Dirección:
Departamento de Matemática Aplicada
Facultad de Ciencias
Universidad de Granada
18071-Granada (Spain)


Teléfono: +34 958 249946
Fax: +34 958 248596

Correo electrónico: tperez(at)ugr.es

Datos generales


Perfiles


Líneas de investigación

  • Teoría de Aproximación, Polinomios Ortogonales y Funciones Especiales
  • Análisis Numérico

Proyectos de Investigación Recientes

  • "Polinomios Ortogonales Multivariados: Propiedades Estructurales y Aplicaciones", MTM2011-28952-C02-02 Proyecto de Investigación sunvencionado por el Ministerio de Ciencia e Innovación (Micinn) y the European Regional Development Fund (ERDF). Coordinador Miguel Piñar (Universidad de Granada) (01/01/2012-31/12/2014).
  • "Teoría de la aproximación, funciones especiales y modelos matemáticos: de la teoría a las aplicaciones oftalmológicas", Proyectos de Excelencia de la Junta de Andalucía P11-FQM-7276, Coordinador: Andrei Martínez Finkelshtein (Universidad de Almería) (30/04/2013-29/04/2017).
  • "Propiedades de los polinomios ortogonales en varias variables. Aplicaciones", MTM2014-53171-P Proyecto de Investigación subvencionado por el Ministerio de Economía y Competitividad (MINECO). Coordinador Miguel Piñar (Universidad de Granada) (01/01/2015-31/12/2017).
Subir a Inicio

Publicaciones


2016-2020


  1. A. M. Delgado, L. Fernández, T. E. Pérez, Fourth order partial differential equations for Krall-type orthogonal polynomials on the simplex (Enviado)
  2. F. Marcellán, M. Marriaga, T. E. Pérez, M. A. Piñar, Coherent pairs in two variables.
  3. F. Marcellán, M. Marriaga, T. E. Pérez, M. A. Piñar, On bivariate classical orthogonal polynomials.
  4. F. Marcellán, M. Marriaga, T. E. Pérez, M. A. Piñar, Matrix Pearson equations satisfied by Koornwinder weights in two variables. Acta Appl. Math. DOI 10.1007/s10440-017-0121-6.
    Por aparecer.
  5. C. F. Bracciali, T. E. Pérez, Bivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs. Appl. Math. Comput. 309 (2017), 142-155.
    MR3646384
  6. M. Marriaga, T. E. Pérez, M. A. Piñar, Three term relations for a class of bivariate polynomials. Medit. J. Math. 14 (2017), no. 2, Art. 54, 26 pp.
    MR3619416
  7. C. F. Bracciali, J. H. McCabe, T. E. Pérez, A. Sri Ranga, A class of orthogonal functions given by a three term recurrence formula. Math. Comp. 85 (2016), 1837-1859.
    MR3471110
  8. A. M. Delgado, L. Fernández, D. S. Lubinsky, T. E. Pérez, M. A. Piñar, Sobolev orthogonal polynomials on the unit ball via outward derivatives. J. Math. Anal. Appl. 440 (2016), 716-740.
    MR3484991
  9. A. M. Delgado, L. Fernández, T. E. Pérez, M. A. Piñar, Multivariate orthogonal polynomials and modified moment functionals. SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), 090, 25 pages.
    MR3545477

2011-2015


  1. L. Fernández, F. Marcellán, T. E. Pérez, M. Piñar, Y. Xu, Sobolev orthogonal polynomials on product domains. J. Comput. Appl. Math. 284 (2015), 202-215
    MR3319504
  2. M. Alfaro, A. Peña, T. E. Pérez, M. L. Rezola, On linearly related orthogonal polynomials in several variables. Numer. Algorithms 66 (2014), 537-553.
    MR3225001
  3. C. F. Bracciali, T. E. Pérez, M. Piñar, Stieltjes functions and discrete classical orthogonal polynomials. Comput. Appl. Math. 32 (2013), 537-547.
    MR3120139
  4. T. E. Pérez, M. Piñar, Y. Xu, Weighted Sobolev orthogonal polynomials on the unit ball. J. Approx. Theory 171 (2013), 84-104.
    MR3053718
  5. A. M. Delgado, T. E. Pérez, M. Piñar, Sobolev-type orthogonal polynomials on the unit ball. J. Approx. Theory 170 (2013), 94-106.
    MR3044047
  6. A. M. Delgado, L. Fernández, T. E. Pérez, M. Piñar, On the Uvarov modification of two variable orthogonal polynomials on the disk. Complex Anal. Oper. Theory 6 (3) (2012), 665-676.
    MR2944078
  7. L. Fernández, T. E. Pérez, M. Piñar, On Koornwinder classical orthogonal polynomials in two variables. J. Comput. Appl. Math. 236 (2012), 3817-3826.
    MR2923514
  8. M. V. de Mello, V. G. Paschoa, T. E. Pérez, M. A. Piñar, Multivariate Sobolev-type orthogonal polynomials. Jaen J. Approx. 3 (2011), 241-259.
    MR2954375
  9. J. J. Moreno-Balcázar, T. E. Pérez, M. A. Piñar, A generating function for non-standard orthogonal polynomials involving differences: the Meixner case. Ramanujan J. 25 (1) (2011), 21-35.
    MR2787289 (2012d:42060)
  10. L. Fernández, T. E. Pérez, M. A. Piñar, Orthogonal polynomials in two variables as solutions of higher order partial differential equations. J. Approx. Theory 163 (2011), 84-97.
    MR2741221 (2012c:42059)

2006-2010


  1. E. X. L. Andrade, C. F. Bracciali, M. V. de Mello, T. E. Pérez, Zeros for Jacobi-Sobolev orthogonal polynomials following non-coherent pair of measures. Comput. Appl. Math. 29 (2010), 423-445.
    MR2740662 (2011m:33016)
  2. C. F. Bracciali, A. M. Delgado, L. Fernández, T. E. Pérez, M. A. Piñar, New steps on Sobolev orthogonality in two variables. J. Comput. Appl. Math. 235 (2010), 916-926.
    MR2727629 (2011g:42063)
  3. A. M. Delgado, L. Fernández, T. E. Pérez, M. A. Piñar, Y. Xu, Orthogonal polynomials in several variables for measures with mass points. Numer. Algorithms 55 (2010), 245-264.
    MR2720631 (2011i:42048)
  4. L. Fernández, F. Marcellán, T. E. Pérez, M. A. Piñar, Recent Trends on Two Variable Orthogonal Polynomials Differential Algebra, Complex Analysis and Orthogonal Polynomials, P. Acosta-Humánez and F. Marcellán, eds. Contemporary Mathematics, 509, 59-86, American Mathematical Society, Providence, RI, 2010.
    MR2647637 (2011f:42030)
  5. L. Fernández, T. E. Pérez, M. A. Piñar, Y. Xu, Krall-type ortogonal polynomials in several variables. J. Comput. Appl. Math. 233 (2010), 1519-1524.
    MR2559340 (2010j:42049)
  6. M. Álvarez de Morales, L. Fernández, T. E. Pérez, M. A. Piñar, Bivariate ortogonal polynomials in the Lyskova class. J. Comput. Appl. Math. 233 (2009), 597-601.
    MR2582991 (2010m:42051)
  7. M. Álvarez de Morales, L. Fernández, T. E. Pérez, M. A. Piñar, A matrix Rodrigues formula for classical orthogonal polynomials in two variables. J. Approx. Theory 157 (2009), 32-52.
    MR2500152 (2010d:33012)
  8. M. Álvarez de Morales, L. Fernández, T. E. Pérez, M. A. Piñar, A Stieltjes function in two variables. Approximation Theory XII: San Antonio 2007, 1-13, Nashboro Press, Brentwood, TN, 2008.
    MR2537115 (2010g:42055)
  9. M. Álvarez de Morales, L. Fernández, T. E. Pérez, M. A. Piñar, A semiclassical perspective on multivariate orthogonal polynomials. J. Comput. Appl. Math. 214 (2008), 447-456.
    MR2398345 (2009d:42064)
  10. M. Álvarez de Morales, L. Fernández, T. E. Pérez, M. A. Piñar, On differential properties for multivariate orthogonal polynomials. Numer. Algorithms 45 (2007), no. 1-4, 153-166.
    MR2355979 (2008h:42042)
  11. M. Álvarez de Morales,L. Fernández, T. E. Pérez, M. A. Piñar, Semiclassical orthogonal polynomials in two variables. J. Comput. Appl. Math. 207 (2007), 323-330.
    MR2345250 (2008i:42052)
  12. L. Fernández, T. E. Pérez, M. A. Piñar, Second--order partial differential equations for gradients of orthogonal polynomials in two variables. J. Comput. Appl. Math. 199 (2007), 113-121.
    MR2267536 (2007m:33036)

2001-2005


  1. L. Fernández, T. E. Pérez, M. A. Piñar, On multivariate classical orthogonal polynomials. Rend. Circ. Mat. Palermo (2) Suppl. No. 76 (2005), 315-329.
    MR2178443 (2006m:42042)
  2. L. Fernández, T. E. Pérez, M. A. Piñar, Classical orthogonal polynomials in two variables: a matrix approach. Numer. Algorithms 39 (2005), no. 1-3, 131-142.
    MR2137747 (2006a:42036)
  3. L. Fernández, T. E. Pérez, M. A. Piñar, Weak classical orthogonal polynomials in two variables. J. Comput. Appl. Math. 178 (2005), no. 1-2, 191-203.
    MR2127879 (2006b:33018)
  4. M. Álvarez de Morales, T. E. Pérez, M. A. Piñar, Orthogonal polynomials associated with a Delta-Sobolev inner product. J. Difference Equ. Appl. 8 (2002), no. 2, 125-151.
    MR1882484 (2003h:33007)
  5. M. Alfaro, J. J. Moreno-Balcázar, T. E. Pérez, M. A. Piñar, M. L. Rezola, Asymptotics of Sobolev orthogonal polynomials for Hermite coherent pairs. J. Comput. Appl. Math. 133 (2001), no. 1-2, 141-150.
    MR1858274 (2002k:33005)

1996-2000


  1. M. Álvarez de Morales, J. J. Moreno-Balcázar, T. E. Pérez, M. A. Piñar, Nondiagonal Hermite-Sobolev orthogonal polynomials. Acta Appl. Math. 61 (2000), no. 1-3, 257-266.
    MR1783293 (2001i:42036)
  2. E. García-Caballero, T. E. Pérez, M. A. Piñar, Hermite interpolation and Sobolev orthogonality. Acta Appl. Math. 61 (2000), no. 1-3, 87-99.
    MR1783285 (2001h:33011)
  3. M. Alfaro, M. L. Rezola, T. E. Pérez, M. A. Piñar, On symmetric differential operators associated with Sobolev orthogonal polynomials: a characterization. Acta Appl. Math. 61 (2000), no. 1-3, 3-14.
    MR1783278 (2001g:42048)
  4. H. G. Meijer, T. E. Pérez, M. A. Piñar, Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Laguerre type. J. Math. Anal. Appl. 245 (2000), no. 2, 528-546.
    MR1758554 (2001h:42036)
  5. M. Alfaro, T. E. Pérez, M. A. Piñar, M. L. Rezola, Sobolev orthogonal polynomials: the discrete-continuous case. Methods Appl. Anal. 6 (1999), no. 4, 593-616.
    MR1795525 (2001i:42035)
  6. E. García-Caballero, T. E. Pérez, M. A. Piñar, Sobolev orthogonal polynomials: interpolation and approximation. Electron. Trans. Numer. Anal. 9 (1999), 56-64 (electronic).
    MR1749798 (2001e:42033)
  7. M. Álvarez de Morales, T. E. Pérez, M. A. Piñar, A. Ronveaux, Non-standard orthogonality for Meixner polynomials. Electron. Trans. Numer. Anal. 9 (1999), 1-25 (electronic).
    MR1749794 (2001f:33007)
  8. M. Álvarez de Morales, T. E. Pérez, M. A. Piñar, Sobolev orthogonality for the Gegenbauer polynomials {C^(-N+1/2)}_{n>0}. J. Comput. Appl. Math. 100 (1998), no. 1, 111-120.
    MR1658734 (99k:33019)
  9. T. E. Pérez, M. A. Piñar, Sobolev orthogonality and properties of the generalized Laguerre polynomials. Orthogonal functions, moment theory, and continued fractions (Campinas, 1996), 375-385, Lecture Notes in Pure and Appl. Math., 199, Dekker, New York, 1998.
    MR1655670 (99k:33018)
  10. M. Álvarez de Morales, T. E. Pérez, M. A. Piñar, A. Ronveaux, Orthogonal polynomials associated with a nondiagonal Sobolev inner product with polynomial coefficients. Orthogonal functions, moment theory, and continued fractions (Campinas, 1996), 343-358, Lecture Notes in Pure and Appl. Math., 199, Dekker, New York, 1998.
    MR1655668 (99k:33017)
  11. A. Martínez-Finkelshtein, J. J. Moreno-Balcázar, T. E. Pérez, M. A. Piñar, Asymptotics of Sobolev orthogonal polynomials for coherent pairs of measures. J. Approx. Theory 92 (1998), no. 2, 280-293.
    MR1604939 (98m:42038)
  12. F. Marcellán, H. G. Meijer, T. E. Pérez, M. A. Piñar, An asymptotic result for Laguerre-Sobolev orthogonal polynomials. J. Comput. Appl. Math. 87 (1997), no. 1, 87-94.
    MR1488822 (99a:33006)
  13. T. E. Pérez, M. A. Piñar, On Sobolev orthogonality for the generalized Laguerre polynomials. J. Approx. Theory 86 (1996), no. 3, 278-285.
    MR1405981 (97j:33017)
  14. F. Marcellán, T. E. Pérez, M. A. Piñar, Laguerre-Sobolev orthogonal polynomials. J. Comput. Appl. Math. 71 (1996), no. 2, 245-265.
    MR1399895 (97h:33018)
  15. F. Marcellán, T. E. Pérez, M. A. Piñar, A. Ronveaux, General Sobolev orthogonal polynomials. J. Math. Anal. Appl. 200 (1996), no. 3, 614-634.
    MR1393104 (97f:42040)

1991-1995


  1. F. Marcellán, J. C. Petronilho, T. E. Pérez, M. A. Piñar, What is beyond coherent pairs of orthogonal polynomials? J. Comput. Appl. Math. 65 (1995), no. 1-3, 267-277.
    MR1379136 (96m:42042)
  2. F. Marcellán, T. E. Pérez, M. A. Piñar, Regular Sobolev type orthogonal polynomials: the Bessel case. Rocky Mountain J. Math. 25 (1995), no. 4, 1431-1457.
    MR1371348 (97f:33015)
  3. F. Marcellán, T. E. Pérez, M. A. Piñar, Orthogonal polynomials on weighted Sobolev spaces: the semiclassical case. Special functions (Torino, 1993). Ann. Numer. Math. 2 (1995), no. 1-4, 93-122.
    MR1343524 (97a:33023)
  4. F. Marcellán, T. E. Pérez, M. A. Piñar, Gegenbauer-Sobolev orthogonal polynomials. Nonlinear numerical methods and rational approximation, II (Wilrijk, 1993), 71-82, Math. Appl., 296, Kluwer Acad. Publ., Dordrecht, 1994.
    MR1307190 (95m:42032)
  5. T. E. Pérez, M. A. Piñar, Global properties of zeros for Sobolev-type orthogonal polynomials. J. Comput. Appl. Math. 49 (1993), no. 1-3, 225-232.
    MR1256030 (94m:42059)
  6. M. A. Piñar, T. E. Pérez, On higher order Padé-type approximants with some prescribed coefficients in the numerator. Numer. Algorithms 3 (1992), no. 1-4, 345-352.
    MR1199381 (93k:65005)
  7. F. Marcellán, T. E. Pérez, M. A. Piñar, On zeros of Sobolev-type orthogonal polynomials. Rend. Mat. Appl. (7) 12 (1992), no. 2, 455-473.
    MR1185903 (94f:33015)
  8. T. Pérez Fernández, M. Piñar González, Properties of the Bernstein-Jacobi operator in Cr[0,1]. (Spanish) Proceedings of the XVth Portuguese-Spanish Conference on Mathematics, Vol. V (Portuguese) (Évora, 1990), 143-148, Univ. Évora, Évora, 1991.
    MR1161874 (93a:65016)

Actividad Editorial

Mujeres en la Informática y la Telecomunicación

Enlaces de Matemáticas

Problemas abiertos

  • Mi familia. Granada. Enero, 2015.