Predictability Crisis in Early Universe Cosmology

Chris Smeenk

Rotman Institute of Philosophy University of Western Ontario

<ロト <四ト <注入 <注下 <注下 <

Introduction	Background 000000	Predictability Crisis 0000000	Resp on ses	Conclusion
Motivatin	g Questions			

- Is cosmology a science? What kind of science is cosmology?
 - Fundamental / law-seeking
 - Historical / descriptive
- What are the appropriate aims of cosmology?
 - Detailed reconstruction of the physical properties, evolution within our Hubble volume
 - Assessment of probability of that account with respect to fundamental theory

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへの

- Discovery and justification of new laws

Introduction	Background 000000	Predictability Crisis	Resp on ses 000	Conclusion
Mativatia				
iviotivatin	guestions			

- Is cosmology a science? What kind of science is cosmology?
 - Fundamental / law-seeking
 - Historical / descriptive
- What are the appropriate aims of cosmology?
 - Detailed reconstruction of the physical properties, evolution within our Hubble volume
 - Assessment of probability of that account with respect to fundamental theory

- Discovery and justification of new laws

Introduction	Background 000000	Predictability Crisis 0000000	Resp on ses 000	Conclusion

Predictability Crisis

In an eternally inflating universe, anything that can happen will happen; in fact, it will happen an infinite number of times. Thus, the question of what is possible becomes trivial — anything is possible, unless it violates some absolute conservation law. To extract predictions from the theory, we must therefore learn to distinguish the probable from the improbable. (Guth 2007)

Questions

- Does eternal inflation make any predictions, and in what sense? (More generally, predictions from the multiverse?)
- Output Bound We define probabilities in cosmology?
- I how should we characterize empirical success of a cosmological theory?

Introduction	Background 000000	Predict ability Crisis	Resp on ses	Conclusion
Predictab	ility Crisis			

In an eternally inflating universe, anything that can happen will happen; in fact, it will happen an infinite number of times. Thus, the question of what is possible becomes trivial — anything is possible, unless it violates some absolute conservation law. To extract predictions from the theory, we must therefore learn to distinguish the probable from the improbable. (Guth 2007)

Questions

- Does eternal inflation make any predictions, and in what sense? (More generally, predictions from the multiverse?)
- Observation of the second s
- How should we characterize empirical success of a cosmological theory?

Introduction	Background 000000	Predictability Crisis 0000000	Resp on ses	Conclusion
Outline				

Background

- Testability of Inflation
- From Inflation to Eternal Inflation
- Predictability Crisis
 - Recipe for Predictions in Eternal Inflation
 - Measure Problem
 - Status of the Measure
- 8 Responses
 - Response 1: Probabilities in Cosmology
 - Response 2: Reconsidering Empirical Success

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへの

Introduction	Background •••••	Predictability Crisis 0000000	Resp on ses	Conclusion
Testability of Inflat	ion			
Successes	for Inflation			

WMAP angular power spectrum (Spergel et al. 2006)

- Uniformity
- Flatness
- Spectrum of density perturbations (nearly scale invariant, Gaussian, adiabatic)

Consequences of dynamical evolution of "inflaton," scalar field ϕ

・ロット 全部 マート・ キャー

- 34

Introduction	Background •••••	Predictability Crisis 0000000	Resp on ses	Conclusion
Testability of Inflat	ion			
Successes	for Inflation			

WMAP angular power spectrum (Spergel et al. 2006)

- Uniformity
- Flatness
- Spectrum of density perturbations (nearly scale invariant, Gaussian, adiabatic)

Consequences of dynamical evolution of "inflaton," scalar field ϕ

・ロト ・ 一下・ ・ ヨト ・ ヨト

Introduction	Background 0●0000	Predictability Crisis 0000000	Resp on ses	Conclusion
Testability of Inflat	ion			
Indifferenc	ce Principle			

Ernan McMullin (1924-2011)

This first version [Diogenes Laertius] of the cosmogonic indifference principle contains two elements: no special setting of the initial state is required (a 'chaos' will do), and no subsequent intervention of a purposive agency of any sort is required for order to appear out of the original disorder. The normal operation of what a later generation would call mechanical law suffices (McMullin 1993)

Introduction	Background 00●000	Predictability Crisis 0000000	Resp on ses	Conclusion
Testability of Inflatio	n			
Indifference	e and Inflation			

• Conventional Wisdom: results of inflation "independent" of initial state, fixed by dynamical evolution of ϕ , replaces "finely-tuned" initial state

Issues

- How to make sense of claim that initial state in standard cosmology is "improbable" or "unnatural"?
- How probable is it that inflation occurred? (Penrose 1986; Hollands and Wald, Turok et al.)
- Exchange fine-tuning of ICs for specific properties of $V(\phi),$ initial state of ϕ

- Chaotic / Eternal Inflation
 - Linde: response to "fine-tuning" of $V(\phi), \phi$

Introduction	Background 00●000	Predictability Crisis	Resp on ses	Conclusion
Testability of Inflatio	n			
Indifference	e and Inflatio	n		

- Conventional Wisdom: results of inflation "independent" of initial state, fixed by dynamical evolution of φ, replaces "finely-tuned" initial state
- Issues
 - How to make sense of claim that initial state in standard cosmology is "improbable" or "unnatural"?
 - How probable is it that inflation occurred? (Penrose 1986; Hollands and Wald, Turok et al.)
 - Exchange fine-tuning of ICs for specific properties of $V(\phi)$, initial state of ϕ

- Chaotic / Eternal Inflation
 - Linde: response to "fine-tuning" of $V(\phi), \phi$

Introduction	Background 00●000	Predictability Crisis	Resp on ses	Conclusion
Testability of Inflatio	n			
Indifference	e and Inflatio	n		

- Conventional Wisdom: results of inflation "independent" of initial state, fixed by dynamical evolution of φ, replaces "finely-tuned" initial state
- Issues
 - How to make sense of claim that initial state in standard cosmology is "improbable" or "unnatural"?
 - How probable is it that inflation occurred? (Penrose 1986; Hollands and Wald, Turok et al.)
 - Exchange fine-tuning of ICs for specific properties of $V(\phi)$, initial state of ϕ

うつん 川川 スポット エリット ふしゃ

- Chaotic / Eternal Inflation
 - Linde: response to "fine-tuning" of $V(\phi), \phi$

Introduction	Background ○○○●○○	Predictability Crisis 0000000	Resp on ses	Conclusion
Inflation to Eterna	Inflation			
Eternal In	flation			

"Inflation is generically eternal"

- Heuristic arguments: volume expansion rate >> rate of false vacuum decay
- Leads to universe with:
 - Regions of false vacua
 - "Pocket universes"

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへの

Introduction	Background ○○○○●○	Predictability Crisis 0000000	Resp on ses 000	Conclusion
Inflation to Eternal	Inflation			
Eternal In	flation			

- Pocket universes with different low energy physics
- Variation based on "meta-law" governing generation of pocket universes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Image: Andrei Linde

Introduction	Background ○○○○●	Predictability Crisis 0000000	Resp on ses 000	Conclusion
Inflation to Eternal Infl	ation			
Consequenc	es of Eterna	al Inflation		

"... anything is possible"

Scope of variation depends upon "meta-law" governing generation.

イロト イポト イヨト イヨト 二日

Predictions and Probabilities

- In what sense can we make predictions?
- What do we need to introduce to do so?

Introduction	Background ○○○○○●	Predictability Crisis	Responses 000	Conclusion
Inflation to Eternal Infl	ation			
Consequenc	es of Eterna	I Inflation		

"... anything is possible"

Scope of variation depends upon "meta-law" governing generation.

Predictions and Probabilities

- In what sense can we make predictions?
- What do we need to introduce to do so?

Introduction	Background 000000	Predictability Crisis ●000000	Resp on ses	Conclusion
Predictions				
Recipe for	r Multiverse I	Predictions (e.g.	Aguirre 2006	5)

- O: reference class for conditionalization, e.g. "observers" (or some proxy)
- $lpha_i$: parameters taken to vary in different regions of multiverse
- $N_O(\alpha_i)$: number of "observers"
- $P(\alpha_i)$: prior probability

"What a typical member of reference class will observe" (Principle of Mediocrity):

$$P_O(\alpha_i) = N_O(\alpha_i)P(\alpha_i) \tag{1}$$

Introduction	Background 000000	Predictability Crisis ○●○○○○○	Resp on ses 000	Conclusion
Predictions				
Exemplar:	Weinberg or	η Λ		

- O: large gravitationally bound systems (as proxy for observers)
- α : consider varying Λ , other parameters all fixed
- $N_O(\alpha) =:$ only non-zero in small window, due to Λ 's effect on structure formation
- $P(\alpha) =:$ expect this to be uniform, because anthropically allowed region small compared to particle physics energy scales

Result: expect to something close to "median value" of Λ (calculation in 2005)

$$\rho_{\rm v} = 13.3\rho_m \tag{2}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

Observed value: $\rho_v = 2.3 \rho_m$. Probability = .156.

Introduction	Background 000000	Predictability Crisis ○●○○○○○	Resp on ses 000	Conclusion
Predictions				
Exemplar:	Weinberg or	η Λ		

- O: large gravitationally bound systems (as proxy for observers)
- α : consider varying Λ , other parameters all fixed
- $N_O(\alpha) =:$ only non-zero in small window, due to Λ 's effect on structure formation
- $P(\alpha) =:$ expect this to be uniform, because anthropically allowed region small compared to particle physics energy scales

Result: expect to something close to "median value" of Λ (calculation in 2005)

$$\rho_{\rm v} = 13.3\rho_m \tag{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Observed value: $\rho_v = 2.3 \rho_m$. Probability = .156.

Introduction	Background	Predictability Crisis	Responses	Conclusion
	000000	000000		
Predictions				
Questiona	able Ingredien	ts		

- $N_O(\alpha_i)$: number of "observers"
- $P(\alpha_i)$: prior probability
- Reasonable estimates of $N_O(\alpha_i), P(\alpha_i)$?
- Principle of Mediocrity?
- "Measure Problem": implicit choice of measure. What is the appropriate measure over the multiverse?

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへの

Introduction	Background 000000	Predictability Crisis ०००●०००	Resp on ses	Conclusion
Measure				
Measure Pr	roblem			

- What should be given "equal weight" by the measure?
 - Distinct pocket universe
 - Spacetime volume
 - Each distinct pocket universe generated from a given starting region
 - Length of a given world-line in each distinct pocket universe

• Dealing with infinity: require some way of "regulating" infinities

Introduction	Background 000000	Predictability Crisis ○○○○●○○	Resp on ses	Conclusion
Measure				
Example				

Figure: Vilenkin 2006

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < ■ < の Q @</p>

Introduction	Background 000000	Predictability Crisis ०००००●०	Resp on ses	Conclusion
Measure				
Debates r	egarding Mea	asures		

Desiderata for Measure

- Independent of Initial Conditions
- "Calculable" $(N_O(\alpha_i))$
- Foliation-independent

•

Paradoxes

- Youngness paradox
- Q catastrophe
- Boltzmann brains / freak observers

・ロト ・戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

...

State of the Debate (?)

- "Testing" different proposed measures by considering paradoxes
- Disagreement regarding desiderata

Introduction	Background 000000	Predictability Crisis ○○○○○○●	Resp on ses	Conclusion
Measure				
Getting Pre	dictions ou	t of Nothing?		

- "Phenomenological" approach
 - Measures proposed without underlying dynamics
- Indifference principle revisited
 - Independent of initial conditions (some take as a desiderata)

"[W]e require that [the probabilities] should be independent of the initial conditions at the onset of inflation. The dynamics of eternal inflation is an attractor; its asymptotic behavior has no memory of the initial state." (Vilenkin 2006)

(日) (四) (日) (日) (日)

Introduction	Background 000000	Predictability Crisis ○○○○○○●	Resp on ses 000	Conclusion
Measure				
Getting Pred	dictions out o	of Nothing?		

- "Phenomenological" approach
 - Measures proposed without underlying dynamics
- Indifference principle revisited
 - Independent of initial conditions (some take as a desiderata)

"[W]e require that [the probabilities] should be independent of the initial conditions at the onset of inflation. The dynamics of eternal inflation is an attractor; its asymptotic behavior has no memory of the initial state." (Vilenkin 2006)

うつん 川川 スポット エリット ふしゃ

Introduction	Background 000000	Predictability Crisis	Resp on ses ●○○	Conclusion
Response 0				
Eternal Infla	ation is Self-	Undermining?		

- Does El predict anything?
 - Original predictions of inflation undermined
 - Response (?): don't abandon successful theory due to open problems

◆□▶ ◆□▶ ★∃▶ ★∃▶ = のQ@

- Reconsider claim that inflation \rightarrow El
- "Fair treatment" of competing theories

Introduction	Background 000000	Predictability Crisis	Resp on ses ●○○	Conclusion
Response 0				
Eternal Infla	tion is Self-U	Indermining?		

- Does El predict anything?
 - Original predictions of inflation undermined
 - Response (?): don't abandon successful theory due to open problems

◆□▶ ◆□▶ ★∃▶ ★∃▶ = のQ@

- \bullet Reconsider claim that inflation \rightarrow El
- "Fair treatment" of competing theories

Introduction	Background 000000	Predictability Crisis	Resp on ses ●○○	Conclusion
Response 0				
Eternal Infla	tion is Self-U	Indermining?		

- Does El predict anything?
 - Original predictions of inflation undermined
 - Response (?): don't abandon successful theory due to open problems

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへの

- \bullet Reconsider claim that inflation \rightarrow El
- "Fair treatment" of competing theories

Introduction	Background 000000	Predictability Crisis 0000000	Resp on ses ○●○	Conclusion
Response 1				
Probabilit	ies in Cosmol	logy		

- Contrast with statistical mechanics
 - Active debates regarding nature of probability in SM
 - Measure plays a central role in predictive success of the theory
- Change inductive methodology in El?
 - Bayesian methodology to calculate conditional probabilities (subjective credences)
 - Should this depend on infinite extent of the universe? (cf. Neal 2006)

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへの

Introduction	Background 000000	Predictability Crisis	Resp on ses ○●○	Conclusion
Response 1				
Probabilit	ies in Cosmo	logy		

- Contrast with statistical mechanics
 - Active debates regarding nature of probability in SM
 - Measure plays a central role in predictive success of the theory
- Change inductive methodology in EI?
 - Bayesian methodology to calculate conditional probabilities (subjective credences)
 - Should this depend on infinite extent of the universe? (cf. Neal 2006)

Introduction	Background 000000	Predictability Crisis 0000000	Resp on ses ○○●	Conclusion
Response 2				
"Predictions	"?			

- Given a suitable measure, accept Principle of Mediocrity, ...
- Possible response to incorrect "prediction" of parameter value α_i ?
 - *Some* parameters will have unusual values
 - Reject measure
 - Reject estimate of $N_O(\alpha_i)$, consider different reference class
 - Reconsider calculation varying more parameters
- Contrast with more informative cases
 - Set of clearly motivated sufficient conditions to derive a particular claim
 - Systematic discrepancies revealing; possibility of refinement and further empirical testing

Introduction	Background 000000	Predictability Crisis	Resp on ses ○○●	Conclusion
Response 2				
"Predictions	s"?			

- Given a suitable measure, accept Principle of Mediocrity, ...
- Possible response to incorrect "prediction" of parameter value α_i ?
 - *Some* parameters will have unusual values
 - Reject measure
 - Reject estimate of $N_O(lpha_i)$, consider different reference class
 - Reconsider calculation varying more parameters
- Contrast with more informative cases
 - Set of clearly motivated sufficient conditions to derive a particular claim
 - Systematic discrepancies revealing; possibility of refinement and further empirical testing

Introduction	Background 000000	Predictability Crisis 0000000	Resp on ses ○○●	Conclusion
Response 2				
"Predictions	"?			

- Given a suitable measure, accept Principle of Mediocrity, ...
- Possible response to incorrect "prediction" of parameter value α_i ?
 - Some parameters will have unusual values
 - Reject measure
 - Reject estimate of $N_O(\alpha_i)$, consider different reference class
 - Reconsider calculation varying more parameters
- Contrast with more informative cases
 - Set of clearly motivated sufficient conditions to derive a particular claim
 - Systematic discrepancies revealing; possibility of refinement and further empirical testing

Introduction	Background 000000	Predictability Crisis 0000000	Resp on ses 000	Conclusion
Concludin				

- Pessimism about Measure Problem
 - Not clear how the debates about appropriate measure can be resolved
 - Extracting predictions from El requires accepting dubious principles such as the Principle of Mediocrity, specification of a reference class

- Connection with broader questions
 - Justifying new fundamental physics based on its role in reconstruction in cosmic history
 - Modalities in cosmology: laws and initial conditions, probabilities