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Abstract

Excitable media may be modeled as simple extensions of the Amari–

Hopfield network with dynamic attractors. Some nodes chosen at random

remain temporarily quiet, and some of the edges are switched off to ad-

just the network connectivity, while the weights of the other edges vary

with activity. We conclude on the optimum wiring topology and describe

nonequilibrium phases and criticality at the edge of irregular behaviour.
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1 Introduction and Model Details

Understanding the fundamentals of how high–level brain functions result from
the cooperation between many neurons and synapses dates back to McCulloch
and Pitts [McCulloch & Pitts, 1943] who implemented pioneering ideas of the
1906 Nobel laureate Ramón y Cajal. Oversimplified mathematical models such
as the Amari–Hopfield or neural network [Amari, 1972, Hopfield, 1982, Amit,
1989] typically consisting of binary variables, which represent the neurons, con-
nected by edges, which represent the synapses, are relevant with this aim. As-
suming inhomogeneous time–independent connection strengths as in the Hebb
prescription [Hebb, 1949], which in a sense stores information from a set of given
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patterns of activity, these become attractors of dynamics, i.e., there is retrieval
of stored patterns, known as “associative memory”.

Experiments suggest that this picture lacks essential features, however. One
problem is that connections between neurons do not seem to be constant but
undergo fast time changes —variously described as fluctuations on the time scale
of milliseconds, short–term plasticity and synaptic fatigue, for instance. These
changes during operation are expected to influence processing of information,
and thus memory storage and retrieval, and simple modelling has in fact shown
that they may induce dynamic instabilities and even chaos [Abbott et al., 1997,
Malenka & Nicoll, 1999, Pantic et al., 2002, Marro et al., 2008]. This is interest-
ing because the activity of neural systems in nature does not permanently stay
in a memory. Instead, irregular wandering among the stored patterns seems to
occur during brain activity, e.g., olfactory processes in insects have been associ-
ated with heteroclinic paths of activity in the patterns space [Mazor & Laurent,
2005, Torres et al., 2008]. In summary, the present situation is consistent with
synaptic fluctuations, on one hand, and with dynamic instabilities leading to
irregular behaviour [Sompolinsky et al., 1988, Korn & Faure, 2003, Torres et al.,
2008], which is probably caused by these fluctuations, on the other, and none
of these features is contained in the standard neural network.

Recent theoretical work [Marro et al., 2008, 2007, Johnson et al., 2008],
whose review, discussion and extension is the purpose of this paper, suggests
that simple extensions of the standard model —namely, the Amari–Hopfield net-
work with a Hebbian learning rule [Amit, 1989]— inspired along lines recently
indicated by neurobiology should help our understanding of many other complex
situations as well. That is, some of the main features in an ideal brain might
be common to a number of excitable systems, including different parts of the
nervous system, forest fires, autocatalytic reactions in surfaces and food webs,
for instance [Lindner et al., 2004, Arenas et al., 2008, Allesina et al., 2008]. The
most relevant fact to be noticed is that excitability causes a nonequilibrium con-
dition in any setting of many interacting elements, and this is what, for example,
impedes damping by friction of signals in certain media. It then follows that a
class of systems should be viewed concerning cooperation as large networks of
effective “excitable” nodes —in the sense that each acts in practice as having a
threshold and a time lag between consecutive responses— connected by edges of
varying strength. Suitable generalizations of the standard model should there-
fore describe the essential physics in a number of apparently diverse man–made
and natural systems.

As a further step with such a motivation, we report here on how the dy-
namics depends on connectivity in a model of excitable media. In particular,
we conclude on a relevant correlation between wiring topology and network
functionality and, more specifically, on the optimal wiring to which a complex
excitable network could evolve to meet certain productivity criteria or to im-
prove performance. We also describe the nature of both the irregular wandering
of the activity among the stored patterns and the system critical behaviour
at the onset of this irregular behaviour in the resulting nonequilibrium steady
states.
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The model of interest generalizes the standard setting along three main lines:
(i) Time dependent connections. Let a set of nodes ~σ = {σi = ±1} and

the local field at i, or net current from other nodes, hi =
∑

j 6=i wijxjσj (i, j =

1, ..., N). Here, wij = N−1
∑

ν ξν
i ξν

j (ν = 1, ...P ) is the Hebbian weight, which
involves given patterns of activity {ξν

i } (with ξν
i = ±1) and xi is a stochastic

(fatigue, say) variable for the effect of short term plasticity. Assuming this varies
in a time scale infinitely smaller than the one for the nodes, we shall consider a
stationary distribution, namely, either [Johnson et al., 2008]

P (xj |~σ) = qδ [xj − Ξj (~σ)] + (1 − q)δ(xj − 1), (1)

(where δ(x) is the Dirac delta function) which amounts to assume that, at each
time step, every connection has a probability q of altering its weight by a factor
Ξj (~σ) which is a function of the field at j, or else [Marro et al., 2008]

P (xj |~σ) = ζj (~σ) δ (xj − Φ) + [1 − ζj (~σ)] δ (xj − 1) . (2)

The noise parameter Φ describes resistance or depression, e.g., due to heavy
local work when 0 < Φ < 1, while the edge facilitates, i.e., tends to increase the
effect of the signal under the same situation for Φ > 1, and the action of the
edge is reversed for negative Φ.

The consideration of fast time–dependent variations of the connections as
in the examples (1) and (2) generalizes the standard model in a non–trivial
way. The result may be useful to describe the flow of food in trophic webs,
the exchange of assets or information in social and communication networks,
the number of transits and passengers in transport networks, and the constant
variation of effective ionic interactions in spin glasses and other condensed sys-
tems due to reactions, diffusion and local rearrangements of ions and impurities
[Torres et al., 1998, Marro et al., 2008], for instance.

(ii) Wiring topology. Let the topology matrix, ǫ = {ǫij = 1, 0} , where the
two values indicate the existence or not of an edge between nodes i, j, and

define the effective field [Marro & Dickman, 1999] heff
i =

∑

j weff
ij σjǫij where,

assuming (1), one may write that weff
ij = [1 + (Φ − 1)ζ̃j ]wij . Here, ζ̃j denotes

a function of the vector (to be interpreted as a local overlap) of components
mν

j = 〈k〉−1
∑

l ξ
ν
l σlǫjl with 〈k〉 the mean node connectivity, i.e., the average

of ki =
∑

j ǫij . For the sake of concreteness, given that one may write that

hj =
∑

ν hν
j with hν

j ≡ N−1〈k〉ξν
j mν

j , we are assuming for q 6= 0 that Ξj =

1 + ζ̃j(Φ − 1)/q, with ζ̃j = (N/〈k〉)
α

/ (1 + M/N)
∑

ν |h
ν
j |

α, α > 0 [Johnson
et al., 2008]. This generalization of the model allows for the consideration
of forbidden links [Allesina et al., 2008] and, more generally, complex wiring
topologies determined by the matrix ǫ and characterized by ki. Two examples
of these are the bimodal case

p(k) =
1

2
δ(k − k1) +

1

2
δ(k − k2), (3)

and the “scale–free” case
p(k) ∼ k−γ (4)
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with k ∈ [k0, km] for finite N which is known to be particularly relevant in
different natural contexts [Torres et al., 2004, Egúıluz et al., 2005, Boccaletti et

al., 2006].
(iii) Quiet nodes. At each time step, only the state of a fraction ρ of randomly

chosen nodes will be updated, to describe from parallel (ρ → 1) to sequential

(ρ → 0) updating. This is consistent with the expectation that certain nodes
may be more active than others and some may even not be engaged at a given
time in a given cooperative task —there is no need for a network to maintain all

the nodes fully informed of the activity of all the others at all times. In fact,
it has been observed that the network activity does not distribute uniformly in
practice [Shoham et al., 2006, Ergorov et al., 2000, Azouz & Gray, 2000]. The
observed fast–variations of the connections strength with time discussed in (i)
could also be related with the existence of quiet nodes, which are also a concern
in computer science [Korniss et al., 2003], for instance. The existence of reticent
nodes should probably be considered a main feature of excitable media in which
elements, after responding to perturbation, are refractory to further excitation.

2 Some Results

The different model realizations which follow from the above setting may be
handled analytically in a few cases, particularly, for M = 1 and fully–connected
networks. More general behavior may be obtained by mean–field and other
approximations, and also by performing direct simulation of the models in the
computer using the Monte Carlo method. A systematic study of the result-
ing phenomenology, which is very varied and intriguing, is on the way. We
summarize next, graphically a few main results.

For a given level Φ of synaptic fatigue, varying ρ ∈ [0, 1] we observe different
regimes, including cases in which the system activity moves, even irregularly
or apparently chaotically, between the Hebbian attractors. This is illustrated
in figure 1. A detailed scaling analysis of both the activity and hi reveals
some critical features. We illustrate this in figure 2 which shows relevant power
spectra as dynamics is changed by varying ρ from a regular case with the familiar
memory retrieval to a chaotic phase in which the system jumps irregularly
between different memory states. That is, the spectra is —except for expected
large frequency peaks— roughly constant around ρ = 0.35, which is near the
edge of chaos but still in the memory phase, while it shows power–law behavior
and other signatures of criticality within the chaotic window, namely, for ρ >
0.35 in this case.

For a better quantification of the varied emergent behaviour in the model,
we have investigated further the space of relevant parameters (ρ, Φ). That is,
for a given “temperature” T ≥ 0, and number of patterns M, we monitored the
standard order parameters which characterize non-dynamical phases, namely,

the steady-state overlaps 〈mν(t)〉t =
∫ t0+∆t

t0
mν(t)dt and the spin-glass order

parameter Q = 〈〈σi(t)〉t)
2〉 = 1

N

∑N

i=1

(

1

∆t

∫ t0+∆t

t0
σi(t)dt

)2

. The latter is plot-
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Figure 1: Time evolution of overlaps between the current activity and each of
the stored patterns (different colours) for (top to bottom) ρ = 0.1 (left) and 0.35
(right) showing memory retrieval, ρ = 0.4 and 0.45 with two types of irregular
jumping between patterns, and ρ = 0.55 (irregular) and 0.65 (regular) pattern–
antipattern oscillations. This is for (1) with Φ = −0.5, N = 1600 and M = 5 at
low “temperature” (a measure of the level of stochasticity of the time evolution).

ted in figure 3A for a case which allows for an easy identification of the different
relevant regimes. The fact is that non-dynamical phases, such as those asso-
ciated with memory and spin-glass states have Q 6= 0, whereas all dynamical

phases, defined as those in which neural activity is continuously wandering in
a regular or chaotic way the different stored patterns, have Q ≈ 0. Among the
latter, as shown in figure 1, one can distinguish a phase where neural activity
jumps chaotically between the basins of attraction of stored patterns (say Irreg-
ular Switching among Patterns or ISP phase), a phase with activity switching
irregularly among different pattern-antipattern oscillations (Irregular Switching
among Pattern Antipattern Oscillation or ISPAO phase), and a phase with the
activity jumping periodically between pattern and antipattern states (Periodic
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Figure 2: The power spectra of the local field hi (t) for different values of ρ, as
indicated, as follows from Monte Carlo simulations.

Hopping or PH phase). The phase diagram, namely, the distribution of the
different phases in the (ρ, Φ) space for T = 0 is schematized in figure 3B.
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Figure 3: Panel A: Behaviour of the spin-glass order parameter Q as defined in
the text, as a function of Φ and ρ for a network of N = 800 neurons, M = 5
stored patterns, and T = 0. Panel B: Schematized phase diagram with the
observed memory and spin-glass phases and all the other dynamical regimes.
The latter, namely, ISP, ISPAO and PH phases (as defined in the text) which
have Q = 0, are localized in the region with Φ < 0 and ρ ∈ (0.3, 0.5).

Figure 4, on the other hand, illustrates the influence of the wiring topology
on the resulting behavior our model. This shows that the scale–free topology
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Figure 4: The critical fatigue Φc at which the phase changes from retrieval to
jumping (red lines), in the case of a model with (1), is compared here when
the connectivity is given by (3), left, with ∆ = 1

2
(k2 − k1) , and (4), right.

Blue symbols corresponds to the critical line computed by MC simulations of
the network with N = 1600 and mean connectivity 〈k〉 = 20, and black dots
correspond to values of the relevant parameters at which the Lyapunov exponent
defining the collective dynamics of the network becomes positive. Other model
parameters are ρ = 1, and α = 2.

with γ ≃ 2 needs very little fatigue, namely, Φ . 1, to achieve irregular behavior,
which is the most efficient regime. For a practical illustration of the computa-
tional advantages of this result, we monitored the performance of a network
during the pattern recognition process. In practice, we “showed” the system a
pattern, say ν chosen at random from a set of M random patterns previously
stored1, every certain number of time steps. This was performed by changing
the field at each node for one time step, namely, hi → hi + ςξν where ς is the
amplitude of the stimulus. Ideally, the network should immediately acquire the
configuration of the presented pattern ν and remain there until it is newly stim-
ulated with a different pattern. The performance may thus be estimated from
a temporal average of the overlap between the current state and the input pat-
tern, 〈mν(t)〉t. With this criterion, we found that performance is best when the
system is in the memory phase but close to the “edge of chaos” (though never
exactly at this point, presumably because chaos is achieved through bifurca-
tions). This is assumed to be due here to the fact that the condensed pattern
is easily destabilised by the stimulus, while the system is able to remain in the
new pattern after detecting it.

Figure 5 shows typical time series obtained during this task for a particular
realization of a bimodal network with ∆ = 10 and different values of the fatique

1Pattern ν was also required to be different from whichever pattern was condensed — i.e.,

displayed the highest overlap — at the time of stimulation.
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parameter Φ. Each of the three panels corresponds from top to bottom to Φ = 1
for which the system is in a stable spin-glass state and there are no synaptic
fluctuations, Φ = 0.5, at which the system is in the memory phase but close
to the edge of chaos, where the network is shown to respond optimally to the
external signal, and Φ = 0, at which the system is in the chaotic phase where
it is sensitive to stimuli but not capable of retaining the network activity in
a particular pattern. These results are in qualitative agreement with other
models in which the “edge of chaos” is seen to optimize magnitudes such as
computational capacity [Bertschinger & Natschläger, 2004] and dynamic range
of sensitivity to stimuli [Assis and Copelli, 2008]. No doubt this intringuing
model behaviour merits more detailed investigation.

Conclussions

In this work, we have analyzed the emergent properties of an extended version
of the standard Amari-Hopfield neural network model, by considering realistic
assumptions for synapse (the possibility of short-term plasticity) and neuron
dynamics (the possibility of silent or quiet neurons) and network topology. Our
analysis shows that these new features induce new phenology in the dynamical
behavior of the network with the appearance of novel phases where the network
is able to do different tasks. For instance, in some region of the parameter
space, the network is able to efficiently retrieve the stored memories, as in a
standard memory or ferromagnetic phase, and by slightly changing the relevant
network parameters, the network activity can move to a dynamical phase which
can be either, regular or chaotic, which is a positive feature. In the chaotic
phase, the activity is able to dynamically retrieve for some period of time each
one of the stored memories, which is positive for dynamical memory processing.
Moreover, our analysis has shown that near the so called “edge of chaos”, the
network activity becomes critical, that is, some relevant statistical properties of
the dynamics show power-law distributions, as those observed in actual neural
systems [Egúıluz et al., 2005]. We have also explored the effect of network
topology within these new phases. More precisely, we have shown that the
heterogeneity of the network is important given that it enhances the dynamic
performance.
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