SQUAMATA — SNAKES

APOSTOLEPIS CEARENSIS (Gomes’ Burrowing snake). DIET. The diet of the small colubrid snake *Apostolepis cearenisis* is poorly reported (Freitas 2003. Serpentes Brasileiras. Malha de Sapo Publicações e Consultorias, Lauro de Freitas, Bahia, Brazil, 160 pp.). On 24 August 2008, at 1400 h, we collected an adult *A. cearenisis* (SVL = 255 mm; 4 g after prey removal) in a hen house, killed by a young chicken, near Petecote, Ceará, Brazil (3.82130°S, 39.33824°W, datum: WGS 84). Upon dissection, we found a *Tanilla melanocephala* that had been eaten headfirst by the *A. cearenisis*. The head of the prey was partially digested (SVL ca. 215 mm; 3 g). The prey/predator mass ratio was high (0.75). The mass and length of the prey may have limited the movements of the predator, allowing the young chicken to kill it. This is the first report of *T. melanocephala* in the diet of *A. cearenisis*. The snakes were deposited in the herpetological collection of Universidade Federal do Ceará (CHUF 3019 and CHUF 3058).

Submitted by PAULO CESAR MATTOS DOURADO DE MESQUITA (e-mail: paulocmsdm@gmail.com), DANIEL CUNHA PASSOS (e-mail: biologodanielpassos@gmail.com), DIVA MARIA BORGES-NOJOSA (e-mail: dbmnojosa@yahoo.com.br), and CASTIELE HOLANDA BEZERRA (e-mail: castielelepoty@hotmail.com), Núcleo Regional de Ofiologia, Universidade Federal do Ceará (NURO-UFF), Rua Campus do Pici, nº 0, Pici, Fortaleza, CE – Brazil.

BITIS SCHNEIDERI (Namaqua Dwarf Adder). DIET. On 25 July 2008, a female *Bitis schneideri* (SVL = 214 mm; total length = 235 mm; 16.4 g) was found dead on the Kleinzee-Koingnaas road, Northern Cape Province, South Africa (30.1813°S, 17.2586°E, datum: WGS84). The damage to the snake exposed a recently ingested male *Bradyophidion occidentale* (Namaqua Dwarf Chameleon; SVL = 80 mm; total length = 138 mm; 4.9 g). The chameleon had been ingested headfirst. Haacke (1975. Cimbebasia 4:115–128) recorded anurans (specifically of the genus *Breviceps*), geckos, skinks, and lacertid lizards in the diet of the species. This record represents the first known case of *B. schneideri* feeding on a chameleon. These two species inhabit sparsely vegetated Succulent Karoo Sandveld, and habitat structure forces chameleons to frequently cross the ground. Given that *B. schneideri* show sit-and-wait feeding habits, they are likely to be fairly opportunistic in their prey choice. Thus, though novel, this record is not surprising.

Submitted by BRUCE R. WESSELS, P.O. Box 51, Koingnaas, Northern Cape Province, South Africa, 8249; and BRYAN MARITZ, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa; Private Bag 3, Wits, 2050 (e-mail: bryanmaritz@gmail.com).

COLUBER CONSTRICCTOR (North American Racer). DEFENSIVE BEHAVIOR. Many prey species have predator-specific responses that may go unobserved when a human is perceived as the threat. For example, horned lizards are more likely to squirt blood from their eyes when approached by a canid than when approached by a human (Middendorf and Sherbrooke 1992. Copeia 1992:519–527). On 12 October 2007, one of us (PWG) found a *Coluber constrictor* (total length ca. 1 m) in a wooded residential area in Aiken, South Carolina, USA. The snake was lying limp on the ground with two domestic House Cats (*Felis catus*), each ca. 50 cm away, looking at the snake, which appeared to be dead. We picked the snake up, and it hung limply for 10 seconds until we observed it flicking its tongue, indicating that it was alive. The snake was released 2 m away from the cats and immediately fled approximately three additional meters into a pile of logs. The following day, another observer (Carolyn C. Gibbons) saw a *C. constrictor* of the same size (possibly the same individual) lying in pine straw ca. 30 m from the release site of the previous day. The snake was limp and its head was beneath its body. One of the same cats was looking at it. The cat was picked up and removed, and the snake was nudged. It immediately became active and crawled rapidly into a nearby brush pile.

Typical behavior of racers when pursued by humans is to continue moving to escape, often climbing into vines, bushes, or trees and, if cornered, the species often assuming a defensive pose with mouth open and striking repeatedly (Ernst and Ernst 2003. *Snakes of the United States and Canada*. Smithsonian, Washington DC; Gibbons and Dorcas 2005. *Snakes of the Southeast*. Univ. of Georgia Press, Athens). A single observation of death feigning was reported by Lynch (1978. Blue Jay 36:92–93) for *C. c. flaviventris* in Saskatchewan.

Our interpretation of the observed phenomenon is that a snake defensive behavior was revealed that may be a prevailing response to felids that are more agile and likely to capture the snake than are humans. Such predator-specific responses might not be invoked when a human is perceived by the snake to be the primary threat. Thus, death-feigning might be much more prevalent among some snake species, even common species like *C. constrictor*, than is typically observed by humans.

We thank Michael E. Dorcas for comments on the original manuscript.

Submitted by PARKER W. GIBBONS and J. WHITFIELD GIBBONS (e-mail: gibbons@srel.edu), Savannah River Ecology Laboratory, Drawer E, Aiken, South Carolina 29802, USA.

CROTALUS POLYSTICTUS (Mexican Lance-headed Rattle-snake). MAXIMUM ELEVATION. We observed 25 *Crotalus polystictus* (11 males:14 females) near Acambay, Estado de México, México (19.862°N, 99.802°W, NAD83) between 25 June and 21 August 2007. All snakes were encountered at elevations of 2715–2739 m. Previous to these encounters, *C. polystictus* was known to inhabit a vertical distribution of 1450–2600 m (Campbell and Lamar 2004. Venomous Reptiles of the Western Hemisphere. Cornell University Press, Ithaca, New York. 870 pp.). Habitat was similar to other areas where we have observed *C. polystictus* in the Estado de México, consisting of relatively level, seasonally mesic grassland.

Submitted by KIRK SETSER (e-mail: kwsetser@gmail.com) and ESTRELLA MOCINO-DELOYA, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Granada, C.P.E-18071, Granada, España; DAVID LAZCANO, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Labo-
CROTALUS TRISERIATUS (Mexican Dusky Rattlesnake). **CANNIBALISM.** Cannibalism is widespread among snakes, and is an important element of the ecology of many species (Polis and Myers 1985. J. Herpetol. 19:99–107). Cannibalism has been observed in several species of rattlesnakes (Mitchell 1986. Cannibalism in Reptiles: A Worldwide Review. SSAR Herpetol. Circ. 15. 37 pp.; Campbell and Lamar 2004. The Venomous Reptiles of the Western Hemisphere. Cornell University Press, Ithaca, New York. 870 pp.). In almost all cases involving wild snakes, prey items were young animals (neonates or juveniles) (Mitchell, York. 870 pp.). In almost all cases involving wild snakes, prey items were young animals (neonates or juveniles) (Mitchell, York. 870 pp.). In almost all cases involving wild snakes, prey items were young animals (neonates or juveniles) (Mitchell, York. 870 pp.).

On 8 October 2007, one of us (KS) encountered an adult female *Crotalus triseriatus* (SVL 521 mm, tail 40 mm, mass 174 g) near San José del Rincón, Estado de México (19.668°N, 100.207°W, NAD83) within mixed pine-oak woodland and bunchgrass at an elevation of 3091 m. On 1 November 2007, at which time it weighed 182 g, this snake was transported to the Houston Zoo, where she was subsequently maintained. On the night of 26 December 2007, this snake gave birth to 12 live, healthy neonates as well as a single unfertilized ovum. Neonates were weighed on 28 December (3.9, 4.3, 4.4, 4.4, 4.5, 4.6, 4.6, 4.8, 4.8, and 4.9 g); the unfertilized ovum was not weighed. Mean neonate mass was 4.5 g, total clutch mass (exclusive of the ovum) was 54.2 g. The female weighed 155 g immediately following parturition. Relative clutch mass (calculated using the female’s weight on 1 November) was 0.30. The female fed readily throughout her pregnancy, including taking a juvenile *Musculus* on 26 December 2007.

Few data on reproductive phenology are available for *C. triseriatus*. Campbell and Lamar (2004. The Venomous Reptiles of the Western Hemisphere. Cornell University Press, Ithaca, New York 870 pp.) summarize data from three wild litters, all born in July, and an additional litter born to a captive female on 30 October. Ramirez-Bautista et al. (1995. Herpetol. Rev. 26:12–13) present data on embryos contained by three gestating females collected between July and September. Available data from three central Mexican highland congeners (*C. aquilus*, *C. polystictus*, and *C. transversus*) suggest that these species typically give birth during summer months (Campbell and Lamar, op. cit.; pers. obs.). The paucity of data makes it difficult to evaluate the phenology of the event we describe; however, we suggest that it is probable that exposure to a captive environment induced this female to accelerate development of her litter. It seems unlikely that wild female *C. triseriatus* give birth during winter months or produce multiple litters per year. We also note that a recent report of a *C. aquilus* litter born in March to a captive gravid female collected on Cerro del Tenayo, Estado de México might represent a similar phenomenon (Correa-Sanchez and Rivera-Velázquez 2007. Herpetol. Rev. 38:205).

Submitted by ANDREW GODAMBE, Department of Herpetology, Houston Zoo Inc., 1513 N MacGregor Dr., Houston, Texas 77030-1603, USA; ESTRELLA MOCIÓN-DELOYA, KIRK SETSER, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Granada, C.P. E-18071, Granada, España; DAVID LAZCANO, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Herpetología, Apartado Postal - 513, San Nicolás de los Garza, Nuevo León, C. P. 66450, México; and ALAN KARDON, San Antonio Zoological Gardens, 3903 N. St. Marys Street, San Antonio, Texas 78212, USA.

DIADOPHIS PUNCTATUS (Ringneck Snake). **OPHIOPHAGY.** *Diadophis punctatus* is known to consume a variety of invertebrates and small vertebrates, including snakes. However, the diet of the Mexican Ringneck Snake, *D. punctatus dugesi* in central México is not well known. We are aware of just a single published record (Sánchez-Herrera 1980. Bull. Maryland Herpetol. Soc. 16:9–18), describing a captive *D. p. dugesi* from the Distrito Federal that ate a *Conopsis lineata*.

Garter snakes (*Thamnophis* species) have commonly been recorded in the diet of *D. punctatus* in other areas of North America. Prey species have included *T. couchii, T. hammondii, T. ordinoides,*...

Here we report two additional observations of *Thamnophis* predation by *D. punctatus*. At 1000 h on 25 June 2007, one of us (AMH) collected an adult female *D. p. dugesi* (522 mm SVL, 87 mm tail length, 52.0 g including food bolus). The snake was found basking in a dry concrete canal near San Pedro de los Metates, Municipio de Acambay, Estado de México (19.905°N, 99.878°W, NAD83; ca. 2500 m elev.). We palpated an obvious food bolus to the snake’s mouth revealing that the snake had recently consumed a small male *T. scalaris* (estimated at ca. 250 mm total length). The prey item was repalped to the snake’s stomach; the *Diadophis* was maintained in captivity for ca. 1 month. Following several defecations, the snake weighed 39.1 g when released on 23 July 2007.

At 1334 h on 31 July 2008, one of us (KS) collected an adult male *D. p. dugesi* (340 mm SVL, 82 mm tail length, 18.3 g). The snake was found loosely coiled on bare soil between clumps of bunchgrass (zacatón) near La Estancia, Municipio de Acambay, Estado de México (19.862°N, 99.803°W; ca. 2725 m elev.). A few hours after capture, this snake defecated remains of a snake skin identifiable as *Thamnophis*. We were unable to identify the remains to species; however, *T. equestris*, *T. melanogaster*, *T. scalaris*, and *T. scaliger* have been observed at this site.

Submitted by **ANDRÉS ALBERTO MÉNDOZA-HERNÁNDEZ**, Museo de Zoología de la Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-399, C.P. 04510, México D.F. (e-mail: andreasmeher@gmail.com); **ESTRELLA MOCIÑO-DELOYA** and **KIRK SETSER**, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Granada, C.P. E-18071, Granada, España.

PYTHON MOLURUS BIVITTATUS (Burmese Python). CLUTCH SIZE. Through instances of pet release or escape, a reproducing population of *Python molurus bivittatus*, native to Southeast Asia, has recently become established in and around Everglades National Park, Florida, USA (Snow et al. 2007. In Henderson and Powell [eds.], Biology of the Boas and Pythons, pp. 416–438. Eagle Mountain Publishing, Utah). On 2 March 2007, an adult female *P. m. bivittatus* (EVER 055842; SVL = 4240 mm; total length = 4710 mm; 56.69 kg) was captured near Ficus Garza, Nuevo León, C. P. 66450, México; and **RAY W. SNOW**, Florida Natural Resources Center, Everglades National Park, 40001 State Road 9336, Homestead, Florida 33034, USA (e-mail: skip_snow@nps.gov); and **FRANK J. MAZZOTTI**, University of Florida, Fort Lauderdale Research and Education Center, 3205 College Avenue, Fort Lauderdale, Florida 33314-7719, USA (e-mail: fjma@ufl.edu).

SALVADORA BAIRDI (Baird’s Patch-nosed Snake). DIET. To our knowledge, no prey items have been recorded from *Salvadora bairdi*. Field guides list prey items of *S. bairdi* as amphibians, lizards, and small mammals (Diaz and Díaz 2005. Anfibios y Reptiles de Aguascalientes. CONABIO, México, Distrito Federal, México 318 pp.), and principally diurnal lizards (Uribe-Peña et al. 1999. Anfibios y Reptiles de las Serranías del Distrito Federal, México. Instituto de Biología, México, Distrito Federal, México 119 pp.). However, these accounts do not appear to be based on published records or museum specimens and lack detail. Here we report predation by *S. bairdi* on an adult field mouse (Reithrodontomys or Peromyscus sp.). On 28 May 2003, we observed a young *S. bairdi* attempting to eat an adult field mouse along a dry irrigation canal. Cornfields dominated the surrounding agricultural matrix of a broad volcanic valley at 2520 m elev. (Municipio de Atlatomulco, Estado de México, México). When encountered, the snake was holding the dead mouse in its jaws, as well as with a loose loop of its body. The rear third of the snake was hidden from sight within a rodent burrow. We attempted to hand capture the snake, however it escaped down the rodent burrow. We estimate the snake’s total length to have been ca. 80 cm.

Submitted by **KIRK SETSER** (e-mail: kwsetser@gmail.com), **ESTRELLA MOCIÑO-DELOYA**, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Granada, C.P. E-18071, Granada, España; **DAVID LACZANO**, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Herpetología, Apartado Postal - 513, San Nicolás de los Garza, Nuevo León, C. P. 66450, México; and **ALAN KARDON**, San Antonio Zoological Gardens, 3903 N. St. Marys Street, San Antonio, Texas 78212, USA.

THAMNOPHIS SCALARIS (Mexican Alpine Blotched Garter Snake). OPHIOPHAGY. *Thamnophis scalaris* is known to eat earthworms, amphibians, lizards, and rodents, and there is a single report of predation upon a neonate *Crotalus triseratus* (Manjarrez et al. 2007. Southwest. Nat. 52:258–262).

Here we report an additional observation of ophiophagy by *T. scalaris*. One of us (MF) collected a large adult male *T. scalaris* (483 mm SVL, 102 mm tail length, tail tip missing, 67.0 g after regurgitation) on 14 July 2008 near Acambay, Estado de México, México (19.863°N, 99.803°W, NAD83; 2720 m elev.). Within hours of capture, this snake voluntarily regurgitated an adult male *Thamnophis scalaris* (363 mm SVL, 93 mm tail length, 32.3 g; Fig. 1) which had been ingested head first. We estimate that approximately 10–15% of the consumed snake’s body mass had been lost to digestion. We released the *T. scalaris* at the capture site; the *T. scaliger* was deposited in the Colección de Anfibios y Reptiles.
THAMNOPHIS SCALIGER (Mesa Central Blotched Garter Snake). MAXIMUM ELEVATION. We obtained a partially digested adult male Thamnophis scaliger (363 mm SVL, 93 mm tail length, 32.3 g) that was regurgitated by a Thamnophis scalaris collected on 14 July 2008 near Acambay, Estado de México, México (19.863°N, 99.800°W, NAD83) (Mociño-Delaya et al. 2009). The T. scaliger was deposited in the Colección de Anfibios y Reptiles del Museo de Zoología de la Facultad de Ciencias, Universidad Nacional Autónoma de México (MZFC 22105). We observed a second male T. scaliger (316 mm SVL, 77 mm tail length, 22.0 g) at the same site on 24 July 2008. Both snakes were encountered in a broad, flat, montane valley lying at ca. 2720 m elev. Previous to these encounters, T. scaliger was known to inhabit a vertical distribution of 2288–2575 m (Rossman et al. 1996). The Garter Snakes: Evolution and Ecology. Univ. Oklahoma Press, Norman. 331 pp.). Habitat in this valley is similar to other areas where we have observed T. scaliger in the Estado de México, consisting of seasonally mesic grassland and agricultural fields.

Submitted by ESTRELLA MOCIÑO-DELOYA (e-mail: allertsemoci@yahoo.com), KIRK SETSER, SENDA REGUERA, MÓNICA FERICHE, and JUAN M. PLEGUEZUELOS, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Granada, C.P. E-18071, Granada, España.

EGEOGRAPHIC DISTRIBUTION

Instructions for contributors to Geographic Distribution appear in Volume 40, Number 1 (March 2009, p. 106). Please note that the responsibility for checking literature for previously documented range extensions lies with authors. Do not submit range extension reports unless a thorough literature review has been completed.

CAUDATA – SALAMANDERS

Submitted by MICHAEL A. ANDERSON and DANIEL E. TABROOKS, Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA.

Submitted by JOHN B. JENSEN, Georgia Department of Natural Resources, Nongame Conservation Section, 116 Rum Creek Dr., Forsyth, Georgia 31029, USA; e-mail: john.jensen@gadnr.org.

Submitted by LINDSEY LANDOWSKI, US Fish and Wildlife Service, Patoka River National Wildlife Refuge, 510 1/2 West Morton Street, P.O. Box 217, Oakland City, Indiana 47660, USA; e-mail: Lindsey_Landowski@fws.gov.