

Institut für Philosophie and Politikwissenschaft & Fakultät für Physik

Brigitte Falkenburg

Astroparticle Physics & Cosmology

- 1. Cosmic Rays
- 2. Messenger Particles
- 3. Scientific Realism
- 4. Unification
- 5. APP & Cosmology

Astroparticle Physics & Cosmology

1. Cosmic Rays

- 2. Messenger Particles
- 3. Scientific Realism
- 4. Unification
- 5. APP & Cosmology

1. Cosmic Rays

Victor Hess (1912): Discovery increasing height

electrometer in balloon "Höhenstrahlungs-Labor" (Zugspitze)

Eiger glacial

3

1. Cosmic Rays

Robert Millikan (1920s): Identification extraterrestric origin

Particle Detectors

brigitte.falkenburg@tu-dortmund.de Astroparticle Physics & Cosmology September 23, 2011

4

1.Cosmic Rays

distinguish primary & secondary CRs (scattering in atmosphere)

1. Cosmic Rays CRs = particles & IR-waves

Astroparticle Physics (APP) makes the bridge

from particle physics to astrophysics & cosmology

all kinds of particle detectors,

arranged as telescopes

MAGIC

Cherenkov neutrino&gamma ray telescopes

ICECUBE

brigitte.falkent Astroparticle

1. Cosmic Rays CRs = high & low energy rays

CRs = many phenomena!

Phenomena = Facts in Nature (Bogen & Woodward)

- effects (Photo, Zeemann, Bohm-Aharanov, Quantum Hall, ...)
- explananda of theories & predictions from theories

MAGIC

Cherenkov neutrino&gamma ray telescopes

ICECUBE

brigitte.falkent Astroparticle

1. Cosmic Rays

- > 1930 unravelling particle content (C.D.Anderson, ...)
- > 1954 energy measurements of of charged CRs (B.Rossi)
- > 1964 discovery of 3K CMB (A.Penzias, R.Wilson)
- > 1967 gamma ray emission from our galaxy (satellites) gamma ray bursts (GBRs) (military defense satellites)
- > 1987 energy flux of charged & uncharged CR particles

1. Cosmic Rays

All Particle Spectrum

1. Cosmic Rays Grand Unified Photon Spectrum

1. Cosmic Rays

Astrophysical Neutrinos

Hard to catch! very low reaction rate » look for bottom-up neutrino events, in mountains, ice, water

Astroparticle Physics & Cosmology

1. Cosmic Rays

2. Messenger Particles

3. Scientific Realism

4. Unification

5. APP & Cosmology

CRs carry Information from Cosmic Sources

brigitte.falkenburg@tu-dortmund.de Astroparticle Physics & Cosmology September 23, 2011

Information

= signal transmisson from emitter to receiver

to read it out, you must know 2 of:

- cosmic source
- nature of signal

 interactions during transfer

Signal transmission = particle propagation from source to detector

September 23, 2011

brigitte.falkenburg@tu-dortmund.de Astroparticle Physics & Cosmology

Only uncharged particles point to their source!

They allow **"direct observation"** of source,

no interactions during transfer

(D.Shapere 1982)

Particle propagation

September 23, 2011

brigitte.falkenburg@tu-dortmund.de Astroparticle Physics & Cosmology

Photon & neutrino telescopes observe extragalactic sources, like Galileo observed Jupiter moons Proton detection does not! Scientific Realism?

September 23, 2011

brigitte.falkenburg@tu-dortmund.de Astroparticle Physics & Cosmology

16

Astroparticle Physics & Cosmology

1. Cosmic Rays

2. Messenger Particles

3. Scientific Realism

4. Unification5. APP & Cosmology

brigitte.falkenburg@tu-dortmund.de Astroparticle Physics & Cosmology September 23, 2011

3. Scientific Realism

Be cautious!

Shapere's example: Observation of sun with solar neutrinos

Solar neutrino experiments

⇒ neutrino oscillations (information about messenger particles, *not* source!)

Observation of cosmic sources depends on knowledge of messenger particles & their interactions !

"theory-ladenness"

brigitte.falkenburg@tu-dortmund.de Astroparticle Physics & Cosmology September 23, 2011

- 3. Scientific Realism
- Sources & their activities astrophysical data: luminosity & spectra & temporal evolution of AGNS,

GRBs,

SNRs

Extragalactic sources

brigitte.falkenburg@tu-dortmund.de Astroparticle Physics & Cosmology

September 23, 2011

3. Scientific Realism

Sources & their activities: astrophysical models of

AGNs,

GRBs,

SNRs

tested by gamma ray & neutrino telescopes!

Extragalactic sources

3. Scientific Dark matter Realism

Missing gravitational mass astrophysical data (Fritz Zwicky,1933): Galaxies in Coma-Cluster do not behave according to Newtonian gravitation

3. Scientific Realism

particle telescopes of APP

sensitive to WIMPS (Weakly Interacting Massive Particles) suspected behind dark matter

produced during transfer

Dark matter

brigitte.falkenburg@tu-dortmund.de Astroparticle Physics & Cosmology September 23, 2011

3. Scientific Realism How to explain CRs? Where do 10²¹ eV CRs come from?

Goal of physics: to explain the phenomena Explanation: *very* different views!

» "true causes" (Newton: particles & forces)

» economy of thought (Mach: no Laws of Nature)

» unification (Einstein, Planck: universal laws)

 » classification by analogies (Bohr: correspondence & complementarity)

in terms of: concepts & models

» Do they describe *Physical Reality*?

brigitte.falkenburg@tu-dortmund.de Astroparticle Physics & Cosmology September 23, 2011

3. Scientific Realism

In the practice of APP, *different* attitudes coexist!

Entity realism: belief in cosmic rays & cosmic sources (many cases of ",direct" observation / evidence) Causal realism: search for causes of CRs belief in quantum laws / wave-particle duality Structural realism: (e.g., neutrino oscillations) Universal laws: belief in unity of nature (otherwise, the practice of APP makes no sense!) Realism of *models*: belief **Only** in specific models of data, CRs & SOURCES based on Safe background knowledge beyond: Instrumentalistic views!

Astroparticle Physics & Cosmology

1. Cosmic Rays

2. Messenger Particles

3. Scientific Realism

4. Unification

5. APP & Cosmology

Astro Particle Physics (APP) – a *peculiar* discipline!

Phenomena:

Models:

Theory:

Disciplines:

Methods:

cosmic rays (CRs)

light & radio waves, gamma rays, all kinds of subatomic particles

particle physics & astrophysics *mixed*

nuclear & particle physics & astrophysics

Detectors: particle detectors arranged as telescopes

no theory on its own

2 standard models & 2 incompatible theories

> brigitte.falkenburg@tu-dortmund.de Astroparticle Physics & Cosmology September 23, 2011

How to explain CRs? In terms of a unified explanation?

Astroparticle physics:

Are vou

sure

what you know?

in terms of:

Goal of physics: to explain the phenomena to explain origin & spectra of cosmic rays

concepts & models

- CRs = messenger particles
- carry information from extragalactic sources
- information may be disturbed
- » do they describe *physical reality*?

Problem of APP: no *unified* foundations

» "true causes" or economy of thought?

No unified theory for high & low energy CRs !

Messenger particles:

- high energy: e^{\pm} , p, γ , ν , ... Quantum Field Theory
 - Wave-particle duality (neutrino oscillations)
 - & "Standard model" of Particle Physics.
- Iow energy: 3K CMB Special & General Relativity:
 - Signal Transmission restricted to light cone
 - & "Standard model" of Cosmology
- **No** Quantum Gravity:
 - Information generated & transmitted by interactions of

quantum particles \rightarrow ? \leftarrow cosmic sources

No unified theory of quantum particles & cosmic sources!

2 standard models, but quantum field theory → ← cosmology Unification of particle physics & *big bang* cosmology needs quantum realism but there is none ! ("Many Worlds" = metaphysics, no physics "hidden variables" ←?→ quantum field theory)

September 23, 2011

No unified theory of quantum particles & the universe!

Astroparticle Physics & Cosmology

September 23, 2011

Nevertheless,

4. Unification

APP makes the bridge! How is this possible?

Modest pragmatic strategies of unification:

- Methodological: Particle Detectors Arranged as Telescopes ("Piecemeal" Physics á la N.Cartwright)
- Phemenological: "All Particle Spectrum" (Belief in Unified descripton of CRs)
- Conceptual: Concept of "Messenger Particles" (Entity realism & Causal realism)
- Explanatory: Models of Cosmic Sources & Acceleration Mechanisms & Propagation & Detection

Astroparticle Physics & Cosmology

- 1. Cosmic Rays
- 2. Messenger Particles
- 3. Scientific Realism
- 4. Unification

5. APP & Cosmology

5. APP & Cosmology

APP contributes to empirical basis of cosmology:

- > 3K CMB
 Low energy Photons & Neutrinos
 (photons: astrophysics; neutrinos: APP)
- high energy CRs: Models of Active Galactic Nuclei (AGN) (Mechanisms of CR Acceleration)

APP integrates data of astrophysics & particle physics.

CMB & SN data: contribute to test

of cosmological models!

5. APP & Cosmology

APP contributes to test of cosmological models: This diagram is part of *many* APP talks!

flat:

Astroparticle Physics & Cosmology

Summary

- 1. Cosmic Rays
 - Particles from Cosmic Sources
- 2. Messenger Particles
 - **Carry Information about Cosmic Sources**
- 3. Scientific Realism (with caution)
 - Search for Causes & Trust in Unity of Nature
- 4. Unification
 - Strategies in Lack of a Unified Theory
- 5. APP & Cosmology

APP Contributes to the Tests of Cosmology