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Abstract—This letter shows an innovative voice activity detector
(VAD) based on the Kullback–Leibler (KL) divergence measure.
The algorithm is evaluated in the context of the recently approved
ETSI standard for distributed speech recognition (DSR). The VAD
uses long-term information of the noisy speech signal in order to
define a more robust decision rule yielding high accuracy. The
Mel-scaled filter bank log-energies (FBE) are modeled by means
of Gaussian distributions, and a symmetric KL divergence is used
for the estimation of the distance between speech and noise distri-
butions. The decision rule is formulated in terms of the average
subband KL divergence that is compared to a noise-adaptable
threshold. An exhaustive analysis using the AURORA databases
is conducted in order to assess the performance of the proposed
method and to compare it to existing standard VAD methods.

Index Terms—Kullback–Leibler (KL) divergence, noise reduc-
tion, robust speech recognition, voice activity detection (VAD).

I. INTRODUCTION

THE EMERGING applications of speech technologies (es-
pecially in mobile communications, robust speech recog-

nition or digital hearing aids devices) often require a noise re-
duction scheme working in combination with a precise voice
activity detector (VAD) [1]. There exist well-known noise sup-
pression algorithms that are widely used in these applications
and for which the VAD is critical for the demanded levels of per-
formance. A typical VAD decomposes the input speech signal
into frames and decision is made on a basis of the actual frame
[2], [3]. These algorithms are effective in numerous applications
but often cause detection errors mainly due to the loss of dis-
crimination at low SNR levels. Several algorithms trying to pal-
liate these drawbacks by means of the definition of more robust
decision rules [4] have been proposed. These alternative VAD
procedures use long-term information about the speech signal
and usually yield better discrimination with sustained improve-
ments in speech/nonspeech hit rates.

This letter shows a new VAD based on the Kullback–Leibler
(KL) divergence measure that takes advantage of this design
strategy. The algorithm is evaluated in the context of the
AURORA project [5], [6] and the recently approved Advanced
Front-end (AFE) standard [7] for distributed speech recognition
(DSR). The quantifiable benefits of this approach are studied
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by means of an exhaustive performance analysis conducted
on the AURORA databases, with standard VADs such as the
ITU G.729 [8], ETSI AMR [9] and AFE [7], and the Sohn’s
algorithm [2] used as a reference.

II. BACKGROUND

The proposed VAD is based on the Kullback–Leibler diver-
gence measure or relative entropy between two probability dis-
tributions and , which is defined by

(1)

It can be shown [10] that the relative entropy is nonnegative
and it is null only if the two probability distributions are iden-
tical. Thus, it discriminates statistical processes by indicating
how distinguishable is from by maximum-likeli-
hood hypothesis testing when the actual data obeys .

The KL divergence can be easily computed in the case of
Gaussian distributions. Note that is the ex-
pected value of the function over , i.e.,

. Thus, the KL divergence computation is
reduced to the estimation of the means and and standard
deviations and of the distributions and , re-
spectively

(2)

III. KL–FBE VAD

The proposed VAD works in the Mel-scaled energy domain
and assumes a Gaussian model for the logarithmic filter bank
energy (FBE) distributions of speech and noise in each
band. The detection algorithm is based on the symmetric KL
“distance,” , or equivalently

(3)

which for Gaussian distributions is given by

(4)
where and are the means of the signal and noise log-
Energy distributions, respectively, and and their corre-
sponding standard deviations.
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The algorithm can be described as follows. First, the signal is
preemphasized and segmented into 25-ms frames with a 10-ms
window shift. The Mel-scaled log-Energies
are then computed for the th filter and the th frame by ap-
plying a Mel-scaled triangular filter bank to the signal spectrum
magnitude [6], [7]. The VAD models the subband Log-energies
by means of Gaussian distributions being each band indepen-
dently processed by means of a -frame sliding window

(5)

which is subdivided as the inferior and superior windows

(6)

respectively. In a second stage, the mean value of the energy
windows and , and , and their standard
deviations, and , respectively, are computed and
on-line averaged by a first-order IIR smoothing filter

(7)

The -band signal mean and standard deviation required by (4)
are estimated using the Log-energy window as

and , while noise statistics and
are updated during nonspeech periods to track nonsta-

tionary noise environments by

(8)

where is a forgetting factor and is the median of the
whole log-Energy window .

The algorithm measures the KL “distance” through
(4) with the subband probabilities modeled by means of Gaus-
sians distributions. Assuming two hypothesis: (speech ab-
sent) and (speech present), the decision is formulated by av-
eraging the subband KL distances

(9)

The detection threshold can be fixed or adaptable to the
observed noise energy . Optimal thresholds and for
clean and high noise conditions, respectively, are defined and
the linear threshold tuning shown in Fig. 1 is used. This model
ensures a high speech/nonspeech discrimination improving
speech pause detection at high and medium SNR levels while
maintaining a high accuracy for speech periods.

IV. EXPERIMENTAL FRAMEWORK

Several experiments using the AURORA databases were car-
ried out to evaluate the performance of the KL-FBE VAD and to
compare it to the most representative standard methods [7]–[9].
This section evaluates the speech/nonspeech discrimination as a
function of the SNR, provides the Receiver Operating Charac-
teristic (ROC) curves for speech databases recorded under real
conditions and compares speech recognition performance.

Fig. 1. Adaptive threshold to noise level.

A. Speech/Nonspeech Discrimination Analysis

First, the proposed VAD was evaluated in terms of the ability
to discriminate between speech and pause periods at different
SNR levels. The clean TIdigits database was used to label each
utterance as speech or pause frames for reference. Detection
performance as a function of the SNR was assessed for the AU-
RORA 2 database in terms of the speech pause hit-rate (HR0)
and the speech hit-rate (HR1) (i.e., the fraction of all actual
pause or speech frames that are correctly detected as pause or
speech frames, respectively). The optimal parameters for the
VAD were: , and , while the filter bank
decomposes the signal in Mel-scaled subbands [6],
[7]. Fig. 2 shows HR0 and HR1 as a function of the SNR for
KL-FBE, G.729, AMR, AFE, and the Sohn’s VAD. Table I
compares the VADs in terms of the average hit-rates. Thus,
KL-FBE obtains the best behavior in detecting speech pauses
with a 46.83% HR0 average value, while the G.729, AMR1,
AMR2, AFE and the Sohn’s VAD yield 31.77%, 31.31%,
42.77%, 28.74%, and 43.66%, respectively. On the other hand,
the KL-FBE VAD is the most precise VAD in detecting speech
periods exhibiting the slowest decay in performance at unfa-
vorable noise conditions as shown in Fig. 2(b). KL-FBE attains
a 96.96% HR1 average value in speech detection while G.729,
AMR1, AMR2, AFE, and the Sohn’s VAD provide 93.00,
98.18%, 93.76%, 97.70%, and 94.46%, respectively. Although
AMR1 and AFE seems to be well suited for maintaining a
high-accuracy detecting speech periods at low SNRs, it is
only motivated by their extremely conservative behavior that
degrades their speech pause detection accuracy being HR0 less
than 10% for SNR values below 10 dB. This fact makes them
less useful than other VADs in a practical speech processing
system where it is typically demanded a 50% speech pause
hit-rate for adequately modeling the time-varying noise sta-
tistics and the efficient application of the noise compensation
algorithms. The KL-FBE VAD yielded better results than the
Sohn’s algorithm in speech/pause detection with higher speech
and nonspeech hit-rates. Thus, considering together speech
and pause hit-rates, the proposed VAD yielded the best results
when compared to the most representative VADs tested.

B. ROC Curves

An additional test was conducted to compare speech detec-
tion performance by means of the VAD ROC curve [11], a fre-
quently used methodology that completely describes the VAD
error rate [4]. The Spanish SpeechDat-Car (SDC) database [12]
was used in the analysis. This database contains 4914 record-
ings (files) from more than 160 speakers. Recordings from the
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(a)

(b)

Fig. 2. (a) Nonspeech hit-rate (HR0). (b) Speech hit rate (HR1).

TABLE I
AVERAGE SPEECH/NONSPEECH HIT RATES FOR

SNRS FROM “CLEAN” TO �5 dB

close-talking microphone and from one of the distant micro-
phones are included. As in the whole SDC database, the files
are categorized into three noisy conditions (quiet, low noisy, and
highly noisy) depending on the driving conditions. Thus, record-
ings from the close-talking microphone are used in the anal-
ysis to label speech/pause frames for reference, while record-
ings from the distant microphone are used to evaluate the dif-
ferent VADs in terms of their ROC curves.

The speech pause hit rate (HR0) as a function of the
false-alarm rate FAR HR for is
shown in Fig. 3 together with the working point of the adaptive
KL-FBE VAD, G.729, AMR1, AMR2, and AFE. It is clearly
shown that the ability of the adaptive KL-FBE VAD to tune the
detection threshold enables working on the optimal point of the
ROC curve for different noisy conditions. Optimal detection
threshold and were determined for clean and
noisy conditions, respectively, while the threshold calibration
curve was defined between dB (low noise energy)
and dB (high noise energy). It can be derived from
these plots that the KL-FBE VAD, when compared to G.729
and AMR VADs, yields the lowest false-alarm rate for a fixed
speech pause hit rate and also, the highest speech pause hit rate
for a given false-alarm rate. It must be noted that the AFE VAD

(a)

(b)

Fig. 3. KL-FBE ROC curves and working point of the different VAD analyzed.
(a) Stopped car, motor running. (b) High speed, good road.

is only used in the standard [7] for frame-dropping and it has
been planned to be conservative exhibiting poor speech pause
detection accuracy thus, working on a low false-alarm rate point
of the ROC curve shown in Fig. 3. Thus, the adaptive KL-FBE
VAD provides the best results when the speech/nonspeech
detection accuracy are considered together being the gains
especially important over the G.729 VAD. On the other hand,
the proposed VAD has been the most precise one in delimiting
speech pauses and, when compared to the AFE VAD, it works
in a less conservative point of the ROC curve with the best
speech pause detection accuracy suffering only a moderate
increase in the false-alarm rate.

If the proposed VAD is compared to the Sohn’s algorithm, it
can be concluded that the Sohn’s VAD ROC curve is shifted to
a higher false-alarm region in the ROC space. Both curves cross
over but, in low false-alarm rate space, the proposed algorithm
yields reduced false-alarm rate and increased speech pause hit
rates. As a result, the proposed VAD can operate on a lower
false-alarm rate point of the ROC space with increased speech
pause hit rates. On the other hand, reducing the delay of the al-
gorithm to six frames only leaded to moderate increase
in the false-alarm rate and reduction of the nonspeech hit rate.
However, when the SNR conditions get noisier (SNR dB),
reducing the delay may lead to a more accused increase of the
false-alarm rate being this parameter more important for a noise
robust VAD decision.

C. Speech Recognition Performance

These improvements were corroborated when the VAD was
integrated into a speech recognition system. The reference
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TABLE II
RECOGNITION PERFORMANCE RESULTS

framework (Base) is the ETSI AURORA project for DSR [6]
and performance is assessed in terms of the word accuracy
(WAcc.). Two types of experiments were conducted on the
AURORA 2 and 3 databases: the effect of the VAD when
1) it is only used for applying Wiener filtering (WF) (as in
the first stage of [7] without Mel scale warping) as noise
suppression method, and 2) it is applied for both, WF and
removing nonspeech periods [WF+frame-dropping (FD)]. The
best recognition performance is obtained when the proposed
VAD is also used for FD as shown in Table II. In clean training
(CT) the relative improvements in the word accuracy were
58.69%, 49.33%, and 17.61% over G.729, AMR1, and AMR2
VADs, respectively, while in multicondition training (MCT)
the advantages were of up to 38.05%, 38.02%, and 19.83%.
Similar improvements were obtained for the experiments
conducted on the AURORA 3 databases [12]–[14] for the three
train/test mismatch conditions defined [well-matched (WM),
medium-mismatch (MM), and high-mismatch (HM)]. Again,
the KL-FBE VAD provided the best results with 53.65%,
21.43%, and 13.96% improvements over G.729, AMR1, and
AMR2, respectively, when the VAD is used for both WF and
FD.

When compared to the Sohn’ algorithm, the adaptive
KL-FBE VAD yielded higher recognition performance being
the improvements more important when the VAD is used
for both WF and FD. This fact is mainly motivated by the
robustness of the proposed algorithm against the acoustic envi-
ronment shown in Sections IV-A and IV-B. As a conclusion, a
good VAD for robust speech recognition needs a compromise

between speech and pause detection accuracy. When the VAD
suffers a rapid performance degradation under severe noise
conditions it losses too many speech frames and leads to nu-
merous deletion errors. On the other hand, if the VAD does not
correctly identify nonspeech periods it increases the insertion
errors and the corresponding FD performance degradation.

V. CONCLUSION

This letter analyzed the performance of an innovative
KL-based VAD and its use in a speech recognition system.
A comparison with the most representative standard VAD
methods was provided. The exhaustive analysis conducted
on the AURORA databases showed relevant improvements
over G.729 and AMR VADs and the Sohn’s algorithm in
speech/pause detection accuracy and recognition performance
for a representative set of noises and conditions.
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