A GEOMETRIC PARTIAL DIFFERENTIAL EQUATION

Francisco Milán

Universidad de Granada

Nonlinear Analysis and Boundary Value Problems.
September 4-7, 2018, Santiago de Compostela, Spain.

Geometric Analysis

Interplay between DG and PDEs

If $f: \Omega \subset \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is a solution of the Hessian one equation

$$
f_{x x} f_{y y}-f_{x y}^{2}=\varepsilon= \pm 1,
$$

then

$$
h=f_{x x} d x^{2}+f_{y y} d y^{2}+2 f_{x y} d x d y
$$

is the affine metric of an improper affine sphere in \mathbb{R}^{3}.

- Definite in the elliptic case $(\varepsilon=+1)$.
- Indefinite in the non-elliptic case $(\varepsilon=-1)$.

Global solutions

- $\varepsilon=+1 \Longrightarrow f(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)$, (Jörgens 1954).
- $\varepsilon=-1 \Longrightarrow f(x, y)=x y+g(x) \ldots$

Introduction

- Affine spheres are the umbilical surfaces of the equiaffine theory in \mathbb{R}^{3}, (the study of invariants under the transformations which preserve the volume, $S L(3, \mathbb{R})$-invariants).
- Locally, they are the graphs of the solutions of some MongeAmpère equations.
- The study of their PDEs, with geometric methods, was initiated by Calabi, Pogorelov and Cheng-Yau.
- The Monge-Ampère equation and its geometric applications, (Trudinger-Wang, 2008).
- Affine Bernstein Problems and Monge-Ampère equations, (Li-Jia-Simon-Xu, 2010).

Main Schedule

(1) Definite improper affine spheres
(2) Complex representation
(3) Singularities I
(4) Ribaucour transformations
(5) Definite and indefinite Cauchy problem
(6) Singularities II

Preliminaries

If $f: \Omega \subset \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is a solution of the Hessian one equation

$$
f_{x x} f_{y y}-f_{x y}^{2}=1,
$$

then its graph $\psi=\{(x, y, f(x, y)):(x, y) \in \Omega\}$ is an improper affine sphere in \mathbb{R}^{3}.
That is, ψ has constant affine normal

$$
\xi=\frac{1}{2} \Delta_{h} \psi=(0,0,1)
$$

where

$$
h=\kappa^{\frac{-1}{4}} \sigma
$$

is the affine metric, (the $S L(3, \mathbb{R})$-invariant metric obtained with the Gauss curvature κ and the second fundamental form σ of ψ).

Preliminaries

In this case, from the Hessian one equation, the affine metric

$$
h=f_{x x} d x^{2}+f_{y y} d y^{2}+2 f_{x y} d x d y
$$

and the affine conormal

$$
N=\left(-f_{x},-f_{y}, 1\right) \perp d \psi
$$

satisfy

$$
1=\sqrt{\operatorname{det}(h)}=\operatorname{det}\left(\psi_{x}, \psi_{y}, \xi\right)=\operatorname{det}\left(N_{x}, N_{y}, N\right)
$$

Also, $h=-\langle d N, d \psi\rangle$ and $\langle N, \xi\rangle=1$.

Preliminaries

Thus, for a conformal parameter z, we have $h=2 \rho|d z|^{2}$ with

$$
\rho=\left\langle N, \psi_{z \bar{z}}\right\rangle=-\imath\left[\psi_{z}, \psi_{\bar{z}}, \xi\right]=-\imath\left[N_{z}, N_{\bar{z}}, N\right]
$$

and $\xi=(0,0,1)$. Hence,

$$
\psi_{z}=\imath N \times N_{z}, \quad N_{\bar{z}}=-\imath \xi \times \psi_{\bar{z}}
$$

and

$$
\Phi=\frac{1}{2}(N+\imath \xi \times \psi)=\frac{1}{2}\left(-f_{x}-\imath y,-f_{y}+\imath x, 1\right)
$$

is a holomorphic planar curve, such that $N=\Phi+\bar{\Phi}$. In particular, ψ is an affine maximal surface $\equiv N_{z \bar{z}}=0$ and

$$
\psi_{z \bar{z}}=\imath N_{\bar{z}} \times N_{z}=\rho \xi .
$$

Weierstrass-type Representation Formulas

Calabi (1988)

If ψ is an affine maximal surface (improper affine sphere), then

$$
\psi=2 \operatorname{Re} \int \imath(\Phi+\bar{\Phi}) \times \Phi_{z} d z
$$

with ϕ a holomorphic (planar) curve and ${ }_{-\imath}\left[\Phi+\Phi, \Phi_{z}, \overline{\Phi_{z}}\right]>0$.
Ferrer, Martínez, M (1996)
If ψ is an improper affine sphere in $\mathbb{R}^{3} \equiv \mathbb{C} \times \mathbb{R}$, then

$$
\psi=\left(G+\bar{F}, \frac{1}{2}|G|^{2}-\frac{1}{2}|F|^{2}+\operatorname{Re}(G F)-2 \operatorname{Re} \int F d G\right)
$$

with F and G holomorphic functions, such that $N=(\bar{F}-G, 1)$ and $h=|d G|^{2}-|d F|^{2}>0$.

Some applications

Rotational IAS: $G=z, F=\frac{a}{z},|z|^{2}>|a|$.

Isolated singularity $(a<0)$, complete $(a=0)$, cuspidal edge $a>0$.

- An extension of a theorem by Jörgens and a maximum principle at infinity for IAS, (Ferrer, Martínez, M 99).

$$
f(x, y) \approx \mathcal{E}(x, y)+a \log |z|^{2}
$$

- The space of IAS with fixed compact boundary, (FMM 00).

Some applications

Flat surfaces in \mathbb{H}^{3} have also a conformal representation, since

$$
h=f_{x x} d x^{2}+f_{y y} d y^{2}+2 f_{x y} d x d y
$$

is their second fundamental form, (Gálvez, Martínez, M 00).

Global classification

Horosphere and cone (in the half space model).

- Many authors begin to study a global theory with singularities.

Admissible singularities (from \mathbb{H}^{3} to \mathbb{R}^{3})

- Flat fronts in \mathbb{H}^{3}, with admissible singularities, (isolated singularities, cuspidal edges and swallowtails), (Kokubu, Umehara, Yamada 04).
- Improper affine maps, with admissible singularities, where

$$
|d G|=|d F| \neq 0
$$

That is, $h=|d G|^{2}-|d F|^{2} \geq 0$, but

$$
|d \Phi|^{2}=2\left(|d G|^{2}+|d F|^{2}\right)>0 .
$$

Isolated singularities

- The space of solutions to the Hessian one equation in the finitely punctured plane, (Gálvez, Martínez, Mira 05).
- Explicit construction for two singularities, with the annular Jacobi theta functions.
- Isolated singularities are in 1-1 correspondence with planar convex analytic Jordan curves, (see the Cauchy problem).
- Complete flat surfaces in \mathbb{H}^{3} with two isolated singularities, (Corro, Martínez, M 10).

Ribaucour transformations (Martínez, M, Tenenblat 15)

Definition

Two improper affine maps $\psi, \widetilde{\psi}: \Sigma \longrightarrow \mathbb{R}^{3}$ are R -associated if there is a differentiable function $g: \Sigma \longrightarrow \mathbb{R}$ such that
(1) $(\psi+g N) \times \xi=(\widetilde{\psi}+g \widetilde{N}) \times \xi$.
(2) $d G d F=d \tilde{G} d \tilde{F}$.

Theorem

Equivalently

$$
(\widetilde{F}, \widetilde{G})=\left(F+\frac{1}{c R}, G+R\right)
$$

where $c \in \mathbb{R}-\{0\}$ and R is a holomorphic solution of the Riccati equation

$$
d R+d G=c R^{2} d F \quad\left(\Longleftrightarrow d\left(\frac{1}{c R}\right)+d F=\frac{1}{c R^{2}} d G\right)
$$

Ribaucour transformations

Consequence

If ψ is helicoidal, then $F G=-a^{2}$ and

$$
R=\frac{\exp (z)}{2 a c} \frac{1+b+(1-b) k \exp (b z)}{1+k \exp (b z)}
$$

with $a, k \in \mathbb{C}, c \in \mathbb{R}-\{0\}$ and $b=\sqrt{1+4 a^{2} c} \neq 0$.
In particular, if

$$
b=\frac{n}{m} \in \mathbb{Q}-\{0,1\}
$$

is irreducible, then $\widetilde{\psi}$ is $2 m \pi$-periodic in one variable and has $2 n$ complete embedded ends of revolution type.

Ribaucour transformations

R-helicoidal examples

The singular set is contained in a compact set.

Cauchy problem (M 14, Martínez, M 15)

A Björling-type problem

Find all (definite and indefinite) IAS containing a curve α in \mathbb{R}^{3} with a prescribed affine conormal U along it.
(1) Note that h definite implies

$$
0<h\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)=-\left\langle\alpha^{\prime}(s), U^{\prime}(s)\right\rangle
$$

with $\{\alpha, U\}$ analytic curves, (Aledo, Chaves, Gálvez 07).
(2) In the indefinite case, $\left\langle\alpha^{\prime}, U^{\prime}\right\rangle$ vanishes when α^{\prime} is an asymptotic (also known as characteristic) direction.

Non-characteristic Cauchy problem

- First, we exclude asymptotic (characteristic) data.
- We consider

$$
f_{x x} f_{y y}-f_{x y}^{2}=\varepsilon= \pm 1
$$

and the ε-complex numbers (Inoguchi, Toda 04)

$$
\mathbb{C}_{\varepsilon}=\left\{z=s+j t: s, t \in \mathbb{R}, j^{2}=-\varepsilon, j 1=1 j\right\} .
$$

Thus

$$
\Phi=\frac{1}{2}(N+j \xi \times \psi)=\frac{1}{2}\left(-f_{x}-j y,-f_{y}+j x, 1\right)
$$

is a holomorphic curve and

$$
\psi=2 \operatorname{Re} \int j(\Phi+\bar{\Phi}) \times \Phi_{z} d z
$$

Non-characteristic Cauchy problem

Necessary conditions

If $\psi: \Sigma \longrightarrow \mathbb{R}^{3}$ is an IAS with $\xi=(0,0,1)$ and $\beta: I \longrightarrow \Sigma$ is a curve, then $\alpha=\psi \circ \beta, U=N \circ \beta$ and $\lambda=-\left\langle\alpha^{\prime}, U^{\prime}\right\rangle$ satisfy

$$
\left\{\begin{array}{l}
1=\langle\xi, U\rangle, \\
0=\left\langle\alpha^{\prime}, U\right\rangle, \\
\lambda=\left\langle\alpha^{\prime \prime}, U\right\rangle .
\end{array}\right.
$$

Definition

A pair of (analytic) curves $\alpha, U: I \longrightarrow \mathbb{R}^{3}$ is a non-characteritic admissible pair if verify the above conditions with $\lambda: I \longrightarrow \mathbb{R}^{+}$.

Non-characteristic Cauchy problem

Geometric theorem

If $\{\alpha, U\}$ is a non-characteristic admissible pair, then there exits a unique IAS ψ containing $\alpha(I)$ with affine conormal U along α.

As $\lambda>0$, from the inverse function theorem, in a domain around I, there is a conformal parameter $z=s+j t$ and a unique holomorphic extension of

$$
\Phi(s)=\frac{1}{2}(U(s)+j \xi \times \alpha(s))
$$

which gives ψ.

Non-characteristic Cauchy problem

Analytic theorem

There exits a unique solution to the Cauchy problem

$$
\left\{\begin{array}{l}
f_{x x} f_{y y}-f_{x y}^{2}=\varepsilon, \\
f(x, 0)=a(x), \\
f_{y}(x, 0)=b(x) .
\end{array}\right.
$$

Apply the above theorem with

$$
\alpha(s)=(s, 0, a(s)) \text { and } U(s)=\left(-a^{\prime}(s),-b(s), 1\right) .
$$

Consequences

(1) If $\left[\alpha^{\prime}, \alpha^{\prime \prime}, \xi\right] \neq 0$, then α and λ determine

$$
U=\frac{\alpha^{\prime} \times\left(\alpha^{\prime \prime}-\lambda \xi\right)}{\left[\alpha^{\prime}, \alpha^{\prime \prime}, \xi\right]} \quad \text { and } \quad \psi
$$

(2) In particular, any revolution IAS can be recovered with one their circles α and the affine metric along it. Moreover, α is geodesic when $\lambda=r^{2}$ and $\varepsilon=-1$.
(3) In general, α is geodesic of some IAS if and only if

$$
\left[\alpha^{\prime}, \alpha^{\prime \prime}, \xi\right]=-\varepsilon\left[U^{\prime}, U^{\prime \prime}, \xi\right]
$$

with $\lambda=m \in R^{+}$.

Consequences

- We classify the IAS admitting a geodesic planar curve.

Non-ruled examples

- Note that any symmetry of a non-characteristic admissible pair induces a symmetry of the IAS generated by it.

Consequences

- We obtain the IAS which are invariant under a one-parametric group of equiaffine transformations.

Helicoidal examples

Isolated singularities and cuspidal edges.

- Where are the swallowtails?

Prescribed singular curves

Theorem

If $\left[\alpha^{\prime}, \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right]^{2} \neq-\varepsilon\left[\alpha^{\prime}, \alpha^{\prime \prime}, \xi\right]^{4} \neq 0$, then there exists a unique improper affine map ψ with α as (cuspidal edge) singular curve.

Take $U=\frac{\alpha^{\prime} \times \alpha^{\prime \prime}}{\left[\alpha^{\prime}, \alpha^{\prime \prime}, \xi\right]}$. Then, $\{\alpha, U\}$ gives ψ with

$$
\left[\psi_{s}, \psi_{t}, \xi\right](s, 0)=\left[\alpha^{\prime}, U^{\prime} \times U, \xi\right]=-\left\langle\alpha^{\prime}, U^{\prime}\right\rangle=0
$$

and α is an admissible singular curve of ψ since

$$
\left.\frac{d}{d t}\right|_{(s, 0)}\left[\psi_{s}, \psi_{t}, \xi\right]=\left[\alpha^{\prime}, \alpha^{\prime \prime}, \xi\right]\left(-\varepsilon-\frac{\left[\alpha^{\prime}, \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right]^{2}}{\left[\alpha^{\prime}, \alpha^{\prime \prime}, \xi\right]^{4}}\right) \neq 0 .
$$

Note that $\varepsilon \psi_{s s}+\psi_{t t} \| \xi$.

Prescribed singular curves

Theorem

If $\left[\alpha^{\prime}, \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right]^{2} \neq-\varepsilon\left[\alpha^{\prime}, \alpha^{\prime \prime}, \xi\right]^{4} \neq 0$ on $I-\{0\}$ and 0 is a zero of α^{\prime}, $\alpha^{\prime} \times \alpha^{\prime \prime},\left[\alpha^{\prime}, \alpha^{\prime \prime}, \xi\right]$ and $\left[\alpha^{\prime}, \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right]$ of order 1, 2, 2 and 3 respectively, then $\alpha(0)$ is a swallowtail of ψ.

Examples with three swallowtails

Improper affine map,

flat front (Martínez, M 14).

Prescribed isolated singularities

Theorem

If U is a periodic planar convex curve, then there exists a unique improper affine map with an isolated singularity at 0 , where the affine conormal tends to U.

Here, $\Phi(s)=\frac{1}{2}(U(s)+j \xi \times 0)=\frac{1}{2} U(s)$.

Examples

Characteristic Cauchy problem

- Finally, we consider IAS generated by a characteristic admissible pair $\{\alpha, U\}$, that is, $\left\langle\alpha^{\prime}, U^{\prime}\right\rangle$ vanishes when α^{\prime} is an asymptotic direction.
- We use the Blaschke's representation for an indefinite IAS ψ with asymptotic parameters (u, v) and two planar curves $a(u)$ and $b(v)$ given by the harmonic maps

$$
N=(a+b, 1) \quad \text { and } \quad \xi \times \psi=(b-a, 0) .
$$

- It is clear that an asymptotic curve $\psi\left(u, v_{o}\right)$ determines $a(u)$ and $N\left(u, v_{o}\right)$, but not $b(v)$.
- So, an admissible pair $\{\alpha, U\}$ generates many (indefinite) IAS, when $\left\langle\alpha^{\prime}, U^{\prime}\right\rangle$ vanishes identically.

Characteristic Cauchy problem

- If $\left\langle\alpha^{\prime}(s), U^{\prime}(s)\right\rangle$ only vanishes at isolated points, then we can take the planar curves $\widetilde{a}(s)$ and $\widetilde{b}(s)$ with

$$
U=(\widetilde{a}+\widetilde{b}, 1), \quad \xi \times \alpha=(\widetilde{b}-\widetilde{a}, 1)
$$

and $2 \operatorname{det}\left(\widetilde{a}^{\prime}, \widetilde{b}^{\prime}\right)=\operatorname{det}\left(U^{\prime}, \xi \times \alpha^{\prime}, \xi\right)=\left\langle\alpha^{\prime}, U^{\prime}\right\rangle$.

- Thus, we can determine the curves $a(u), b(v)$ and the IAS, up to a change of parameters $\widetilde{a}(s)=a(u(s)), \widetilde{b}(s)=b(v(s))$, when

$$
\left\langle\alpha^{\prime}, U^{\prime}\right\rangle=2 \operatorname{det}\left(\widetilde{a}^{\prime}, \widetilde{b}^{\prime}\right)=2 \operatorname{det}\left(a^{\prime}, b^{\prime}\right) u^{\prime} v^{\prime}
$$

does not change sign.

Characteristic Cauchy problem

- The uniqueness fails when $\alpha(s)=\psi(u(s), v(s))$ is tangent to an asymptotic curve, that is, when $u^{\prime} v^{\prime}$ changes sign.

Examples

Theorem

Two solutions agree on a domain which contains $\alpha(I)$ except its characteristic points without sign.

