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Abstract. We present a probabilistic method to locate the source of seismic events using
seismic antennas. The method is based on a comparison of the event azimuths and
slownesses derived from frequency-slowness analyses of array data, with a slowness vector
model. Several slowness vector models are considered including both homogeneous and
horizontally layered half-spaces and also a more complex medium representing the actual
topography and three-dimensional velocity structure of the region under study. In this
latter model the slowness vector is obtained from frequency-slowness analyses of synthetic
signals. These signals are generated using the finite difference method and include the
effects of topography and velocity structure to reproduce as closely as possible the
behavior of the observed wave fields. A comparison of these results with those obtained
with a homogeneous half-space demonstrates the importance of structural and topographic
effects, which, if ignored, lead to a bias in the source location. We use synthetic
seismograms to test the accuracy and stability of the method and to investigate the effect
of our choice of probability distributions. We conclude that this location method can
provide the source position of shallow events within a complex volcanic structure such as
Kilauea Volcano with an error of 6200 m.

1. Introduction

The classic approach to locate a seismic event requires a
determination of the arrival times of several phases at different
stations in a distributed network. The more precise this deter-
mination, the more constrained the source location. The ar-
rival times are inverted to obtain a minimum error solution for
the event coordinates and origin time, using velocity informa-
tion from a seismic model, usually in the form of a layered
half-space.

An alternate to the classic method is the use of seismic
antennas to determine the source location. A seismic antenna
provides a vector, named the slowness vector, which represents
the propagation properties (direction and apparent velocity) of
the wave fronts across the antenna. The source coordinates are
then obtained by inverting the slowness vector information
from multiple synchronized antennas within the framework of
a seismic velocity model.

Accurate location of long-period (LP) seismicity in volca-
noes [Chouet, 1996a] has been a major issue for seismologists
since the first deployment of seismometers on a volcano. LP
seismicity encompasses both discrete LP events and tremor. LP
events are usually characterized by an emergent onset and a
lack of clear S phases, while tremor is a sustained signal with
no readily identifiable phases. This lack of distinct phases
makes it difficult to locate LP seismicity with the conventional
phase pick method, especially when dealing with shallow
sources. On rare occasions, LP events are impulsive enough to
enable the application of the classic location procedure; how-

ever, the associated location uncertainties are usually quite
large [Koyanagi et al., 1987; Lahr et al., 1994].

As array techniques do not rely on phase picks, antennas are
particularly useful when dealing with LP seismicity and may in
fact constitute the only means to obtain precise source loca-
tions for LP sources. Several attempts have been made to
locate LP sources using information from slowness vectors
provided by seismic antennas. When only one antenna is avail-
able, the usual method for obtaining the source position is to
assume the epicentral distance (for example, by assuming that
the source is located vertically beneath a surface feature, such
as an active vent, in the direction indicated by the back azi-
muth). The depth is then estimated by applying a ray-tracing
procedure [Goldstein and Chouet, 1994; Chouet et al., 1997;
Ibáñez et al., 2000]. The use of a circular wave front geometry
may also provide an estimation of the epicentral distance [Al-
mendros et al., 1999]. However, the combined information
from several antennas remains the best way to determine si-
multaneously the epicentral distance and hypocentral depth
[Bratt and Bache, 1988; Métaxian et al., 1997; Almendros et al.,
2000; La Rocca et al., 2000]. In this paper, we present a prob-
abilistic method that uses slowness vector data derived from
frequency-slowness analyses of array data from at least two
seismic antennas to determine the source location of a seismic
event.

2. Frequency-Slowness Method
Many methods are available in the literature to extract in-

formation on the slowness vector from seismic array data, such
as conventional or high-resolution beam forming [Capon,
1969; LaCoss et al., 1969] or the cross-correlation method
[Frankel et al., 1991; Del Pezzo et al., 1997; Almendros et al.,
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1999]. In this paper, we use the MUSIC algorithm [Schmidt,
1986; Goldstein and Archuleta, 1987, 1991]. This method pro-
vides an estimate of the frequency-slowness power spectrum
with the advantages of high-resolution capabilities and short
computation time.

The MUSIC method performs an eigendecomposition of the
cross-spectral matrix of the seismograms recorded at a seismic
antenna, focused at a frequency f within a given frequency
interval [Wang and Kaveh, 1985]. Eigenvectors corresponding
to the large eigenvalues determine the signal subspace,
whereas the remaining eigenvectors determine the noise sub-
space. Solutions are sought by projecting a generic array re-
sponse vector that contains information about the spatial de-
pendence of the phase of a plane wave crossing the array, over
the noise subspace. Signals provide minimum projections and
thus can be determined by the maxima of a function D( f , s),
called the frequency-slowness power spectrum and defined as

D~ f , s! 5 S O
n[noise

uB~ f , s! z vnu2D 21

, (1)

where vn are the eigenvectors representing the noise subspace
and B is the array response vector given by

Bj~ f , s! 5 exp ~i2pfs z r j! (2)

in which rj is the position of station j and s represent the
apparent slowness vector.

A more robust estimation of the slowness of the wave field
is obtained by stacking the frequency-slowness power spectra
corresponding to a set of focusing frequencies within the band
of interest [Spudich and Oppenheimer, 1986]. This technique
enhances the stable peaks and minimizes the effect of spurious
peaks. The stacked slowness power spectrum is obtained as

D# ~s! 5 O
k[band

D~ fk, s! . (3)

The apparent slowness vector s0 corresponding to the dom-
inant peak in the stacked slowness power spectrum, D# 0 5
D# (s0), represents our estimate of the apparent slowness vector
of the wave field. The vector s0 is defined by its corresponding
polar coordinates, given by the apparent slowness (or ray pa-
rameter) s0 and azimuth f0:

s0 5 Îsx
2 1 sy

2,
(4)

f0 5
p

2 2 arctan S sy

sx
D ,

where sx and sy are the Cartesian components of the slowness
vector, selected in such a way that the x axis is pointing to the
east and the y axis is pointing to the north. With this conven-
tion, f0 represents the signal propagation azimuth, measured
clockwise from north.

2.1. Error Estimation

To estimate the error in the determination of the slowness
vector, we take into account two effects, namely, the finite grid
spacing and the width of the spectral peak. If Dsgrid represents
the grid interval, the associated errors in azimuth and slowness
are (Figure 1)

Df 5 arctan SDsgrid

s0
D , Ds 5 Dsgrid. (5)

Using a smaller grid spacing could reduce this error, as long
as we do not proceed beyond the resolution of the antenna.

The slowness resolution of the antenna, ds , may be estimated
from [Goldstein and Archuleta, 1991]

ds 5 ÎS dt

d ÎND
2

1 S Î1 1 NR

2pfLNR ÎMD 2

, (6)

where dt is the uncertainty in time delay between stations, d is
the average distance between stations, N is the number of
stations, R is the signal-to-noise ratio, f is the frequency, L is
the array aperture, and M is the number of samples in the
analysis window.

However, the error associated with the finite grid spacing
does not completely characterize the quality of the solution
[Del Pezzo et al., 1997]. We want to know further if the peak we
are dealing with is sharp or broad. For this purpose, we con-
sider the size of the region within which the slowness power
spectrum is larger than 90% of the maximum value:

Rf 5 $f uD# ~f , s! . 0.9D# 0%
(7)

Rs 5 $s uD# ~f , s! . 0.9D# 0% .

Figure 1. Sketch of the error estimation procedure. (a) Error
due to the finite grid spacing. The radius of the bold circle is
the grid interval. (b) Error due to the shape of the spectral
maximum. The bold contour corresponds to 90% of the max-
imum. The shaded regions in Figures 1a and 1b define mini-
mum and maximum values for the slowness and azimuth.
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This region contains the slowness vector estimation (f0, s0)
and defines minimum and maximum boundaries for the azi-
muth and slowness (Figure 1). The total error limits are

fmin 5 min Rf 2 Df , fmax 5 max Rf 1 Df ,
(8)

smin 5 min Rs 2 Ds , smax 5 max Rs 1 Ds .

The main source of error is usually the shape of the peak,
but the grid spacing becomes important when the peak is very
narrow or the apparent slowness of the waves is small.

2.2. Slowness Vector of a Seismic Event

The frequency-slowness analysis of seismic array data pro-
vides the values of azimuth and apparent slowness of the wave
field, together with the corresponding error limits, as a time
series. To obtain an estimate of the slowness vector for direct
arrivals from a seismic event, we select a window around the
onset of the seismic event. The selection is based on the fol-
lowing properties: (1) the frequency-slowness power is high;
(2) the azimuth and slowness are stable; and (3) the errors in
both azimuth and slowness estimates are relatively small. We
refer to this window as the first-arrival window, even though it
may contain not only direct P waves but also a mixture of P and
S waves, surface waves, scattered waves, and so on, as long as
these waves show coherence across the receivers within the
array. We then average the azimuth and slowness values within
the first arrival window, using the error as a weighting factor in
order to enhance the results with smaller errors. We use
weighting functions in the forms [1 2 (Df i/f lim)]n and [1 2
(Dsi/s lim)]n for azimuth and slowness, respectively, in which
Df i and Dsi are the errors corresponding to the ith sample,
flim and s lim are the maximum expected errors, and n is an
exponent selected to enhance the difference between the low-
and high-error solutions. We select n 5 3 for our application.
The error associated with the average value of either slowness
or azimuth is determined as the average of the errors. For the
azimuth, which is generally stable within the first arrival win-
dow, this is a good estimate of the error. For the apparent
slowness, however, we further consider the dispersion of the
results, including the error limits, to obtain a better estimate of
the range of variation of the solution. This allows us to asso-
ciate a unique slowness vector to a seismic event observed at a
given antenna. The slowness vectors derived from frequency-
slowness analyses at separate antennas are used in section 3 to
obtain an estimate of the position of the source.

3. Source Location Method
To derive a joint location of the source based on information

from multiple seismic antennas, we follow a probabilistic ap-
proach that is a simplified version of the statistical method
described by Saccorotti et al. [1998]. We define a spatial distri-
bution of probability that represents the likelihood of a point
of the medium being the source of the seismic event, based on
the similarity between the observed slowness vector data and a
model.

The frequency-slowness analysis and averaging procedure
described in section 2 provide a set of parameters, namely, the
apparent slownesses and azimuths, with the corresponding er-
ror ranges, observed at different antennas. To ensure that a
joint location is successful, we need data from at least two
seismic antennas. These data may be summarized as

Hf# min
A f# 0

A f# max
A

s#min
A s# 0

A s#max
A J , A [ arrays.

Let Pf
A( x , y , z) be the probability that if the source of the

seismic event were located at ( x , y , z), the generated waves
would propagate through array A with the same azimuth as
that determined for the event by experimental analysis. Simi-
larly, Ps

A( x , y , z) is the probability of those waves being
detected with the same apparent slowness as that observed for
the event. Then the function s( x , y , z), called the spatial
source probability and defined as

s~ x , y , z! 5 P
A[arrays

Pf
A~ x , y , z! Ps

A~ x , y , z! , (9)

represents the probability of point ( x , y , z) being the source of
the event. We define the source location as the point in the
domain where the spatial source probability reaches its maxi-
mum and the error limit as the region within the isosurface of
80% of the maximum probability (the selection of this level will
be justified a posteriori).

The actual value of the maximum, which we will call location
quality (LQ), is a measure of the “goodness” of the solution.
LQ is close to 1 when every single probability distribution for
azimuth and slowness reaches its maximum at the same point,
and their maxima are all close to 1. In that case the source is
well constrained. When the maxima are not in the same region,
or some of them are small (as seen, for example, when the
synthetic slowness at every point differs too much from the
observed slowness because the model is not a good represen-
tation of the medium), then the maximum of the spatial source
probability is also small. This means that the probability dis-
tributions for the different parameters are not internally con-
sistent and the resulting uncertainty in the source location is
large.

When we consider the source locations for a seismic swarm,
we may further sum the spatial probabilities corresponding to
all events and produce a stacked spatial probability function
that can be used to determine the most active zones in the
medium:

s# ~ x , y , z! 5 O
i[events

s i~ x , y , z! . (10)

In this sum the spatial source probabilities for individual events
are not normalized, and therefore every event is weighted
according to its own location quality. The stacked probability
may be understood as a map of the seismic activity. This pro-
cedure, however, removes all temporal information. If we want
to track the source evolution in time, individual locations have
to be considered.

To apply (9), we need to define the probability functions
Pf

A( x , y , z) and Ps
A( x , y , z). Each of these functions must

contain a single peak, corresponding to the azimuth and slow-
ness determined for the event, respectively, in order to ensure
the uniqueness of the solution. These functions must decay
away from the central value and must also be smooth enough
to ensure that similar slowness vectors are assigned similar
probabilities. Furthermore, the functions must satisfy symme-
try restrictions. The probability for azimuth should be symmet-
ric because there is no reason to think that a clockwise direc-
tion is to be preferred to a counterclockwise direction. There
may be a slight asymmetry caused by the configuration of the
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stations that compose the seismic antenna, but we do not
consider such a small effect. For slowness, the value of zero is
a cutoff, and it makes no sense to define a probability distri-
bution that includes negative values. Therefore the probability
distribution for slowness must be asymmetric. On the basis of
these a priori considerations, we select a Gaussian distribution
for the azimuth and a Poissonian distribution for the apparent
slowness. Both distributions are well-known, commonly used
functions. The particular definitions are

Pf
A~ x , y , z! 5 exp F22SfA~ x , y , z! 2 f# 0

A

f# max
A 2 f# min

A D 2G , (11)

Ps
A~ x , y , z! 5 S sA~ x , y , z! 2 s#min

A

s# 0
A 2 s#min

A D kA

z exp S2
sA~ x , y , z! 2 s# 0

A

s# 0
A 2 s#min

A kAD sA . s#min
A , (12a)

Ps
A~ x , y , z! 5 0 sA # s#min

A , (12b)

where

kA 5 log 0.05S log
s#max

A 2 s#min
A

s# 0
A 2 s#min

A 2
s#max

A 2 s# 0
A

s# 0
A 2 s#min

A D 21

, (13)

~ x , y , z! [ domain, A [ arrays.

In our application these probability functions are defined in
such a way that their maximum value (which is 1) corresponds
to the average value of the parameters obtained from experi-
mental analysis of a seismic event and the width of the distri-
bution is defined by the error limits in the experimental pa-
rameters. The shape of these functions is shown by the solid
lines in Figure 2. For the Gaussian function we select a stan-

dard deviation equal to a half of the average azimuthal error in
the first-arrival window. For the Poissonian function we use the
extremes of slowness (i.e., the minimum and maximum, includ-
ing the error limits) instead of the averages to define the shape
of the curve. The probability is zero for values below s#min

A and
5% of the maximum at s#max

A .
The functions fA( x , y , z) and sA( x , y , z) in (11) and (12)

represent the azimuth and apparent slowness of the waves
defined at each array as a function of the source coordinates.
These functions constitute what we call the slowness vector
model, which allows us to successfully apply the location
method. The slowness vector model is basically a vector field,
which assigns to every point in the investigated domain the
corresponding apparent slowness vector as it ought to be mea-
sured at array A for a given model of the medium. The slow-
ness vector model depends, of course, on the structural model
selected to represent the medium and on the position of the
antenna. In sections 4 and 5 we address the problem of finding
a slowness model adequate for the problem of locating the
source of LP seismicity at Kilauea Volcano, Hawaii.

4. Simple Slowness Models
The simplest slowness vector model is that obtained for a

homogeneous half-space, in which the slowness vector is di-
rectly related to the source-array geometry. Once the velocity
of the medium is fixed, the apparent slowness depends only on
the incidence angle because the ray paths are straight lines.
Wave fronts propagating across the array always move radially
outward from the source, and the back azimuth points to the
epicenter. The azimuth and slowness for waves propagating
from a source located at ( x , y , z) within an homogeneous
medium are

Figure 2. Probability distributions used in the source location procedure. (a) Gaussian distribution (solid
line) for azimuth, centered on the mean value (2008), with a standard deviation equal to a half of the difference
between the error limits. (b) Poissonian distribution (solid line) used for slowness. The maximum corresponds
to the average value and reaches 0 at the lower error limit and 5% of the maximum at the higher error limit.
Dotted curves are triangular probability distributions used to test the effect of our choice of the Gaussian and
Poissonian functions on the source locations.
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fA~ x , y , z! ; fA~ x , y! 5 p 1 arctan
x 2 xA

y 2 yA
(14a)

sA~ x , y , z! 5 S v Î1 1
~ z 2 zA!2

~ x 2 xA!2 1 ~ y 2 yA!2D2 1

, (14b)

where ( xA, yA, zA) represent the coordinates of the center of
the array and v is the velocity of the medium.

Further model complexity may be introduced by considering
a horizontally stratified medium. The underlying geometric
idea still applies, but now the ray paths are no longer straight
lines. Rather they are segmented lines contained in a vertical
plane, with no lateral deviations. Thus the relation for azimuth
remains exactly the same. The corresponding relation for slow-
ness is slightly more complex because we have to introduce the
thicknesses and velocities of the different layers, and the re-
sulting equation needs to be solved numerically. For example,
for a layered medium with velocities vn and layer thicknesses
hn, the relationship between the apparent slowness of the
direct arrival (equivalent to the ray parameter) and the source
depth for a source located in layer N is given by [Chouet,
1996b]

zA 2 z 5 O
n51

N21

hn 1
Î1 2 ~sA~ x , y , z!vN!2

sA~ x , y , z!vN

z S Î~ x 2 xA!2 1 ~ y 2 yA!2

2 O
n51

N21 hnsA~ x , y , z!vn

Î1 2 ~sA~ x , y , z!vn!
2D . (15)

We refer to the above models as geometric slowness vector
models. In this paper, we use these models in a restricted way
to obtain preliminary information about the source epicenter.
Basically, we assume that there is no a priori knowledge of the
variation of apparent slowness with the source coordinates, so
that the source depth cannot be determined. We use Ps

A( x , y ,
z) 5 1 as a representation of this lack of information and are
satisfied with a determination of the epicentral region using
only azimuthal information. In the general case, however,
when the effects of topography and lateral heterogeneities are
not expected to be strong, full advantage may be taken of this
method by including the information from both azimuth and
slowness.

5. Synthetic Slowness Model
for Kilauea Volcano

Volcanoes typically have complex velocity structures and
sharp topography, both of which distort the wave fields in a way
that is not easy to guess a priori. Therefore the above slowness
vector models based on laterally homogeneous half-spaces are
too simple to be realistic in applications to waves with frequen-
cies in the 1–10 Hz range. As an illustration of how we can
generate more complex models that include the effects of
topography and three-dimensional (3-D) velocity structure, we
now consider a model appropriate for the Kilauea summit
region, where we have accurate information about topography
and good quality knowledge of the 3-D velocity structure
[Okubo et al., 1997; Dawson et al., 1999]. We use this informa-

tion to account for the effects of lateral heterogeneities and to
obtain a more reliable solution for the source location.

The procedure for obtaining a slowness vector model relies
on the generation of synthetic seismograms intended to repro-
duce as closely as possible the behavior of the observed wave
field by including the effects of topography and 3-D velocity
structure. This procedure consists in a discretization of the
medium using a uniformly spaced 3-D grid and computation of
the free surface response at each antenna produced by seismic
sources located at each node of the gridded domain. Frequen-
cy-slowness analyses in the synthetic data yield estimates of
slowness and azimuth for each source. The ensemble of slow-
ness and azimuth estimates calculated for all the sources con-
stitutes the slowness vector model. This model can then be
compared to the observed slowness vector data to obtain a
maximum likelihood solution for the source position.

5.1. Synthetic Seismograms

We generate the synthetic seismograms by the finite differ-
ence method of Ohminato and Chouet [1997], in which we
include information about the topography and the three-
dimensional velocity structure of Kilauea.

The domain used for the computation of the wave field is
centered at a point located near the eastern edge of the Hale-
maumau pit crater, at approximately 19824.59N, 155817.09W
(Figure 3). The domain size is 10 3 10 3 4 km, and the cell size
is 40 3 40 3 40 m, yielding a 3-D mesh with 251 3 251 3 101
nodes. The maximum elevation is 1408 m at the northwest
corner of the domain. We use this elevation as the top eleva-
tion of the computational domain. We take the elevation of
1088 m as the zero depth level, with depth defined as positive
downward. The 1088-m elevation represents the average ele-
vation of the caldera floor. The size of the selected domain is
small enough to keep computation times within a reasonable
range but large enough to minimize the amplitudes of any
spurious reflections from the sides and bottom.

The topography of Kilauea is obtained from the U.S. Geo-
logical Survey (USGS) digital elevation map (DEM) of the
island of Hawaii. Although the resolution of the DEM is 10 m,
we resample these data at 40 m to make them compatible with
our computational mesh.

The P and S wave velocity structures are those derived by
Dawson et al. [1999], corrected for an error in their initial S
wave velocity model. They used a data set comprising 206
earthquakes recorded at 67 stations to obtain a 3-D P and S
wave velocity model of the Kilauea summit region with a res-
olution of 500 m. Their results show the presence of a 10–20%
low-P wave velocity anomaly extending beneath Halemaumau
and the southern and southwestern part of the caldera. We
perform a 3-D interpolation of the 500-m data to match the
grid spacing of 40 m in our model and use the topography to
define as empty (Lamé coefficients equal to 0) all the cells
above the free surface.

The last step in fixing the properties of the domain is to
introduce the density. Unfortunately, no accurate information
is available on the density of rocks within Kilauea caldera.
Therefore we use the empirical relation between compres-
sional wave velocity and density determined by Nafe and Drake
[1963]. For the range of compressional wave velocities between
3 and 7 km/s, this relation can be approximated by the linear
function

r 5 1740 1 160vp, (16)
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in which the density r is expressed in kg/m3 and the compres-
sional velocity vp is in km/s.

In the present analysis the source time function and source
mechanism are not important as we are only interested in the
directional properties and propagation velocities of the waves
composing the wave field. We select a source time function in
the form of a cosine with period of 0.5 s, which is appropriate
for the grid spacing of 40 m and velocities of the medium as
determined by Dawson et al. [1999]. We consider an isotropic
point source with dipole moment of 1012 N m. The time step
for the finite differences is set to 3 ms to satisfy the Courant
stability criterion [Ohminato and Chouet, 1997].

5.2. Description of the Synthetic Wave Field

We calculate two different sets of synthetics in order to
understand separately the effects of topography and structure
on the features of the wave field generated by a point source.
Our first model consists of a homogeneous medium with P and
S wave velocities of 4 and 2 km/s, respectively, and includes
only topography. The second model includes both topography
and the P and S wave velocity structures as determined by
Dawson et al. [1999].

Plate 1 shows snapshots of the vertical component of dis-
placement at the free surface generated by an isotropic point
source embedded in a homogeneous medium with topography.
The source is located at a depth of 520 m beneath the north-
east edge of Halemaumau. The composition of the wave field
is dominated by waves propagating radially outward from the
source, but many other effects are apparent. Diffraction of the
incident P wave by Halemaumau is observed as a distinct red
patch on the floor of this pit crater at 0.5 s. Wave diffraction by
Halemaumau is also apparent in the snapshot at 0.9 s, where it
manifests as a notch of lighter blue in the dark blue ring
marking the second peak of the wave front near the southwest
edge of the pit crater. The bright triangular orange patch
observed near the source epicenter in this snapshot identifies
converted SV waves reflected from the edge of Halemaumau
facing the source. Waves are generated at the circular bottom
corner of Halemaumau by the incident P wave. These waves
travel along the floor of the pit crater where they interfere

constructively to create a pattern of standing circular waves.
These trapped waves are observed as a bright patch of orange
near the center of Halemaumau at 0.9 s and appear as a bright
orange ring coincident with the walls of Halemaumau at 1.2 s.
Rayleigh waves scattered by the pit crater are observed as
orange-colored rings propagating outward from Halemaumau
at 1.5 s and 2.1 s. Wave diffraction by a smaller pit crater
east-southeast of Halemaumau and by cliffs flanking the
caldera to the north are observed in the snapshot at 0.9 s where
they appear as orange-colored notches embedded in the dark
red ring identifying the trough in the P wave front. Waves
backscattered from cliffs marking the northwest caldera
boundary appear as a linear band of orange oriented parallel
to the topography contours north of Halemaumau at t 5 1.2
s. These waves propagate in a clockwise direction through the
northern sector of the caldera where they interfere with the
Rayleigh waves scattered by Halemaumau to produce a wave
pattern identified by the orange patches located near the
northern caldera boundary at 1.5 s and 2.1 s. Waves backscat-
tered by cliffs flanking the northern sector of the caldera are
also observed propagating southward past the southern edge of
Halemaumau at 3.3 s. The mottled pattern of yellow on the
caldera floor observed in this snapshot represents decaying
standing waves resulting from the interference of waves back-
scattered by the topography of the caldera.

The main features of the wave field associated with the
topography of Kilauea remain essentially unchanged when the
three-dimensional P and S wave velocity structures of the
medium are taken into account. Plate 2 shows a snapshot of
the free surface vertical displacement wavefield calculated for
a medium including both topography and velocity structure.
The source is located at a depth of 200 m beneath the north-
east edge of Halemaumau. The effect of the velocity structure
is a distortion of the features observed in the presence of
topography only, caused by the different velocities in different
parts of the domain.

The apparent slowness and propagation azimuth of the
waves are different in the model including topography only,
compared to the model that includes both topography and
structure. The arrows in Plate 2 represent the slowness vectors

Figure 3. (a) Domain selected for the finite difference calculations. The sketch shows the domain dimen-
sions, grid size, and location of the centers of the synthetic arrays (solid squares FS, ES, and DS). KC identifies
Kilauea caldera and H indicates the Halemaumau pit crater. (b) Configurations of the synthetic arrays.
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determined at the three synthetic antennas shown in Figure 3
(the procedure used to obtain these estimates is explained in
section 5.3). The differences between the slowness vectors de-
rived from the two models are quite large and indicate that a
homogeneous medium, even if it includes the effect of topog-
raphy, is not a good enough representation of the Kilauea
summit region, at least for the purpose of defining a slowness
vector model.

5.3. Frequency-Slowness Analyses of Synthetic Events

To obtain estimates of the slowness vector as a function of
source position, we need to apply the frequency-slowness
method to the synthetic data. To do so, we generate synthetic
seismograms at 100 stations distributed in three arrays named
DS, ES, and FS in Figure 3. The locations and configurations
of these arrays are selected to simulate the setups of three
antennas deployed at Kilauea in February 1997 [Almendros et
al., this issue]. We select a sampling interval of 15 ms and
synthetic seismogram length of 3.75 s, adequate choices for the
purpose of determining the apparent slowness and azimuth of
the first arrival at each antenna. The frequency-slowness anal-
yses are performed with a sliding window length of 1.92 s (128
samples) and overlap of 0.2 s. Because of the limited band-
width of the synthetic source, we use only one frequency band
with a bandwidth of 2.6 Hz centered at 2 Hz, and we do not
perform slowness stacking. In this way, we obtain a slowness
vector at each of the arrays for a given source position. By
defining a grid of source positions, we obtain a 3-D slowness
vector model for each antenna.

Because of the larger aperture of array FS, the wave fronts
propagating through the antenna are not perfectly approxi-
mated by a plane wave front for a source located close to this

Plate 1. Snapshots of the vertical component of the free surface displacement wave field produced by a point
source with epicenter marked by the white circle. H indicates the Halemaumau pit crater. The medium is
homogeneous and includes topography. The time elapsed from the origin time of the synthetic event is shown
at the top of each panel.

Plate 2. Snapshot of the vertical component of the free
surface displacement wave field 2.0 s after the origin time of
a synthetic event. The medium includes both the topography
and 3-D velocity structure of Kilauea. The epicenter of the
point source is identified by the white circle. The arrows
represent the slowness vectors estimated at three arrays (see
Figure 3) for a homogeneous medium including topography
(white arrows) and a medium including both topography
and structure (black arrows). Differences are relatively large
and affect both the azimuth and apparent slowness. These
results emphasize the importance of considering both to-
pography and structure in the definition of a synthetic slow-
ness vector model.
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array. The MUSIC method does provide a best fit plane wave
solution for the azimuth and slowness, but the power is usually
lower, pointing to a lack of coherence due to the large distance
between stations (200 m). A circular wave front approximation
[Almendros et al., 1999] might be more appropriate in this case.
Unfortunately, the high apparent velocities of the direct waves
in the model, even for shallow sources, make this approach
difficult to apply. However, being close to the source is also
convenient, because the ray paths are short and the waves are
not significantly perturbed by the scattering due to topography
and shallow velocity heterogeneities, as demonstrated by the
coincidence of the black and white arrows at array FS in Plate
2.

5.4. Synthetic Slowness Vector Model

The first step in establishing a synthetic slowness vector
model is to define the region of interest. On the basis of
preliminary locations of LP seismicity recorded in the summit
caldera [Almendros et al., this issue], we know that most of the
seismic activity we are interested in is located in an area near
the eastern edge of Halemaumau. Accordingly, we develop a
slowness vector model for a region of 2.40 3 2.40 3 0.64 km
centered on Halemaumau (Figure 4).

The second step is to define an appropriate source grid
spacing. Figure 5 shows the components of the slowness vector
calculated at each of the three antennas for sources distributed
along profile A-A9 in Figure 4. The plots show the slownesses
and the azimuthal deviations from the source-receiver direc-
tions, calculated for sources distributed every 40 m (dotted

line), 200 m (solid line), and 400 m (dashed line) along the
profile. Many sharp oscillations are observed in the parameters
determined with a source spacing of 40 m. These oscillations
mainly reflect the effects of topography. This conclusion is
supported by our observation that the oscillations become
smoother with increasing source depths. The velocity structure
we are using is very smooth, as it represents an interpolation
from a model with spatial resolution of 500 m and therefore
cannot by itself explain the irregular spatial pattern of the
slowness vector.

The natural tendency to make the grid spacing as small as
possible, down to the 40 m grid used in the finite difference
calculation of synthetic seismograms, is not the best idea for
two reasons: (1) the process of computing the free surface
motion for a single synthetic source, as described above, is time
consuming (about 7 hours in a 450 MHz computer) and (2) the
velocity structure is only known with a resolution of 500 m, so
that it makes no sense to compute synthetics to such a level of
detail. We select a grid spacing of 200 m, small enough to
adequately reproduce the spatial variation of slowness but
large enough to make the computation of a relatively large
source domain feasible.

The synthetic sources are positioned at individual grid nodes
in a uniformly spaced grid extending from 20.6 to 0.8 km in
the east-west direction, from 20.8 to 1.0 km in the north-south
direction, and from 40 to 280 m in the depth direction. We use
source grid spacings of 200 m in the north-south and east-west
directions and 80 m in the depth direction. The total number of
point sources considered is 304. Because of the topography of
Halemaumau, sources in the top layer of the model within the
walls of the pit crater are located above the topography and
thus are not considered in our calculations. Slowness vectors
corresponding to these sources are estimated afterward by
interpolation. This artifact is used in order to provide a uni-
form grid, even with the a priori knowledge that no source is
located above the topography. Once our treatment of the data
has been completed, we reject the information from every
point above the floor of Halemaumau.

For completeness, we also compute slowness vectors for
another set of sources extending from 21.4 to 1.0 km in the
east-west direction, from 21.0 to 1.4 km in the north-south
direction, and from 40 to 680 m in the depth direction. The
grid spacings used for this set of sources are 400 m in the
north-south and east-west directions and 160 m in the depth
direction. In this way, an additional 205 noncoincident sources
are added to the model, yielding a total of 509 point sources.
The use of a coarser 400-m grid spacing is justified for deeper
sources because the spatial variations of the slowness vector
are not as sharp for such sources. It should be noted that the
preliminary source locations for most of the actual seismic
sources considered in our study [see Almendros et al., this issue]
fall within the limits of the 200-m grid, so that an extension of
the 200-m grid to the boundaries of the larger domain is not
warranted. The final model relating the slowness vector with
the source position for each array, which we call the synthetic
slowness vector model, is produced by merging the results from
both grids and interpolating to a grid spacing of 40 m in the
horizontal directions and 20 m in the vertical direction.

Figure 6 shows the resulting slowness vector models ob-
tained for each synthetic antenna, decimated to a 400-m spac-
ing. The arrows represent the slowness vectors measured at the
synthetic antennas. The tail of each individual arrow is posi-
tioned at the source location. This picture is the equivalent of

Figure 4. Map view and east-west and north-south vertical
cross sections of the source domain selected for the generation
of a synthetic slowness vector model. The positions of the cross
sections are indicated by the dashed lines in the map view. The
selected domain is bounded by the larger 2.40 3 2.40 3 0.64
km gridded region. Light lines define a coarser 400 3 400 3
160 m grid, and bold lines define a finer 200 3 200 3 80 m grid.
The origin of the model coordinates is shown by the open
circle. The positions of the antennas are marked by solid
squares. A-A9 is the profile used in our selection of the appro-
priate source grid spacing (see Figure 5).
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(14) and (15) for a model that includes topography and 3-D
velocity structure.

6. Example: Location of a Synthetic Event
We use a synthetic event, generated in the same way as

described in section 5, to discuss the location capabilities of our
method. The source coordinates in the east, north, and depth
directions are 200, 400, and 120 m, respectively (see Figure 4).

Figure 7 illustrates the first step in our location procedure,
which is a frequency-slowness analysis of the synthetic wave
field. Figures 9a, 9b, and 9c show the results obtained with the
DS, ES, and FS antennas, respectively. Figure 9d shows the
average values of azimuth and slowness, as well as the error
ranges, within the first-arrival windows identified by the shaded
bands in Figures 9a–9c. The white circle in the map view marks
the original epicenter location, which is positioned within the
overlap of the azimuthal error wedges.

In the next step, we use the restricted geometric model to
determine the epicenter location for this synthetic event. The
2-D azimuthal probability distributions involved, obtained by
application of (11) and (14), are shown in Plate 3 together with
the combined source location probability, which is the product
of the three azimuthal probability distributions (equation (9)).
The maximum probability, which we assume to be the epicen-
ter location, occurs at coordinates (200, 560) m. The size of the
80% error region is about 240 3 800 m, and the location
quality is 0.9. The distance between this solution and the actual
epicenter, marked by the white circle in Plate 3, is 160 m.
Location errors of this magnitude are very common when using
the geometric model. These errors generally increase with dis-

tance from the antennas, but even within the region between
the antennas they may range up to 500 m. The reason is that
this model does not account for deviations in the wave fronts
caused by topography and lateral velocity heterogeneities.
These effects, which are included in the calculation of the
synthetic seismograms, can lead to azimuthal deviations of up
to 108.

If we use the synthetic model instead, we can go one step
further and obtain an estimate of the source depth along with
a better constraint on the epicenter location. The steps fol-
lowed in the location procedure are illustrated in Plate 4. The
map views are of the shallowest layer and north-south vertical
cross sections through the 3-D probability distributions. Plates
4a–4c show the spatial probability distributions for azimuth
obtained at each antenna. Dashed white lines mark the average
geometric back azimuths and provide a measure of the bias
due to the effects of topography and structure. Plates 4d–4f
show the spatial probability distributions for slowness obtained
at each antenna. These distributions are obtained from an
application of (11) and (12) to the slowness vector model
depicted in Figure 6. Plates 4g, 4h, and 4i represent the com-
bined azimuthal probability, combined slowness probability,
and total probability distribution including azimuth and slow-
ness, respectively, and represent the spatial source probability
as defined in (9). In this example, the maximum probability
coincides with the source position (white circle) at coordinates
(200, 400, 120) m. The size of the error region, marked by the
solid black line, is 160 3 320 3 160 m, and the location quality
is 1.0.

Plate 5 shows other examples, equivalent to Plate 4i, for

Figure 5. (a) Apparent slowness and (b) azimuthal deviation from the source-receiver direction, calculated
at antennas DS, ES, and FS, from top to bottom, respectively, for synthetic sources distributed along east-west
profile A-A9 in Figure 4. This profile extends from 21.4 to 1.0 km in the east-west direction and is located 1.0
km north of the origin, at a model depth of 40 m. The arrows in Figures 5a (bottom) and 5b (bottom) mark
the position of array FS, which is very close to the profile. The apparent slowness at this antenna is very small
for nearby sources, and thus the errors in azimuth are correspondingly larger. The dashed, solid, and dotted
lines represent source grid spacings of 400, 200, and 40 m, respectively. The 200-m grid is our selected
trade-off choice to represent the source domain because it adequately reproduces the basic behavior of the
parameters and keeps the model computation time within reasonable limits.
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sources located at other positions in the domain. The picture of
the obtained source is blurred by limitations in the resolving
capabilities of the antennas and by the complexities of the
structure. Even for a simple point source, the spatial source
probability determined by our procedure is not a point-like
region but is an extended distribution. The low-probability tails
present in the solutions (i.e., the blue-to-yellow regions in Plate
5) are artifacts of the method caused by the array configura-
tions and model limitations. The colored patterns in Plate 5
may be intuitively interpreted as the impulse response of our
model. Ideally, it would be desirable to deconvolve this re-
sponse and to obtain a delta-like location. However, to pro-
ceed with such deconvolution, we would need to calculate a
spatial source probability for sources located at every node in
the domain, an onerous procedure that is not justified in light
of our simplistic model. The tails are more pronounced in the
region immediately east of Halemaumau and are usually elon-
gated in the north-south direction. In spite of these limitations,
there is no ambiguity in the source location because the abso-
lute maximum is generally well defined and matches the al-
ready known source locations. Secondary peaks in the spatial
source probability distributions, if any, amount to only a frac-
tion of the dominant peak.

7. Capabilities of the Method
For the remainder of this discussion we focus on the use of

the synthetic model and address a few important questions
concerning its capabilities. First, how precise is the method?
We want to know if it gives back the correct source position,
within the error limits, when the source position is known.
Second, how sensitive is the method to errors in the data?
Does the method provide a different result for data with very
similar parameters, or is it stable? Last, how sensitive is the
solution to the functions used to represent the probability
distributions?

7.1. Accuracy and Resolution

To investigate the accuracy and resolution of our method,
we relocate a subset of synthetic sources used to calculate the
slowness vector model. The selected sources are located at the
nodes of the 400-m grid domain. We know the source position
and also the corresponding values of azimuth and slowness at
each antenna. From the perspective of the model these azi-
muthal and slowness values represent true values. For most of
the sources the maximum of the source location probability
matches the actual source position with a location quality close

Figure 6. Three-dimensional views of the decimated synthetic slowness vector models obtained for the (a)
DS, (b) ES, and (c) FS antennas. Each arrow represents the slowness vector measured at the corresponding
antenna for a synthetic point source located at the beginning of the arrow. The magnitude of the arrow
represents the slowness value according to the scale shown. At the top of each model is a contour map, which
shows the position of the antenna (solid square). H indicates Halemaumau.
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to 1. A mislocation amounting to a few nodes is only observed
for sources located deep below one of the antennas. This
indicates that the performance of our method is homogeneous
within the entire domain; that is, there is no tendency of the

method to preferentially assign the source to any particular
region in the domain.

However, the estimate of the slowness vector obtained from
the frequency-slowness analysis of a synthetic event is not

Figure 7. Examples of results obtained from frequency-slowness analyses of the wave field produced by an
isotropic point source with a 2-Hz cosine source-time function. From top to bottom, the seismogram gener-
ated at a selected array site, the apparent slowness, azimuth, and peak slowness power determined at the array
are shown. (a) Results obtained at array DS, (b) results for array ES, and (c) results for array FS. The bands
of shading identify the first-arrival windows (see text for explanations). (d) Graphic summary of the frequency-
slowness results. (top) Map showing a tentative epicentral region defined by the overlap of the shaded wedges.
These wedges represent the back azimuthal spread resolved by each array, with the dashed lines indicating the
average back azimuth determined over the first-arrival window. The white circle marks the epicenter of the
synthetic event. (bottom) Average slowness in the first-arrival window determined at each antenna.
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always well reproduced by our model. When the source loca-
tion does not coincide with one of the nodes of the source grid
shown in Figure 4, the model cannot reproduce exactly the
value of azimuth and especially that of slowness. To illustrate
this model limitation, let us consider again the azimuth and
slowness profiles in Figure 5 and compare the values obtained
from frequency-slowness analysis of the synthetic events (open
circles) with the values obtained by interpolation over the
200-m grid model (solid line). The differences in estimated
values may amount up to around 0.1 s/km in slowness and 108
in azimuth, but the effects of such differences are usually
minimized by the fact that these discrepancies do not simulta-
neously affect all six parameters of the method. The locations
obtained for several test sources located between grid nodes
have smaller location quality and are usually misplaced by
several nodes, especially in the shallowest (40 m deep) layer.
The mislocation errors may range up to 200 m. The reason for
these errors is the high variability of the slowness vector over
short distances (see Figure 5). Such rapid variations in slow-
ness are beyond the resolution of our slowness vector model.
The errors decrease with depth, reflecting the decrease in the
amplitude of slowness fluctuations associated with deeper
sources. To achieve higher resolution, we would need to cal-

culate a slowness vector model for point sources distributed
over a finer grid. However, taking into account other factors
such as the resolution of the antennas and spatial resolution of
the velocity structure, we consider the present model to be
adequate, keeping in mind that the locations are estimated
with errors on the order of 200 m. This error radius is roughly
equivalent to the size of the 80% probability isosurfaces.
Therefore we may consider that the region within the 80%
isosurface is a good estimate of the uncertainty of the source
position.

7.2. Stability

There are several effects that could induce errors in the
estimates of the slowness vector of the wave field, for example,
the presence of near-surface inhomogeneities beneath the in-
dividual instruments composing the antenna, which would dis-
tort the arriving wave fronts, or the analysis of signals with a
low signal-to-noise ratio. To test the stability of the method
and assess its sensitivity to errors in the data, we introduce
random variations in the average values of azimuth and slow-
ness derived from frequency-slowness analyses prior to apply-
ing the location method, and we compare the relocated source

Plate 3. Azimuthal probability distributions for the location of a synthetic event determined from the
restricted geometric model. The white circle marks the source epicenter. (a) Azimuthal source location
probability obtained from the DS antenna. (b) Azimuthal probability derived from the ES antenna. (c)
Azimuthal probability from the FS antenna. (d) Combined source location probability showing the epicentral
location and the error boundary defined by the 80% probability contour (bold black line).
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with the original source location. We use the slowness vector
obtained for the synthetic event whose location is shown in
Plate 4 and generate a set of 250 noisy slowness vectors by
adding random noise with standard deviations of 58 in azi-
muth and 0.05 s/km in slowness. We then apply our location
method using these noisy slowness vectors and find that the
recalculated hypocenters are clustered around the original
source location with a standard deviation of 125 m, which
fits well within the error region that we are considering. This
demonstrates that the source location procedure is stable.
The location quality, however, is sensitive to small errors in
the data and decays from 1.0 for the original source consid-

ered to an average of 0.7 for the ensemble of 250 noisy
samples.

7.3. Dependence on the Choice of the Probability
Distributions

An alternate choice of probability functions used in the
calculation of the source location probability (equations (11)
and (12)) has only a small effect on the resulting source loca-
tions. We test this dependence by using the triangular proba-
bility distributions shown by the dotted curves in Figure 2 and
defined as

Plate 4. Map views of the shallowest layer in the slowness model at depth of 40 m and north-south vertical
cross section of the spatial probability distributions used in the source location procedure of a synthetic event
(same event as in Plate 3). The white circle marks the source position. The vertical lines in the map views mark
the positions of the vertical cross sections. (a, b, c) Probability distributions for azimuth obtained at arrays DS,
ES, and FS. The dashed white lines show the directions of the average back azimuths of the waves seen at the
arrays. (d, e, f) Probability distributions for slowness obtained at arrays DS, ES, and FS. (g) Combined
probability distribution for azimuth, the product of Plates 4a, 4b, and 4c. (h) Combined probability distribution
for slowness, the product of Plates 4d, 4e, and 4f. (i) Spatial source probability distribution, which includes
both azimuth and slowness information. The solid black line is the contour at 80% of the maximum proba-
bility, which we take as a measure of the error in the solution.
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A . Plate 6 shows the location of the
synthetic event in Plate 5b obtained using these triangular
probability distributions. The only changes in the solution are
differences in the relative weight between the probabilities
obtained at different points of the domain, so that the location
quality and overall smoothing of the picture are different. In
particular, the error limits associated with the sharper triangu-
lar distributions appear quite small and unrealistic. In spite of
these effects, the source locations derived with the triangular
distributions are the same, within a few nodes, as those ob-
tained previously with the Gaussian and Poissonian distribu-
tions. Thus we may conclude that the source locations are
relatively independent of the choice of probability functions, as
long as these functions satisfy the criteria defined in section 3.

8. Conclusions
We have presented a method designed to provide an esti-

mate of the source position based on results from a standard
frequency-slowness analysis of array data from at least two
antennas. The source coordinates are obtained in a probabi-

Plate 5. Same as Plate 4i for synthetic sources located at
different positions in the domain. A white circle marks the
original source location. The map views represent horizontal
sections of the source location probability distributions at the
source depth, as indicated by the white lines in the vertical
cross sections. (a) Synthetic source located at coordinates
(2600, 600, 360) m. (b) Synthetic source located at coordinates
(200, 2200, 200) m. (c) Synthetic source located at coordinates
(2200, 200, 520) m. In each case the solution matches the
original source position with a location quality close to 1.

Plate 6. Same as Plate 5b for the spatial source probability
distribution obtained using the alternate triangular probability
distributions defined by (17) and (18). The solution matches
the original position, but the location quality and the error
region are different.
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listic sense by comparing the slowness vector data to a slowness
vector model. The use of a restricted geometric slowness vector
model may constitute a trade-off solution when the structure of
the medium is not well known. If desired, information about
the apparent slowness may be included in the model by using
a simple homogeneous or layered medium. However, when
information about the 3-D velocity structure is available, it is
more appropriate to use a synthetic slowness vector model that
takes into account the effects of topography and velocity struc-
ture to simulate the behavior of the propagating wave fields.
Using a synthetic slowness vector model appropriate for the
summit region of Kilauea caldera, along with a configuration of
three seismic antennas similar to those deployed during a seis-
mic experiment conducted in February 1997 [Almendros et al.,
this issue], we show that the source position can be estimated
within an error of 6200 m. We also demonstrate through a
series of tests that the results obtained with our location
method are reliable and that the effects of the limited resolu-
tion of the synthetic slowness vector model and of small errors
in the data, as well as the effects resulting from our choice of
different probability functions for azimuth and slowness, fall
within the estimated location errors and do not significantly
affect source locations.

Our results demonstrate that there is a bias in the epicenter
position derived from the restricted geometric model, as com-
pared to the hypocenter location derived from the synthetic
model. The difference may amount up to 500 m and is caused
by the effects of topography and lateral velocity heterogeneity.
These effects can produce noticeable variations in the direc-
tion of the apparent slowness vector, which may deviate by up
to 108 from the source-receiver azimuth. Improvements in the
procedure, via the introduction of velocity models with better
spatial resolution that will allow the calculation of synthetics to
higher frequencies, will no doubt show that these effects are
even more pronounced. However, for many applications the
geometric model may be good enough. For example, a simple
geometric model may be used to gain information about the
source location for some signals that are otherwise elusive,
such as coherent scattered waves present in the coda.

The initial determination of a synthetic slowness vector
model requires extensive computations. However, once the
model is established, it can be used to locate events recorded
at seismic antennas with the same confidence that one uses a
velocity model to determine earthquake hypocenters with a
seismic network.

The successful application of a method based on a synthetic
model is dependent upon our knowledge of the medium. A
high-resolution tomographic model is required to generate
synthetic seismograms that can reproduce to some level of
accuracy the behavior of the wave fields observed in the me-
dium. In the work presented here, we used a model interpo-
lated from the 500-m spatial resolution tomography model
determined for Kilauea by Dawson et al. [1999]. This model
probably constitutes the most precise elaboration of the 3-D
velocity structure of Kilauea today. This requirement, together
with the high number of seismometers required to deploy even
a few good quality small-aperture antennas, is the main diffi-
culty that will need to be surmounted for a generalized appli-
cation of the method.
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