
IN

G
U
L
A
R

V
A
L
U
E
S
[W

],
d
ia
g
o
n
a
l
el
em

en
ts
):

2
6
.6
5
0

8
.1
0
8

4
.0
6
6

3
.6
2
8

1
.9
6
2

0
.9
2
8

0
.8
0
5

0
.5
5
3

0
.2
7
4

0
.0
0
0

0
.0
2
8

0
.0
0
0

0
.0
0
0

A
b
so
lu
te

ra
n
k
o
f
In
p
u
t
M
a
tr
ix

is
1
0
(u
p
to

a
co
n
p
u
ta
ti
o
n
a
l
ze
ro

th
re
sh
o
ld

o
f
3
.4
6
4
5
0
6
5
0
3
6
8
1
4
0
2
6
7
E
-1
6
).

P
o
ss
ib
le

ra
n
k
o
f
In
p
u
t
M
a
tr
ix

is
1
0
(u
p
to

sp
ec
i®
ed

ze
ro

th
re
sh
o
ld
:
0
.0
0
0
9
).

In
d
ep
en
d
en
t
re
a
ct
io
n
se
t
(b
a
si
s
v
ec
to
rs

fo
r
th
e
n
u
ll
sp
a
ce
):

S
t
(A

)
G
rt

(A
)

B
t
(A

)
M
s
(A

)
P
l
(A

)
R
t
(A

)
C
rd

(B
)

B
t
(B
)

M
s
(B
)

P
l
(B
)

Il
m

(B
)

H
2
O

Q
tz

0
.0
7
5
ÿ0

.1
5
4

0
.1
8
7

0
.5
7
1

ÿ0
.2
0
1

ÿ0
.0
6
9

ÿ0
.2
0
3

ÿ0
.1
3
7

ÿ0
.5
9
1

0
.3
2
6

0
.0
1
9

ÿ0
.0
6
1

0
.2
1
2

0
.0
0
0
ÿ0

.0
5
5

ÿ0
.6
0
4

0
.1
8
9

ÿ0
.0
7
4

ÿ0
.1
9
2

0
.0
7
5

0
.5
9
4

ÿ0
.1
8
0

0
.1
1
5

0
.0
2
5

ÿ0
.0
5
0

ÿ0
.3
8
5

0
.0
0
0
ÿ0

.2
1
4

ÿ0
.0
7
1

ÿ0
.3
7
4

ÿ0
.4
3
8

ÿ0
.0
9
8

0
.0
6
5

0
.2
0
7

0
.2
2
8

0
.5
2
6

0
.0
2
2

ÿ0
.0
2
8

0
.4
8
0

A
ss
em

b
la
g
e
in
co
m
p
a
ti
b
il
it
ie
s
(f
o
u
n
d
1
3
a
ss
em

b
la
g
e
in
co
m
p
a
ti
b
il
it
ie
s
o
u
t
o
f
7
8
p
o
ss
ib
le

re
a
ct
io
n
s
in
v
o
lv
in
g
ra
n
k
+
1
p
h
a
se
s)
:

S
t
(A

)
G
rt

(A
)

B
t
(A

)
M
s
(A

)
P
l
(A

)
R
t
(A

)
C
rd

(B
)

B
t
(B
)

M
s
(B
)

P
l
(B
)

Il
m

(B
)

H
2
O

Q
tz

0
.0
0
0

1
0
.7
8
3

0
.0
0
0

2
0
.5
2
9

2
2
.2
7
8

3
.9
1
2

ÿ2
.9
2
2

ÿ7
.1
2
6

ÿ1
2
.9
4
0

ÿ2
6
.5
5
4

ÿ1
.0
0
0

1
.1
1
9

ÿ2
7
.2
2
8

0
.0
0
0

3
4
.4
4
8

1
0
1
.6
6
0

1
6
.3
2
8

6
4
.5
8
9

4
1
.4
1
2

ÿ1
9
.4
9
3

ÿ1
1
6
.6
8
9

0
.0
0
0

ÿ8
1
.5
9
9

ÿ6
.5
9
4

1
1
.0
4
7

1
.0
0
0

0
.0
0
0

7
3
.3
2
0

2
1
3
.9
1
6

3
5
.9
4
4

1
3
7
.6
3
2

8
7
.4
4
3

ÿ4
1
.2
4
4

ÿ2
4
6
.0
9
1

ÿ1
.0
0
0
ÿ1

7
3
.7
5
5
ÿ1

3
.9
5
3

2
3
.3
3
3

0
.0
0
0

7
.5
0
8

0
.0
0
0

1
8
3
.7
1
6

6
.4
4
1

1
.0
0
0

4
5
.5
9
9

ÿ4
0
.9
1
6

ÿ1
7
6
.3
3
2

ÿ1
0
.4
8
1

0
.0
0
0

ÿ5
.0
9
7

7
.5
8
1

1
2
5
.1
5
9

ÿ3
.3
4
4

0
.0
0
0

ÿ1
3
.9
3
6
ÿ3

5
.7
5
9

ÿ4
.8
4
3

ÿ1
.0
0
0

1
1
.4
4
0

1
5
.8
1
5

3
2
.2
7
0

2
.1
6
0

0
.0
0
0

1
.6
1
3

3
.0
1
2

4
.5
5
5

0
.0
0
0

4
8
.8
9
1

3
4
.2
2
7

4
.6
6
0

9
.8
6
8
ÿ1

8
.5
7
3

ÿ4
9
.1
7
4

ÿ3
1
.8
0
3

ÿ1
.9
9
1

ÿ1
.0
0
0

0
.0
0
0

2
1
.7
7
9

2
8
.7
3
0

0
.0
0
0

1
4
9
.6
5
5

2
9
2
.7
7
8

3
9
.6
7
3

1
7
.0
9
9
ÿ1

0
1
.2
8
8

ÿ1
6
3
.5
2
3

ÿ2
6
5
.1
3
0

ÿ1
7
.6
0
5

ÿ1
.0
0
0

ÿ1
1
.6
6
6

0
.0
0
0

(
co
n
ti
n
u
ed

o
n
n
ex
t
p
a
g
e)

R.L. Torres-Roldan et al. / Computers & Geosciences 26 (2000) 779±793 789



T
a
b
le

1
(c
o
n
ti
n
u
ed

)

C
o
m
p
o
si
ti
o
n
m
a
tr
ix

(a
to
m
s
p
.f
.u
.)

R
ea
ct
a
n
t
a
ss
em

b
la
g
e

(A
)

P
ro
d
u
ct

a
ss
em

b
la
g
e

(B
)

U
n
d
e®
n
ed

S
t

G
rt

ri
m

h
ig
h
-C

a
B
t

(A
)
m
a
tr
ix

M
s

(A
)
h
ig
h
-S
i

P
I

(A
)
p
o
rp
h
.

R
t

C
rd

a
ft
er

S
t

B
t

(B
)
h
ig
h
-T
i

M
s

(B
)
lo
w
-S
i

P
I

(B
)
m
a
tr
ix

Il
m

a
ft
er

S
t

H
2
O

Q
tz

1
1
.4
6
3

2
8
.0
1
1

0
.0
0
0

1
9
9
.0
8
2

7
7
.5
7
1

0
.0
0
0
ÿ4

2
.0
4
0

ÿ2
8
.5
9
1

ÿ1
6
3
.6
8
2

ÿ7
7
.9
0
4

ÿ1
.0
0
0

ÿ6
.1
3
7
ÿ1

2
2
.4
1
3

ÿ1
.7
6
8
ÿ1

3
.4
4
0

0
.0
0
0
ÿ4

8
.0
6
8

ÿ3
0
.8
0
6

ÿ3
.3
0
8

8
.9
5
6

1
0
.4
3
7

3
6
.1
8
9

3
4
.4
7
3

1
.0
0
0

0
.0
0
0

4
1
.9
0
9

1
.0
0
0

1
.7
0
0

3
2
.9
1
9

0
.0
0
0

3
.0
9
8

9
.0
9
3

ÿ6
.7
5
5

ÿ3
2
.4
1
6

0
.0
0
0

ÿ3
.9
1
7

ÿ1
.1
1
9

1
.8
0
7

1
9
.6
9
1

ÿ4
1
.5
0
1

ÿ1
.0
0
0

ÿ1
0
9
2
.9
5
5

0
.0
0
0

ÿ2
.5
8
0

ÿ2
7
4
.4
4
0

2
3
4
.1
8
3

1
0
4
6
.9
0
9

2
7
.6
6
0

0
.0
0
0

3
0
.8
5
6

ÿ4
7
.6
9
7
ÿ7

5
6
.3
2
7

1
.8
0
9

1
.2
7
0

4
.0
1
8

2
3
.4
7
1

5
.4
7
2

0
.0
0
0

ÿ6
.1
8
2

ÿ6
.1
4
2

ÿ2
0
.4
1
6

ÿ4
.4
0
8

0
.0
0
0

ÿ1
.0
0
0

ÿ7
.8
8
5

ÿ3
.6
0
2
ÿ4

.5
9
6

ÿ3
2
.1
7
2
ÿ3

8
.9
6
0

ÿ1
3
.6
0
1

ÿ7
.6
2
5

1
5
.2
8
4

3
5
.9
2
7

3
3
.3
0
3

1
3
.0
9
9

1
.0
0
0

0
.0
0
0

0
.0
0
0

A
ct
u
a
l
re
a
ct
io
n
s
(c
o
e�

ci
en
ts

n
o
rm

a
li
ze
d
to

sm
a
ll
es
t
n
o
n
-z
er
o
v
a
lu
e)
:

1
0
.7
8
G
rt
+

2
0
.5
2
M
s(
A
)+

2
2
.2
7
P
l(
A
)+

3
.9
1
R
t+

1
.1
2
H

2
O
=

2
.9
2
C
rd
+
7
.1
3
B
t(
B
)+

1
2
.9
4
M
s(
B
)+

2
6
.5
5
P
l(
B
)+

1
.0
0
Il
m
+
2
7
.2
3
Q
tz

3
4
.4
5
G
rt
+

1
0
1
.6
6
B
t(
A
)+

1
6
.3
3
M
s(
A
)+

6
4
.5
9
P
l(
A
)+

4
1
.4
1
R
t+

1
1
.0
5
H

2
O
+

1
.0
0
Q
tz
=
1
9
.4
9
C
rd
+
1
1
6
.6
9
B
t(
B
)+

8
1
.6
0
P
l(
B
)+

6
.5
9
Il
m

7
3
.3
2
G
rt
+

2
1
3
.9
2
B
t(
A
)+

3
5
.9
4
M
s(
A
)+

1
3
7
.6
3
P
l(
A
)+

8
7
.4
4
R
t+

2
3
.3
3
H

2
O
=

4
1
.2
4
C
rd
+
2
4
6
.0
9
B
t(
B
)+

1
.0
0
M
s(
B
)+

1
7
3
.7
5
P
l(
B
)+

1
3
.9
5
Il
m

7
.5
1
S
t+

1
8
3
.7
2
B
t(
A
)+

6
.4
4
M
s(
A
)+

1
.0
0
P
l(
A
)+

4
5
.6
0
R
t+

7
.5
8
H

2
O
+

1
2
5
.1
6
Q
tz
=

4
0
.9
2
C
rd
+

1
7
6
.3
3
B
t(
B
)+

1
0
.4
8
M
s(
B
)+

5
.1
0
Il
m

1
1
.4
4
C
rd
+

1
5
.8
1
B
t(
B
)+

3
2
.2
7
M
s(
B
)+

2
.1
6
P
l(
B
)+

1
.6
1
H

2
O
+

3
.0
1
Q
tz
=
3
.3
4
S
t+

1
3
.9
4
B
t(
A
)+

3
5
.7
6
M
s(
A
)+

4
.8
4
P
l(
A
)+

1
.0
0
R
t

4
.5
5
S
t+

4
8
.8
9
B
t(
A
)+

3
4
.2
3
M
s(
A
)+

4
.6
6
P
l(
A
)+

9
.8
7
R
t+

2
1
.7
8
Q
tz
=

1
8
.5
7
C
rd
+

4
9
.1
7
B
t(
B
)+

3
1
.8
0
M
s(
B
)+

1
.9
9
P
l(
B
)+

1
.0
0
Il
m

2
8
.7
3
S
t+

1
4
9
.6
5
B
t(
A
)+

2
9
2
.7
8
M
s(
A
)+

3
9
.6
7
P
l(
A
)+

1
7
.1
0
R
t=

1
0
1
.2
9
C
rd
+

1
6
3
.5
2
B
t(
B
)+

2
6
5
.1
3
M
s(
B
)+

1
7
.6
0
P
l(
B
)+

1
.0
0
Il
m
+
1
1
.6
7
H

2
O

1
1
.4
6
S
t+

2
8
.0
1
G
rt
+

1
9
9
.0
8
M
s(
A
)+

7
7
.5
7
P
l(
A
)=

4
2
.0
4
C
rd
+
2
8
.5
9
B
t(
B
)+

1
6
3
.6
8
M
s(
B
)+

7
7
.9
0
P
l(
B
)+

1
.0
0
Il
m
+
6
.1
4
H

2
O
+
1
2
2
.4
1
Q
tz

8
.9
6
C
rd
+

1
0
.4
4
B
t(
B
)+

3
6
.1
9
M
s(
B
)+

3
4
.4
7
P
l(
B
)+

1
.0
0
Il
m
+

4
1
.9
1
Q
tz
=

1
.7
7
S
t+

1
3
.4
4
G
rt
+
4
8
.0
7
M
s(
A
)+

3
0
.8
1
P
l(
A
)+

3
.3
1
R
t

1
.0
0
S
t+

1
.7
0
G
rt
+

3
2
.9
2
B
t(
A
)+

3
.1
0
P
l(
A
)+

9
.0
9
R
t+

1
.8
1
H

2
O
+

1
9
.6
9
Q
tz
=

6
.7
5
C
rd
+

3
2
.4
2
B
t(
B
)+

3
.9
2
P
l(
B
)+

1
.1
2
Il
m

2
3
4
.1
8
C
rd
+

1
0
4
6
.9
1
B
t(
B
)+

2
7
.6
6
M
s(
B
)+

3
0
.8
6
Il
m
=

4
1
.5
0
S
t+

1
.0
0
G
rt
+
1
0
9
2
.9
6
B
t(
A
)+

2
.5
8
P
l(
A
)+

2
7
4
.4
4
R
t+

4
7
.7
0
H

2
O
+
7
5
6
.3
3
Q
tz

1
.8
1
S
t+

1
.2
7
G
rt
+

4
.0
2
B
t(
A
)+

2
3
.4
7
M
s(
A
)+

5
.4
7
P
l(
A
)=

6
.1
8
C
rd
+
6
.1
4
B
t(
B
)+

2
0
.4
2
M
s(
B
)+

4
.4
1
P
l(
B
)+

1
.0
0
H

2
O
+
7
.8
8
Q
tz

1
5
.2
8
C
rd
+

3
5
.9
3
B
t(
B
)+

3
3
.3
0
M
s(
B
)+

1
3
.1
0
P
l(
B
)+

1
.0
0
Il
m
=

3
.6
0
S
t+

4
.6
0
G
rt
+
3
2
.1
7
B
t(
A
)+

3
8
.9
6
M
s(
A
)+

1
3
.6
0
P
l(
A
)+

7
.6
2
R
t

R.L. Torres-Roldan et al. / Computers & Geosciences 26 (2000) 779±793790



Fig. 5. Examples of compositional barycentric plots generated by CSpace. (A) Right: stereoscopic view of Muscovite(Ms)-FeO-

MgO-Al2O3 tetrahedron, projected from quartz and H2O, with projection of Al-silicate, K-feldspar and representative end-members

of muscovite, biotite, garnet, staurolite and cordierite. Left: same elements as projected additionally from muscovite onto FeO-

MgO-Al2O3 plane. Note that K-feldspar does not ®nd projection in tetrahedral diagram, but can be linked in ternary plot to any

existing phase by means of tie-line connection through in®nity (to biotite in example). Leucophyllite components, on other hand,

do not ®nd projection in ternary diagram. (B) Phase relationships in high-grade Ms+Bt+Grt+Kfs+Pl gneisses from Torrox

Gneiss Complex (GarcõÂ a-Casco et al., 1993) plotted in KAlO2-CaO-FeO-Ms tetrahedron (projected from rutile, quartz, H2O and

exchange vectors KNaÿ1, MgFeÿ1 and MnFeÿ1) and in KAlO2-FeO-Ms triangle (projection points as before, in addition to CaO).

Two sets of tie lines represent high-P and low-P assemblages (both Kfs-bearing, which plots close to KAlO2 apex). Also plotted are

representative end members of phases of interest, joined with lines to illustrate nature of compositional variations. Note that com-

ponents anorthite and grossular plot through in®nity in triangular plot. (C) Phase relationships in carbonate-absent amphibolites

from Post Pond Volcanics, Vermont, plotted in Al2O3-FeO-MgO-MnO tetrahedron in stereoscopic view (projected from quartz,

H2O, Pl(an35) and average hornblende), and in Al2O3-FeO-MgO triangle (projection points as before, in addition to MnO). Note

that Mn has been scaled (�25) in tetrahedral plot, and that plagioclase (an90) plots through in®nity in both diagrams (data from

Spear, 1982).
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points with negative coordinate sum). `Negative'
points can also be handled (more appropriately)

through the projection of tie lines that connect them
to other `positive' elements of the assemblage. Con-
tinuous feedback about the set of points intended to

plot and how many of these are actually plotted is
given, as well as means for investigating why some
points could be missing from the plots.

. Cases may be marked as belonging to an assem-
blage, and this information can be used to connect
them with tie lines in the diagrams. In this way up

to 1000 tie line sets (each comprising up to four
points) can be automatically drawn, including the
ability to have each tie set rendered in a distinctive
color. Handling of tie lines connecting points

`through in®nity' is done automatically, without user
intervention. Tie line sets can also be used to rep-
resent the phase region of solutions or to divide the

diagram into areas of particular interest (e.g., as in
diagrams used for geochemical classi®cations of
rocks or minerals).

Fig. 5 gives some examples of diagrams produced by
CSpace. All the examples represent unmodi®ed output
(except for color, that was removed to facilitate print-

ing). The whole ®gure was assembled by importing in-
dividual disk meta®les exported from CSpace into a
commercial graphics package.
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