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S U M M A R Y
We analyzed 16 seismic events recorded by the Hawaiian broad-band seismic network at
Kilauea Volcano during the period September 9–26, 1999. Two distinct types of event are
identified based on their spectral content, very-long-period (VLP) waveform, amplitude decay
pattern and particle motion. We locate the VLP signals with a method based on analyses
of semblance and particle motion. Different source regions are identified for the two event
types. One source region is located at depths of ∼1 km beneath the northeast edge of the
Halemaumau pit crater. A second region is located at depths of ∼8 km below the northwest
quadrant of Kilauea caldera. Our study represents the first time that such deep sources have
been identified in VLP data at Kilauea. This discovery opens the possibility of obtaining a
detailed image of the location and geometry of the magma plumbing system beneath this
volcano based on source locations and moment tensor inversions of VLP signals recorded by
a permanent, large-aperture broad-band network.
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1 I N T R O D U C T I O N

A significant factor in our understanding of volcanic behavior is knowledge of the extent and geometry of the underlying magma conduits.
Attempts to locate magma conduits have been made at several volcanoes based on hypocentre locations of volcano-tectonic (VT) earthquakes
induced in the surrounding medium by magma movements (Ryan et al. 1981; Klein et al. 1987; Lahr et al. 1994). Such studies, however,
map stress concentrations distributed over a large volume surrounding magma conduits in a medium whose structural properties are generally
poorly known. Studies of VT earthquakes can only roughly delimit the boundaries of the volcanic plumbing system and do not yield precise
information about the location and geometry of magma conduits. A more useful approach for this purpose is to rely on long-period (LP) and
very-long-period (VLP) signals caused by fluids moving in volcanic conduits. Although alternative models have been proposed (e.g. Julian
1994), the prevailing theory used to explain the origin of these types of signals assumes that LP signals with periods in the range 0.2–2 s
originate in acoustic resonances of fluid-filled conduits triggered by pressure transients (Chouet 1996a), while VLP signals with dominant
periods in the range of a few tens of seconds are assumed to be linked to mass movements and to represent inertial forces resulting from
perturbations in the flow of magma and gases through conduits (Uhira & Takeo 1994; Chouet 1996b; Ohminato et al. 1998; Nishimura et al.
2000). Accordingly, source locations of LP and VLP signals arguably represent the most accurate approach to mapping plumbing systems
beneath volcanoes. The wavelengths of VLP signals are in the range of tens to hundreds of kilometres, which greatly facilitates their analysis.
Moment tensor inversions of VLP waveforms (Uhira & Takeo 1994; Ohminato et al. 1998; Legrand et al. 2000; Nishimura et al. 2000) yield
information about the source mechanisms, thus shedding light on the source geometry and source dynamics of these events.

As a result of an increased use of broad-band seismometers on volcanoes we now understand that VLP signals are common phenomena
which are intimately related to the dynamics of magma and/or hydrothermal fluid transport (Aster et al. 2000). VLP signals have been
documented in volcanic areas all over the world, including Kilauea (Chouet & Dawson 1997; Ohminato et al. 1998), Aso (Kaneshima et al.
1996; Kawakatsu et al. 2000; Legrand et al. 2000), Iwate (Nishimura et al. 2000), Miyakejima (Kumagai et al. 2001), Sakurajima (Uhira &
Takeo 1994), Stromboli (Falsaperla et al. 1994; Neuberg et al. 1994; Wassermann 1997; Chouet et al. 1999), Merapi (Hidayat et al. 2000),
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Figure 1. Map of Kilauea caldera showing the configuration of the broad-band seismic instruments used in the present paper (solid black circles). Station
UWB (open circle) was inoperative during the time of the study. The inset shows the position of the caldera on the island of Hawaii.

Popocatepetl (Arciniega-Ceballos et al. 1999), Long Valley (Hill et al. in preparation 2001) and Erebus (Rowe et al. 1998). Some of these
studies report on source locations of individual VLP signals. In this paper, we demonstrate the feasibility of obtaining a detailed image of the
plumbing system at Kilauea Volcano by direct observation of VLP signals generated in two different segments of the conduit or conduits.

2 I N S T R U M E N T S

The data were recorded by the USGS permanent broad-band seismic network which has been operating at Kilauea Volcano since 1994 (Dawson
et al. 1998). In its present configuration, stable since February 1998, the network has an aperture of 5 km and features 10 three-component
broad-band stations (Fig. 1). All channels are sampled at 100 samples per second. Stations HAT, NPB, OBL, SRM, UWB, and WRM are
equipped with Guralp CMG-40T seismometers with a flat response from 0.02 to 60 s; stations BYL, KKO, and SBL are equipped with Guralp
CMG-3T seismometers with a flat response from 0.02 to 100 s; and station SDH features a Streckheisen STS-2 seismometer with a flat
response from 0.02 to 120 s. In September 1999, however, station UWB was inoperative due to a failure of its digital telemetry unit. Therefore,
the network used in the present analysis consists of 9 stations only.

3 D A T A D E S C R I P T I O N

Our analysis focuses on seismic activity that occurred between September 9 and 26, 1999. During this interval, coincident with Pause 26 in the
ongoing Puu Oo eruption (Heliker et al. 1998), only the Upper East Rift was active with the occurrence of a seismic swarm and high-amplitude
tremor on September 12. The Kilauea summit region was seismically quiet for most of the time. Apart from a few teleseisms and a background
noise dominated by oceanic microseismic components, only a few tens of volcano-related seismic events, emergent in character and with
durations near 60 s, were detected. We selected 16 of the latter events, characterized by high signal-to-noise ratios, for analysis. The times of
occurrence of these events are listed in Table 1. To facilitate the identification of VLP signals and minimize the effects of microseismic noise,
which usually peaks between 2 and 7 s at Kilauea (Dawson et al. 1998), all traces are bandpass filtered between 8 and 60 s.

Fig. 2 illustrates the frequency content of two of the analyzed events. Event 1 (Fig. 2a) shows energy concentrated in the VLP band, and
Event 16 (Fig. 2b), which is more energetic, contains energy distributed over a wider frequency band extending over the entire bandwidth
of the broad-band sensor and probably beyond this bandwidth as well. Several observations of high-frequency components riding on VLP
signals have been reported previously (Dawson et al. 1998; Chouet et al. 1999; Arciniega-Ceballos et al. 1999; Hidayat et al. 2000; Hill et al.
in preparation 2001). The short-wavelength components may be generated by the same source that produces the VLP signals or indirectly by
excitation of secondary cracks located away from the primary source (Hill et al. in preparation 2001). The usually emergent character of the
high-frequency waves makes the task of locating their source rather difficult. The combined use of a broad-band network and dense seismic
arrays may be required to fully document the characteristics of such signals.

Apart from their characteristic frequency content, other differences between Events 1 and 16 are evident. Fig. 3 shows particle motion
and amplitude decay patterns recorded by the network for these two events. For both events, particle motion is highly rectilinear at all stations.
Similar observations reported at other volcanoes (Ohminato et al. 1998; Dawson et al. 1998; Chouet et al. 1999; Arciniega-Ceballos et al.
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Table 1. Times and source locations obtained for the events selected for this study.

Type Event Time East∗ (km) North∗ (km) Depth∗ (km) Semblance†

1 99/09/14 21:51:42 −0.28[0.16]0.48 −0.16[0.24]0.60 0.64[1.00]1.52 0.94
2 99/09/17 11:56:55 −0.12[0.28]0.68 −0.08[0.28]0.64 0.56[1.00]1.40 0.71
3 99/09/19 00:30:43 −0.36[−0.08]0.28 −0.20[0.16]0.52 0.52[0.92]1.36 0.81

I 4 99/09/25 05:31:45 −0.44[−0.08]0.28 −0.24[0.20]0.56 0.52[0.92]1.40 0.81
5 99/09/25 12:56:18 −0.48[−0.12]0.24 0.08[0.48]0.80 0.52[0.88]1.40 0.64
6 99/09/26 07:39:58 −0.28[0.08]0.44 0.12[0.48]0.80 0.60[1.00]1.52 0.83
7 99/09/26 07:48:06 −0.08[0.24]0.64 0.00[0.40]0.72 0.56[0.96]1.48 0.74

8 99/09/10 20:20:42 −0.8[0.0]0.8 0.6[1.2]2.2 5.4[7.4]∞ 0.95
9 99/09/12 06:56:54 −0.8[0.0]0.8 0.6[1.4]2.4 5.4[7.8]∞ 0.97

10 99/09/13 13:08:02 −0.6[0.2]1.0 0.8[1.4]2.6 5.4[7.6]∞ 0.94
11 99/09/15 09:20:24 −0.6[0.2]1.0 1.0[1.6]2.8 5.6[8.0]∞ 0.96

II 12 99/09/15 21:53:35 −1.0[−0.2]0.8 0.8[1.6]2.6 5.8[9.0]∞ 0.97
13 99/09/17 08:33:23 −1.0[0.0]0.8 0.8[1.4]2.6 5.6[7.8]∞ 0.96
14 99/09/17 10:31:08 −0.2[0.4]1.0 1.0[1.6]2.4 4.4[6.2]8.8 0.89
15 99/09/19 15:08:11 −0.8[0.2]1.0 1.0[1.8]3.0 5.8[8.0]∞ 0.95
16 99/09/21 10:28:25 −1.2[−0.2]0.6 1.0[1.8]3.0 5.8[8.4]∞ 0.96

∗Expressed as: lower error limit [central value] upper error limit.
†Maximum of the average semblance distribution for the event.

1999; Kawakatsu et al. 2000) suggest that the long wavelengths of these signals mainly reflect the near-field components of the source
wavefield (Legrand et al. 2000). Particle motion for Event 1 shows distinct incidence angles and generally points to a shallow source below
the center of the network, while particle motion for Event 16 is almost vertical, consistent with a deeper source.

Differences in signal amplitudes across the network are also obvious in Fig. 3. For Event 1, we observe amplitude variations from station
to station ranging up to a factor of 10. The most energetic signal is recorded at station NPB (see Fig. 1), pointing to a shallow source located
approximately beneath the center of the network. For Event 16, however, all stations display roughly the same amplitude, again consistent
with a much deeper source.

The characteristics of the other 14 events are similar to either one or the other of the two events described above (Fig. 4). We classify
events similar to Event 1 as Type I events (events 1 to 7) and events similar to Event 16 as Type II events (events 8 to 16) (see Table 1).

4 S O U R C E L O C A T I O N M E T H O D

The location method is specifically designed for the location of isotropic sources with a network of three-component seismometers (Kawakatsu
et al. 2000). The method is based on estimations of semblance, a measure of the similarities in multichannel data as first discussed by Neidel
& Tarner (1971), weighted according to the rectilinearity of the particle motions. Denoting Ui as the ground motion recorded at receiver i ,
the definition of semblance according to Kawakatsu et al. (2000), is
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where the superscript p represents the source–receiver direction, and the superscripts v and h represent two mutually perpendicular directions
normal to the p direction, τi is the start time of the analysis window at receiver i , N is the number of receivers in the network, M is the number
of samples in the window, and �t is the sampling interval. As Kawakatsu et al. (2000) perform a normalization of each seismogram by the
3-D RMS amplitude of the signal at each receiver before applying eq. (1), we can simplify their definition and use a modified semblance given
by
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where σi is the three-component RMS of the ground motion at receiver i , defined as

σi =

√√√√ 1

M

M∑
j=1

|Ui (τi + j�t)|2. (3)

The application of the method consists in finding the set of times τi that yields the maximum semblance. In the case of a seismic source,
arrival times can be expressed as

τi (r) = t0 + τ ′
i (r), (4)

C© 2002 RAS, GJI, 148, 303–312



December 17, 2001 13:46 Geophysical Journal International GJI1629

306 J. Almendros et al.

Figure 2. (a) From top to bottom, detail of filtered (black) overlaid on raw (grey) vertical ground velocity recorded at station NPB for Event 1 (see Table 1) for
the shaded interval shown below; raw vertical velocity and corresponding spectrogram obtained from a 40 s long window sliding in increments of 2 s along the
trace. The frequency axis is partitioned into two linear segments—ranging from 0 to 0.4 Hz and from 0.4 to 4 Hz, respectively—to emphasize the low-frequency
content of the signal but still show frequencies up to 4 Hz. In this case, there is little energy visible in the higher frequency band. (b) The same for Event 16
(see Table 1). In this case, the frequency content extends well into the higher frequency band.

where t0 represents the event origin time, and τ ′
i is the traveltime to the i th receiver from a source located at r. The calculated travel times

depend on the source position, the receiver position and our selection of the velocity model used to represent the medium. Because of the
very long wavelengths involved, a homogeneous medium is adequate for our purpose. In such a model, the maximum semblance is reached
when the travel times τ ′

i satisfy the relation

τ ′
i (r) = |r − ri |

v
, (5)

where v is the wave propagation velocity in the medium.
We define a 3-D grid of assumed source positions, broad enough to include the actual source. Traveltimes τ ′

i from every grid to every
receiver are calculated using eq. (5). The calculation of the arrival times τi using eq. (4), however, requires a knowledge of the event origin
time t0. Since t0 is unknown, we select a certain time tw as the beginning of an M-sample-long window containing the signal of interest. For
each assumed source position, the origin time of the event contained in the window is taken as

t0(r) = tw − min[τ ′
i (r)]. (6)

The application of eq. (2) yields a 3-D distribution of semblance S(r) whose maximum identifies the most likely position of the source of the
waves contained in the analysis window.

This procedure is repeated by sliding the analysis window along the signal. In this way we compute a series of spatial distributions of
semblance corresponding to different time windows spanning the interval from the pre-event noise to the coda. To obtain a unique solution
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Figure 3. Particle motions (in blue) in a 40-s window centered on the VLP signal for (a) Event 1 and (b) Event 16. The particle motions are plotted at the
corresponding station locations. Horizontal projections of the particle motions (in black) are shown at the base of the cube. The colour maps at the base of the
cube represent the maximum vertical amplitude of ground velocity plotted as a function of spatial location on the caldera and are obtained by applying a 2-D
linear gridding algorithm to the maximum VLP amplitudes recorded at each station of the network.

and enhance the stability of this solution, we define an average semblance distribution for the event. This distribution is obtained by selecting
those semblance distributions whose peak semblance is higher than 90 per cent of the absolute maximum obtained in all windows, and
averaging the corresponding values of semblance separately at each grid node. A source location and error region can be defined respectively
as the position where the average semblance reaches its maximum and the subset of grid nodes where the average semblance is higher than a
certain value. For example, Ohminato et al. (1998) and Chouet et al. (1999) used 97 per cent of the maximum semblance to define the error
limits in their source locations. This definition is too conservative to be applied as a general rule. Detailed studies of the performance of the
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Figure 4. Normalized vertical component velocity seismograms recorded at station NPB for the 16 events selected. The traces are filtered between 8 and 60 s
to extract the VLP signals. Type I and Type II events are plotted separately. The numbers at the left refer to the event number in Table 1.

semblance method (Almendros et al., in preparation) suggest that the use of a range of values according to the quality of the signals may be
more appropriate to define location errors.

5 D A T A A N A L Y S I S A N D R E S U L T S

For each event, we extract 300 s of data centred on the VLP signal and bandpass filter the traces in a 10–20 s band centered on the spectral
maximum. Semblance calculations are then performed in a 25 s long window sliding in increments of 5 s along the traces. We use a constant
P-wave velocity v = 4 km s−1, which represents an average velocity in the top layers of the tomographic model obtained by Dawson et al.
(1999) for Kilauea Volcano. Our grid search domain consists of 51 × 51 × 51 nodes with cell size of 200 × 200 × 200 m and extends from −5
to 5 km in the east–west direction, from −5 to 5 km in the north–south direction, and from 0 to 10 km in depth. The origin of the coordinate
system is fixed at 19◦24.5′N, 155◦17.0◦W, at an elevation of 1088 m above sea level (the average elevation of the caldera floor). The source
location is defined as the grid node where the average semblance distribution reaches its maximum. Error limits are defined by the region
within which the average semblance is above a certain level. The selection of this level is based on the quality of the signals. Type I events have
average signal-to-noise ratios in the range 2–3, and we select the top 3 per cent of the average semblance distributions to define their error
limits. For Type II events, with signal-to-noise ratios around 6–10, the error region is defined by the top 1 per cent of the average semblance
distributions. When the location errors are much larger than the grid cell size, no better constraint of the source location can be obtained by
using a finer grid. For errors on the order of the grid size, we refine the location by repeating the semblance calculations over a smaller domain
with the same number of nodes and origin but with a smaller cell size of 40 × 40 × 40 m.

Fig. 5 shows examples of results for Event 1 (Type I) and Event 16 (Type II). High values of peak semblance are generally reached in
time windows centered around the pulses and low peak semblance values are obtained for windows containing mainly noise. Locations are
stable for a few tens of seconds in the high-semblance windows. The source locations of the 16 VLP signals determined by this method are
listed in Table 1 and are illustrated in Fig. 6.

6 D I S C U S S I O N

Source locations for events of Types I and II are spatially distinct. All the sources of Type I events are located at shallow depths (∼1 km)
beneath the northeast edge of the Halemaumau pit crater, in close proximity to the sources previously imaged by Chouet & Dawson (1997)
and Ohminato et al. (1998). The sources of Type II events are located near 8 km depth below the northwest quadrant of Kilauea caldera, except
for one event located at ∼6 km depth.

Several authors have addressed the issue of contamination of VLP signals by tilt (Wielandt & Forbriger 1999; Hidayat et al. 2000).
Tilt effects may affect horizontal components measured in the near field, where they can introduce distortions in the apparent directions of
observed particle motions, thereby producing a bias in the estimated source depths. To assess whether spurious tilt effects may be present
in our signals, we underscore the following facts. First, recall that the directions of particle motion are not the only evidence that points to
distinct source depths for Type I and Type II events. As shown in Fig. 3, the spatial attenuation patterns of signal amplitudes are different
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Figure 5. Source locations obtained by the average semblance method for (a) Event 1 and (b) Event 16. The top left panel in each figure shows the peak
semblance obtained for different windows along the signal. The dashed line represents 90 per cent of the absolute maximum of semblance, identified by the
label max . All semblance distributions with peak semblances above this level are stacked to obtain the average semblance distribution used to define the
source location. The bottom left panel shows the vertical component velocity seismogram at station NPB. The two panels at the right show a map view and an
east–west vertical cross-section of the medium across the source position represented by a cross. The shaded area shows the size of the error region (see text
for explanations).

for each type of event, leaving little doubt that the source depths for Type II events are deeper than those for Type I events. Second, Type II
events at all stations, and Type I events at stations closest to the source region, are dominated by vertical motions which are not affected by
tilt. If there was a tilt effect at these stations, then the spurious tilt signal would have to compensate exactly translational horizontal motions
at all stations, a highly unlikely condition in our view. As a final test, we used synthetic calculations to determine whether an important bias
might have been introduced in our results by spurious horizontal displacements due to tilting of the sensors. Free surface displacements and
rotations generated by isotropic sources embedded at different depths under Halemaumau were calculated separately at each receiver location
in our network. In all our models, we used a fixed source–time function in the form of a Ricker wavelet with period of 15 s, comparable to
the dominant period observed in our VLP signals (see Fig. 2), and selected moment tensor magnitudes adequate to reproduce the average
amplitude observed at station NPB for Type I and Type II signals. Our numerical results demonstrate that apparent displacements induced by
rotation are only measurable on horizontal components for surficial sources, and that such displacements produce a decrease in rectilinearity
rather than a change in the orientation of particle motions. Based on these considerations, we conclude that our data are not biased by tilt
effects.

At present, it is not possible to elucidate the actual shape of the conduit and to assess whether or not the sources of Type I and Type II
events imaged in Fig. 6 are part of the same conduit. If one assumes that both source regions are spatially connected by a linear conduit,
then this conduit would dip ∼80◦ to the north from the northeast side of Halemaumau toward Uwekahuna Bluff. The similarities in VLP
waveforms and characteristics observed for both Type I and Type II events suggest the repetitive action of non-destructive sources. In spite of
their deeper origins, Type II events display larger amplitudes than those observed for Type I events. For example, at station NPB the average
radial amplitude of Type II events is four times larger than the average radial amplitude of Type I events. Taking into account the strong
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Figure 6. Source locations of the 16 events analyzed in this paper (large open circles). The topography of Kilauea caldera is shown at the top of the domain to
help identify the locations of the VLP sources within the volcanic edifice (H = Halemaumau, UB = Uwekahuna Bluff ). Small open circles mark the projections
of the source locations on the sides and bottom of the volume shown. Contours on the side planes are projections of the error regions for the source locations.
Dashed lines identify the locations of Events 1 and 16 depicted in Figs 2, 3, and 5. Topographic contours are shown on the bottom projection for a better view
of the source locations in relation to caldera features. The grey surfaces represent the outline of the error regions for all events.

attenuation of the near-field components with distance (∼r−3), the amplitude of elastic radiation in the deeper sources is over 2000 times
larger than that in the shallow sources, which may reflect the scaling of pressure with depth and/or larger dimensions for the deeper sources.

Several studies address the location and analysis of VLP signals in volcanoes. Location techniques vary, ranging from simple intersections
of particle motion (e.g. Rowe et al. 1998), to semblance locations (Matsubayashi 1995; Chouet et al. 1999; Kawakatsu et al. 2000), to refined
positioning based on a minimization of residual errors between observed waveforms and synthetics in moment tensor inversions (Ohminato
et al. 1998; Legrand et al. 2000; Nishimura et al. 2000). For example, Kawakatsu et al. (2000) located VLP sources between 1.0 and 1.5 km
beneath Aso Volcano, and Hidayat et al. (2000) documented VLP signals located only 100 m beneath the summit dome of Merapi Volcano.
Chouet et al. (1999) studied VLP pulses associated with Strombolian explosions at Stromboli Volcano and inferred a source depth of 300 m
beneath the active vents. Nishimura et al. (2000) located VLP signals at about 2 km beneath Iwate Volcano; Rowe et al. (1998) reported on
the occurrence of VLP signals at depths of several hundred metres beneath Erebus Volcano; and Arciniega-Ceballos et al. (1999) postulated a
shallow VLP source located a few kilometres below Popocatepetl Volcano. Based on the often-observed temporal coincidence of VLP signals
and eruptive behavior, most studies propose that an interaction between the flow of magma and slugs of magmatic gases is the most likely
mechanism to explain the generation of seismic energy in the VLP band (Uhira & Takeo 1994; Ohminato et al. 1998; Rowe et al. 1998;
Chouet et al. 1999; Hidayat et al. 2000). Source mechanisms involving hot water and/or mud have also been found to be viable to explain
phreatic eruptions at Aso Volcano (Kaneshima et al. 1996; Kawakatsu et al. 2000).

At Kilauea, previous analyses of VLP signals by Chouet & Dawson (1997) and Ohminato et al. (1998) detected the presence of shallow
sources located at depths near 1 km beneath the northeast edge of Halemaumau. The source mechanisms determined by these authors identify
cracks with different orientations, leading to an interpretation of this source region as a plexus of cracks. Our locations for Type I events
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coincide with the source positions obtained by Chouet & Dawson (1997) and Ohminato et al. (1998), however the VLP signatures are different,
which is again suggestive of different source mechanisms. The repeated occurrence of shallow VLP events in the same region during the
period from 1996 to 1999 thus appears to be consistent with recurrent excitations of a temporally stable plexus of cracks by unsteady fluid
flow.

Two types of fluids may be considered at the source of the shallow VLP signals recorded at Kilauea, namely magmatic or hydrothermal
fluids. The implications of the presence of a magmatic versus hydrothermal environment at depths of ∼1 km beneath Kilauea caldera are
different. If the fluid is magma, then the present assumption concerning the structure of the shallow plumbing system of Kilauea should be
revised to account for the observation that magma rises to very shallow depths before branching into the East Rift zone to feed the ongoing
eruption at Puu Oo, which began in January 1983. The working assumption usually applied at Kilauea is that seismic energy generated from
sources shallower than 2 or 3 km must be reflecting hydrothermal activity, mainly because these depths are thought to represent the upper limit
of the magma reservoir as inferred from voids in the distribution of hypocenters of VT earthquakes at depths between 2 and 7 km below the
caldera floor (Ryan et al. 1981; Klein et al. 1987). Several recent observations, however, are at odds with this view. For example, constraints on
the spatial extent of the hydrothermal system beneath the Kilauea summit were obtained from array analyses of shallow long-period seismicity
in Kilauea caldera (Almendros et al. 2001). These analyses reveal the presence of an active hydrothermal system extending to a depth of
500 m beneath the northeast edge of Halemaumau, and point to a lack of hydrothermal activity below that level. Therefore, the generation of
VLP signals by hydrothermal fluids at depths larger than 500 m is unlikely.

A more plausible explanation for the generation of VLP signals at ∼1 km depth involves a magmatic origin. Evidence for the presence
of magma at shallow depths is provided by recent tomographic studies (Okubo et al. 1997; Rowan & Clayton 1993; Dawson et al. 1999).
These studies reveal the presence of low-velocity and VP/VS anomalies, which are generally interpreted as indicative of the presence of partial
melt, at depths shallower than a few kilometres. Based on the model of Takei (2001), we infer that the volume fraction of melt associated
with the maximum anomalies may range from 4 to 14 per cent, and may be distributed in small pockets of magma embedded in a hot rock
rather than in a single magma chamber. The low-velocity anomalies are not spatially correlated with aseismic zones, in contradiction to
the aseismic assumption used to define the position and spatial extent of the summit magma reservoir. The shallow structure imaged using
traveltime tomography thus appears to be inconsistent with the current model of the plumbing system. Robust evidence for the presence of
magma in a shallow conduit beneath Halemaumau also comes from a study by Ohminato et al. (1998), who analyzed VLP signals associated
with a magmatic surge at Puu Oo in 1996. On February 1, 1996, a 22 µrad summit inflation in response to the injection of magma under
Kilauea caldera was accompanied by sawtooth VLP displacement signals characterized by a 2–3 min rise phase followed by a 5–10 s drop
phase (Dawson et al. 1998; Ohminato et al. 1998). Ohminato et al. (1998) located the source of these signals at a depth of 1 km beneath
the northeast edge of Halemaumau. They performed waveform inversions of the VLP signals and imaged a source mechanism consisting
of a sill-like conduit, which slowly inflates as it fills with magma and gas, and suddenly deflates with the release of the two-phase fluid
through the crack outlet. Ohminato et al. (1998) also found that the time-integrated volume change at the VLP source was consistent with
the volume of lava produced at the eruptive site down rift. At the time, these results were interpreted as an isolated episode not reflecting the
normal state of the volcano. However, the recurrent detection of VLP signals in the same source region since 1996, documented in Chouet
& Dawson (1997) and in the present paper, is strongly suggestive of a sustained injection of magma through the same permanent plexus of
cracks.

Studies of VLP signals done so far share a common result in that they all point to shallow sources (Uhira & Takeo 1994; Ohminato et al.
1998; Rowe et al. 1998; Chouet et al. 1999; Kawakatsu et al. 2000; Hidayat et al. 2000). The present paper, however, documents the occurrence
of a different type of VLP events with source depths ∼ 8 km. Although the source mechanisms of these deeper events are unknown, we surmise
that these signals originate in transients in the flow of magma in a manner similar to the transients occurring in the shallow sources identified
earlier (Chouet & Dawson 1997; Ohminato et al. 1998). This represents the first time that such deep VLP signals have been identified under
Kilauea or elsewhere, and opens up the possibility of imaging magma conduits beneath volcanoes deeper than imagined before by locating
the different segments of conduit that generate VLP signals. Two conditions are necessary for a successful completion of such a task: first,
long-term observations to enable the detection of a sufficient number of VLP signals from a variety of sources along the conduit; and second,
large-aperture seismic networks to enable precise locations for the deeper portions of the plumbing system.
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