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Abstract

Currently, there are technology barriers inhibiting speech processing systems working under extreme noisy condi-

tions. The emerging applications of speech technology, especially in the fields of wireless communications, digital

hearing aids or speech recognition, are examples of such systems and often require a noise reduction technique

operating in combination with a precise voice activity detector (VAD). This paper presents a new VAD algorithm for

improving speech detection robustness in noisy environments and the performance of speech recognition systems. The

algorithm measures the long-term spectral divergence (LTSD) between speech and noise and formulates the speech/

non-speech decision rule by comparing the long-term spectral envelope to the average noise spectrum, thus yielding a

high discriminating decision rule and minimizing the average number of decision errors. The decision threshold is

adapted to the measured noise energy while a controlled hang-over is activated only when the observed signal-to-noise

ratio is low. It is shown by conducting an analysis of the speech/non-speech LTSD distributions that using long-term

information about speech signals is beneficial for VAD. The proposed algorithm is compared to the most commonly

used VADs in the field, in terms of speech/non-speech discrimination and in terms of recognition performance when the

VAD is used for an automatic speech recognition system. Experimental results demonstrate a sustained advantage over

standard VADs such as G.729 and adaptive multi-rate (AMR) which were used as a reference, and over the VADs of

the advanced front-end for distributed speech recognition.
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1. Introduction

An important problem in many areas of speech

processing is the determination of presence of

speech periods in a given signal. This task can be
identified as a statistical hypothesis problem and

its purpose is the determination to which category

or class a given signal belongs. The decision is

made based on an observation vector, frequently
ed.
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Nomenclature

AFE advanced front end
AMR adaptive multi-rate

DSR distributed speech recognition

DTX discontinuous transmission

ETSI European Telecommunication Stan-

dards Institute

FAR0 speech false alarm rate

FAR1 non-speech false alarm rate

FD frame-dropping
GSM global system for mobile communica-

tions

HR0 non-speech hit-rate

HR1 speech hit-rate

HM high mismatch training/test mode

HMM hidden Markov model

HTK hidden Markov model toolkit
ITU International Telecommunication Union

LPC linear prediction coding coefficients

LTSE long-term spectral estimation

LTSD long-term spectral divergence

MM medium mismatch training/test mode

ROC receiver operating characteristic

SDC SpeechDat-Car

SND speech/non-speech detection
SNR signal-to-noise ratio

VAD voice activity detector (detection)

WF wiener filtering

WAcc word accuracy

WM well matched training/test mode

ZCR zero-crossing rate
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called feature vector, which serves as the input to a

decision rule that assigns a sample vector to one of

the given classes. The classification task is often

not as trivial as it appears since the increasing level

of background noise degrades the classifier effec-
tiveness, thus leading to numerous detection er-

rors.

The emerging applications of speech technolo-

gies (particularly in mobile communications, ro-

bust speech recognition or digital hearing aid

devices) often require a noise reduction scheme

working in combination with a precise voice

activity detector (VAD) (Bouquin-Jeannes and
Faucon, 1994, 1995). During the last decade

numerous researchers have studied different strat-

egies for detecting speech in noise and the influ-

ence of the VAD decision on speech processing

systems (Freeman et al., 1989; ITU, 1996; Sohn

and Sung, 1998; ETSI, 1999; Marzinzik and Kol-

lmeier, 2002; Sangwan et al., 2002; Karray and

Martin, 2003). Most authors reporting on noise
reduction refer to speech pause detection when

dealing with the problem of noise estimation. The

non-speech detection algorithm is an important

and sensitive part of most of the existing single-

microphone noise reduction schemes. There exist

well known noise suppression algorithms (Berouti

et al., 1979; Boll, 1979), such as Wiener filtering
(WF) or spectral subtraction, that are widely used

for robust speech recognition, and for which, the

VAD is critical in attaining a high level of per-

formance. These techniques estimate the noise

spectrum during non-speech periods in order to
compensate its harmful effect on the speech signal.

Thus, the VAD is more critical for non-stationary

noise environments since it is needed to update the

constantly varying noise statistics affecting a mis-

classification error strongly to the system perfor-

mance. In order to palliate the importance of the

VAD in a noise suppression systems Martin pro-

posed an algorithm (Martin, 1993) that continu-
ally updated the noise spectrum in order to prevent

a misclassification of the speech signal causes a

degradation of the enhanced signal. These tech-

niques are faster in updating the noise but usually

capture signal energy during speech periods, thus

degrading the quality of the compensated speech

signal. In this way, it is clearly better using an

efficient VAD for most of the noise suppression
systems and applications.

VADs are employed in many areas of speech

processing. Recently, various voice activity detec-

tion procedures have been described in the litera-

ture for several applications including mobile

communication services (Freeman et al., 1989),

real-time speech transmission on the Internet
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(Sangwan et al., 2002) or noise reduction for dig-

ital hearing aid devices (Itoh and Mizushima,

1997). Interest of research has focused on the

development of robust algorithms, with special
attention being paid to the study and derivation of

noise robust features and decision rules. Sohn and

Sung (1998) presented an algorithm that uses a

novel noise spectrum adaptation employing soft

decision techniques. The decision rule was derived

from the generalized likelihood ratio test by

assuming that the noise statistics are known a

priori. An enhanced version (Sohn et al., 1999) of
the original VAD was derived with the addition of

a hang-over scheme which considers the previous

observations of a first-order Markov process

modeling speech occurrences. The algorithm out-

performed or at least was comparable to the

G.729B VAD (ITU, 1996) in terms of speech

detection and false-alarm probabilities. Other

researchers presented improvements over the
algorithm proposed by Sohn et al. (1999). Cho

et al. (2001a); Cho and Kondoz (2001) presented a

smoothed likelihood ratio test to alleviate the

detection errors, yielding better results than

G.729B and comparable performance to adaptive

multi-rate (AMR) option 2. Cho et al. (2001b) also

proposed a mixed decision-based noise adaptation

yielding better results than the soft decision noise
adaptation technique reported by Sohn and Sung

(1998). Recently, a new standard incorporating

noise suppression methods has been approved by

the European Telecommunication Standards

Institute (ETSI) for feature extraction and dis-

tributed speech recognition (DSR). The so-called

advanced front-end (AFE) (ETSI, 2002) incorpo-

rates an energy-based VAD (WF AFE VAD) for
estimating the noise spectrum in Wiener filtering

speech enhancement, and a different VAD for non-

speech frame dropping (FD AFE VAD).

On the other hand, a VAD achieves silence

compression in modern mobile telecommunication

systems reducing the average bit rate by using the

discontinuous transmission (DTX) mode. Many

practical applications, such as the global system
for mobile communications (GSM) telephony, use

silence detection and comfort noise injection for

higher coding efficiency. The International Tele-

communication Union (ITU) adopted a toll-
quality speech coding algorithm known as G.729

to work in combination with a VAD module in

DTX mode. The recommendation G.729 Annex B

(ITU, 1996) uses a feature vector consisting of the
linear prediction (LP) spectrum, the full-band en-

ergy, the low-band (0–1 KHz) energy and the zero-

crossing rate (ZCR). The standard was developed

with the collaboration of researchers from France

Telecom, the University of Sherbrooke, NTT and

AT&T Bell Labs and the effectiveness of the VAD

was evaluated in terms of subjective speech quality

and bit rate savings (Benyassine et al., 1997).
Objective performance tests were also conducted

by hand-labelling a large speech database and

assessing the correct identification of voiced, un-

voiced, silence and transition periods. Another

standard for DTX is the ETSI adaptive multi-rate

speech coder (ETSI, 1999) developed by the special

mobile group for the GSM system. The standard

specifies two options for the VAD to be used
within the digital cellular telecommunications

system. In option 1, the signal is passed through a

filterbank and the level of signal in each band is

calculated. A measure of the signal-to-signal ratio

(SNR) is used to make the VAD decision together

with the output of a pitch detector, a tone detector

and the correlated complex signal analysis module.

An enhanced version of the original VAD is the
AMR option 2 VAD. It uses parameters of the

speech encoder being more robust against envi-

ronmental noise than AMR1 and G.729. These

VADs have been used extensively in the open

literature as a reference for assessing the perfor-

mance of new algorithms. Marzinzik and Kol-

lmeier (2002) proposed a new VAD algorithm for

noise spectrum estimation based on tracking the
power envelope dynamics. The algorithm was

compared to the G.729 VAD by means of the re-

ceiver operating characteristic (ROC) curves

showing a reduction in the non-speech false alarm

rate together with an increase of the non-speech hit

rate for a representative set of noises and condi-

tions. Beritelli et al. (1998) proposed a fuzzy VAD

with a pattern matching block consisting of a set
of six fuzzy rules. The comparison was made using

objective, psychoacoustic, and subjective parame-

ters being G.729 and AMR VADs used as a ref-

erence (Beritelli et al., 2002). Nemer et al. (2001)
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presented a robust algorithm based on higher

order statistics (HOS) in the linear prediction cod-

ing coefficients (LPC) residual domain. Its perfor-

mance was compared to the ITU-T G.729 B VAD
in various noise conditions, and quantified using

the probability of correct and false classifications.

The selection of an adequate feature vector for

signal detection and a robust decision rule is a

challenging problem that affects the performance

of VADs working under noise conditions. Most

algorithms are effective in numerous applications

but often cause detection errors mainly due to the
loss of discriminating power of the decision rule at

low SNR levels (ITU, 1996; ETSI, 1999). For

example, a simple energy level detector can work

satisfactorily in high signal-to-noise ratio condi-

tions, but would fail significantly when the SNR

drops. Several algorithms have been proposed in

order to palliate these drawbacks by means of the

definition of more robust decision rules. This
paper explores a new alternative towards improv-

ing speech detection robustness in adverse envi-

ronments and the performance of speech

recognition systems. A new technique for speech/

non-speech detection (SND) using long-term

information about the speech signal is studied. The

algorithm is evaluated in the context of the

AURORA project (Hirsch and Pearce, 2000;
ETSI, 2000), and the recently approved Advanced

Front-end standard (ETSI, 2002) for distributed

speech recognition. The quantifiable benefits of

this approach are assessed by means of an

exhaustive performance analysis conducted on the

AURORA TIdigits (Hirsch and Pearce, 2000) and

SpeechDat-Car (SDC) (Moreno et al., 2000; No-

kia, 2000; Texas Instruments, 2001) databases,
with standard VADs such as the ITU G.729 (ITU,

1996), ETSI AMR (ETSI, 1999) and AFE (ETSI,

2002) used as a reference.
2. VAD based on the long-term spectral divergence

VADs are generally characterized by the feature

selection, noise estimation and classification

methods. Various features and combinations of

features have been proposed to be used in VAD
algorithms (ITU, 1996; Beritelli et al., 1998; Sohn
and Sung, 1998; Nemer et al., 2001). Typically,

these features represent the variations in energy

levels or spectral difference between noise and

speech. The most discriminating parameters in
speech detection are the signal energy, zero-cross-

ing rates, periodicity measures, the entropy, or

linear predictive coding coefficients. The proposed

speech/non-speech detection algorithm assumes

that the most significant information for detecting

voice activity on a noisy speech signal remains

on the time-varying signal spectrum magnitude.

It uses a long-term speech window instead of
instantaneous values of the spectrum to track the

spectral envelope and is based on the estimation of

the so-called long-term spectral envelope (LTSE).

The decision rule is then formulated in terms of the

long-term spectral divergence (LTSD) between

speech and noise. The motivations for the pro-

posed strategy will be clarified by studying the

distributions of the LTSD as a function of the
long-term window length and the misclassification

errors of speech and non-speech segments.
2.1. Definitions of the LTSE and LTSD

Let xðnÞ be a noisy speech signal that is seg-

mented into overlapped frames and, X ðk; lÞ its

amplitude spectrum for the k band at frame l. The
N -order long-term spectral envelope is defined as

LTSENðk; lÞ ¼ maxfX ðk; lþ jÞgj¼þN
j¼�N ð1Þ

The N -order long-term spectral divergence be-
tween speech and noise is defined as the deviation

of the LTSE respect to the average noise spec-

trum magnitude NðkÞ for the k band, k ¼
0; 1; . . . ;NFFT� 1, and is given by

LTSDN ðlÞ

¼ 10 log10
1

NFFT

XNFFT�1

k¼0

LTSE2ðk; lÞ
N 2ðkÞ

 !
ð2Þ

It will be shown in the rest of the paper that the

LTSD is a robust feature defined as a long-term

spectral distance measure between speech and

noise. It will also be demonstrated that using long-

term speech information increases the speech
detection robustness in adverse environments and,
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when compared to VAD algorithms based on

instantaneous measures of the SNR level, it will

enable formulating noise robust decision rules with

improved speech/non-speech discrimination.

2.2. LTSD distributions of speech and silence

In this section we study the distributions of the

LTSD as a function of the long-term window

length (N ) in order to clarify the motivations for
the algorithm proposed. A hand-labelled version

of the Spanish SDC database was used in the

analysis. This database contains recordings from

close-talking and distant microphones at different

driving conditions: (a) stopped car, motor run-

ning, (b) town traffic, low speed, rough road and

(c) high speed, good road. The most unfavourable

noise environment (i.e. high speed, good road) was
selected and recordings from the distant micro-

phone were considered. Thus, the N -order LTSD

was measured during speech and non-speech

periods, and the histogram and probability distri-
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Fig. 1. Effect of the window length on the s
butions were built. The 8 kHz input signal was

decomposed into overlapping frames with a 10-ms

window shift. Fig. 1 shows the LTSD distributions

of speech and noise for N ¼ 0, 3, 6 and 9. It is
derived from Fig. 1 that speech and noise distri-

butions are better separated when increasing the

order of the long-term window. The noise is highly

confined and exhibits a reduced variance, thus

leading to high non-speech hit rates. This fact can

be corroborated by calculating the classification

error of speech and noise for an optimal Bayes

classifier. Fig. 2 shows the classification errors as a
function of the window length N . The speech

classification error is approximately reduced by

half from 22% to 9% when the order of the VAD is

increased from 0 to 6 frames. This is motivated by

the separation of the LTSD distributions that

takes place when N is increased as shown in Fig. 1.

On the other hand, the increased speech detection

robustness is only prejudiced by a moderate in-
crease in the speech detection error. According to

Fig. 2, the optimal value of the order of the VAD
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would be N ¼ 6. As a conclusion, the use of long-
term spectral divergence is beneficial for VAD

since it reduces importantly misclassification er-

rors.
VAD= 0

Fig. 3. Flowchart diagram of the proposed LTSE algorithm for

voice activity detection.
2.3. Definition of the LTSD VAD algorithm

A flowchart diagram of the proposed VAD

algorithm is shown in Fig. 3. The algorithm can be

described as follows. During a short initialization

period, the mean noise spectrum NðkÞ (k ¼
0; 1; . . . ;NFFT� 1) is estimated by averaging the

noise spectrum magnitude. After the initialization
period, the LTSE VAD algorithm decomposes the

input utterance into overlapped frames being their

spectrum, namely X ðk; lÞ, processed by means of a

ð2N þ 1Þ-frame window. The LTSD is obtained by

computing the LTSE by means of Eq. (1). The

VAD decision rule is based on the LTSD calcu-

lated using Eq. (2) as the deviation of the LTSE

with respect to the noise spectrum. Thus, the
algorithm has an N -frame delay since it makes a

decision for the l-th frame using a (2N þ 1)-frame

window around the l-th frame. On the other hand,

the first N frames of each utterance are assumed to

be non-speech periods being used for the initiali-

zation of the algorithm.

The LTSD defined by Eq. (2) is a biased mag-

nitude and needs to be compensated by a given
offset. This value depends on the noise spectral
variance and the order of the VAD and can be

estimated during the initialization period or as-

sumed to take a fixed value. The VAD makes the

SND by comparing the unbiased LTSD to an

adaptive threshold c. The detection threshold is

adapted to the observed noise energy E. It is as-

sumed that the system will work at different noisy

conditions characterized by the energy of the
background noise. Optimal thresholds c0 and c1
can be determined for the system working in the

cleanest and noisiest conditions. These thresholds

define a linear VAD calibration curve that is used

during the initialization period for selecting an

adequate threshold c as a function of the noise

energy E:

c ¼
c0 E6E0

c0�c1
E0�E1

E þ c0 � c0�c1
1�E1=E0

E0 < E < E1

c1 EPE1

8><
>: ð3Þ

where E0 and E1 are the energies of the back-
ground noise for the cleanest and noisiest condi-
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tions that can be determined examining the speech

databases being used. A high speech/non-speech

discrimination is ensured with this model since

silence detection is improved at high and medium
SNR levels while maintaining a high precision

detecting speech periods under high noise condi-

tions.

The VAD is defined to be adaptive to time-

varying noise environments with the following

algorithm for updating the noise spectrum NðkÞ
during non-speech periods being used:

Nðk; lÞ ¼

aNðk; l� 1Þ þ ð1� aÞNKðkÞ
if speech pause is detected

Nðk; l� 1Þ
otherwise

8>><
>>: ð4Þ

where NK is the average spectrum magnitude over

a K-frame neighbourhood:

NKðkÞ ¼
1

2K þ 1

XK
j¼�K

X ðk; lþ jÞ ð5Þ

Finally, a hangover was found to be beneficial to
maintain a high accuracy detecting speech periods

at low SNR levels. Thus, the VAD delays the

speech to non-speech transition in order to prevent

low-energy word endings being misclassified as

silence. On the other hand, if the LTSD achieves a

given threshold LTSD0 the hangover mechanism is

turned off to improve non-speech detection when

the noise level is low. Thus, the LTSE VAD yields
an excellent classification of speech and pause

periods. Examples of the operation of the LTSE

VAD on an utterance of the Spanish SDC data-

base are shown in Fig. 4a (N ¼ 6) and Fig. 4b

(N ¼ 0). The use of a long-term window for for-

mulating the decision rule reports quantifiable

benefits in speech/non-speech detection. It can be

seen that using a 6-frame window reduces the
variability of the LTSD in the absence of speech,

thus yielding to reduced noise variance and better

speech/non-speech discrimination. Speech detec-

tion is not affected by the smoothing process in-

volved in the long-term spectral estimation

algorithm and maintains good margins that cor-

rectly separate speech and pauses. On the other

hand, the inherent anticipation of the VAD deci-
sion contributes to reduce speech clipping errors.
3. Experimental framework

Several experiments are commonly conducted

to evaluate the performance of VAD algorithms.
The analysis is normally focused on the deter-

mination of misclassification errors at different

SNR levels (Beritelli et al., 2002; Marzinzik and

Kollmeier, 2002), and the influence of the VAD

zdecision on speech processing systems (Bouquin-

Jeannes and Faucon, 1995; Karray and Martin,

2003). The experimental framework and the

objective performance tests conducted to evaluate
the proposed algorithm are described in this sec-

tion.
3.1. Speech/non-speech discrimination analysis

First, the proposed VAD was evaluated in

terms of the ability to discriminate between speech

and pause periods at different SNR levels. The

original AURORA-2 database (Hirsch and Pe-
arce, 2000) was used in this analysis since it uses

the clean TIdigits database consisting of sequences

of up to seven connected digits spoken by Ameri-

can English talkers as source speech, and a selec-

tion of eight different real-world noises that have

been artificially added to the speech at SNRs of 20,

15, 10, 5, 0 and )5 dB. These noisy signals have

been recorded at different places (suburban train,
crowd of people (babble), car, exhibition hall,

restaurant, street, airport and train station), and

were selected to represent the most probable

application scenarios for telecommunication ter-

minals. In the discrimination analysis, the clean

TIdigits database was used to manually label each

utterance as speech or non-speech frames for ref-

erence. Detection performance as a function of the
SNR was assessed in terms of the non-speech hit-

rate (HR0) and the speech hit-rate (HR1) defined

as the fraction of all actual pause or speech frames

that are correctly detected as pause or speech

frames, respectively:

HR0 ¼ N0;0

N ref
0

HR1 ¼ N1;1

N ref
1

ð6Þ

where N ref
0 and N ref

1 are the number of real non-
speech and speech frames in the whole database,
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Fig. 4. VAD output for an utterance of the Spanish SpeechDat-Car database (recording conditions: high speed, good road, distant

microphone). (a) N ¼ 6, (b) N ¼ 0.
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respectively, while N0;0 and N1;1 are the number of

non-speech and speech frames correctly classified.

The LTSE VAD decomposes the input signal
sample at 8 kHz into overlapping frames with a
10-ms shift. Thus, a 13-frame long-term window

and NFFT ¼ 256 was found to be good choices

for the noise conditions being studied. Optimal

detection threshold c0 ¼ 6 dB and c1 ¼ 2:5 dB
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were determined for clean and noisy conditions,

respectively, while the threshold calibration curve

was defined between E0 ¼ 30 dB (low noise energy)

and E1 ¼ 50 dB (high noise energy). The hangover
mechanism delays the speech to non-speech VAD

transition during 8 frames while it is deactivated

when the LTSD exceeds 25 dB. The offset is fixed

and equal to 5 dB. Finally, it is used a forgotten

factor a ¼ 0:95, and a 3-frame neighbourhood

(K ¼ 3) for the noise update algorithm.

Fig. 5 provides the results of this analysis and

compares the proposed LTSE VAD algorithm to
standard G.729, AMR and AFE VADs in terms of

non-speech hit-rate (Fig. 5a) and speech hit-rate

(Fig. 5b) for clean conditions and SNR levels

ranging from 20 to )5 dB. Note that results for the

two VADs defined in the AFE DSR standard

(ETSI, 2002) for estimating the noise spectrum in

the Wiener filtering stage and non-speech frame-

dropping are provided. Note that the results
shown in Fig. 5 are averaged values for the entire

set of noises. Thus, the following conclusions can
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Fig. 5. Speech/non-speech discrimination analysis: (a) non-

speech hit-rate (HR0), (b) speech hit rate (HR1).
be derived from Fig. 5 about the behaviour of the

different VADs analysed:

(i) G.729VADsuffers poor speech detection accu-
racy with the increasing noise level while non-

speech detection is good in clean conditions

(85%) and poor (20%) in noisy conditions.

(ii) AMR1 yields an extreme conservative behav-

iour with high speech detection accuracy for

the whole range of SNR levels but very poor

non-speech detection results at increasing

noise levels. Although AMR1 seems to be well
suited for speech detection at unfavourable

noise conditions, its extremely conservative

behaviour degrades its non-speech detection

accuracy being HR0 less than 10% below 10

dB, making it less useful in a practical speech

processing system.

(iii) AMR2 leads to considerable improvements

over G.729 and AMR1 yielding better non-
speech detection accuracy while still suffering

fast degradation of the speech detection abil-

ity at unfavourable noisy conditions.

(iv) The VAD used in the AFE standard for esti-

mating the noise spectrum in the Wiener filter-

ing stage is based in the full energy band and

yields a poor speech detection performance

with a fast decay of the speech hit-rate at
low SNR values. On the other hand, the

VAD used in the AFE for frame-dropping

achieves a high accuracy in speech detection

but moderate results in non-speech detection.

(v) LTSE achieves the best compromise among

the different VADs tested. It obtains a good

behaviour in detecting non-speech periods as

well as exhibits a slow decay in performance
at unfavourable noise conditions in speech

detection.

Table 1 summarizes the advantages provided

by the LTSE-based VAD over the different VAD

methods being evaluated by comparing them in

terms of the average speech/non-speech hit-rates.

LTSE yields a 47.28% HR0 average value, while

the G.729, AMR1, AMR2, WF and FD AFE

VADs yield 31.77%, 31.31%, 42.77%, 57.68% and
28.74%, respectively. On the other hand, LTSE

attains a 98.15% HR1 average value in speech



Table 1

Average speech/non-speech hit rates for SNR levels ranging from clean conditions to )5 dB

VAD G.729 AMR1 AMR2 AFE (WF) AFE (FD) LTSE

HR0 (%) 31.77 31.31 42.77 57.68 28.74 47.28

HR1 (%) 93.00 98.18 93.76 88.72 97.70 98.15
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detection while G.729, AMR1, AMR2, WF and
FD AFE VADs provide 93.00%, 98.18%, 93.76%,

88.72% and 97.70%, respectively. Frequently

VADs avoid losing speech periods leading to an

extremely conservative behaviour in detecting

speech pauses (for instance, the AMR1 VAD).

Thus, in order to correctly describe the VAD

performance, both parameters have to be consid-

ered. Thus, considering together speech and non-
speech hit-rates, the proposed VAD yielded the

best results when compared to the most represen-

tative VADs analysed.

3.2. Receiver operating characteristic curves

An additional test was conducted to compare
speech detection performance by means of the

ROC curves (Madisetti and Williams, 1999), a

frequently used methodology in communications

based on the hit and error detection probabilities

(Marzinzik and Kollmeier, 2002), that completely

describes the VAD error rate. The AURORA

subset of the original Spanish SDC database

(Moreno et al., 2000) was used in this analysis.
This database contains 4914 recordings using

close-talking and distant microphones from more

than 160 speakers. As in the whole SDC database,

the files are categorized into three noisy condi-

tions: quiet, low noisy and highly noisy conditions,

which represent different driving conditions and

average SNR values of 12, 9 and 5 dB.

The non-speech hit rate (HR0) and the false
alarm rate (FAR0 ¼ 100)HR1) were determined

in each noise condition for the proposed LTSE

VAD and the G.729, AMR1, AMR2, and AFE

VADs, which were used as a reference. For the

calculation of the false-alarm rate as well as the hit

rate, the ‘‘real’’ speech frames and ‘‘real’’ speech

pauses were determined by hand-labelling the

database on the close-talking microphone. The
non-speech hit rate (HR0) as a function of
the false alarm rate (FAR0 ¼ 100)HR1) for
0 < c6 10 dB is shown in Fig. 6 for recordings

from the distant microphone in quiet, low and

high noisy conditions. The working point of the

adaptive LTSE, G.729, AMR and the recently

approved AFE VADs (ETSI, 2002) are also in-

cluded. It can be derived from these plots that:

(i) The working point of the G.729 VAD shifts to
the right in the ROC space with decreasing

SNR, while the proposed algorithm is less af-

fected by the increasing level of background

noise.

(ii) AMR1 VAD works on a low false alarm rate

point of the ROC space but it exhibits poor

non-speech hit rate.

(iii) AMR2 VAD yields clear advantages over
G.729 and AMR1 exhibiting important

reduction in the false alarm rate when com-

pared to G.729 and increase in the non-speech

hit rate over AMR1.

(iv) WF AFE VAD yields good non-speech detec-

tion accuracy but works on a high false alarm

rate point on the ROC space. It suffers rapid

performance degradation when the driving
conditions get noisier. On the other hand,

FD AFE VAD has been planned to be conser-

vative since it is only used in the DSR stan-

dard for frame-dropping. Thus, it exhibits

poor non-speech detection accuracy working

on a low false alarm rate point of the ROC

space.

(v) LTSE VAD yields the lowest false alarm rate
for a fixed non-speech hit rate and also, the

highest non-speech hit rate for a given false

alarm rate. The ability of the adaptive LTSE

VAD to tune the detection threshold by

means the algorithm described in Eq. (3) en-

ables working on the optimal point of the

ROC curve for different noisy conditions.

Thus, the algorithm automatically selects the
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Fig. 6. ROC curves: (a) stopped car, motor running, (b) town

traffic, low speed rough road, (c) high speed, good road.
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appropriate decision threshold for a given

noisy condition in a similar way as it is carried

out in the AMR (option 1) standard.

Thus, the adaptive LTSE VAD provides a

sustained improvement in both speech pause hit

rate and false alarm rate over G.729 and AMR
VAD being the gains especially important over the
G.729 VAD. The label ½ð30; 8Þð50; 3:25Þ	 indicates
adequate points ½ðE0; c0Þ; ðE1; c1Þ	 describing the

VAD linear threshold tuning in Eq. (3). The pro-

posed VAD yields the best speech pause detection
accuracy, important reduction of the false alarm

rate when compared to G.729, and comparable

speech detection accuracy when compared to

AMR VADs. In general, the false alarm rates can

be decreased by changing threshold criteria in the

algorithm�s decision rules with the corresponding

decrease of the hit rates.

3.3. Influence of the VAD on a speech recognition

system

Although the discrimination analysis or the

ROC curves are effective to evaluate a given

algorithm, the influence of the VAD in a speech

recognition system was also studied. Many au-

thors claim that VADs are well compared by

evaluating speech recognition performance (Woo

et al., 2000) since non-efficient SND is an impor-

tant source of the degradation of recognition
performance in noisy environments (Karray and

Martin, 2003). There are two clear motivations for

that: (i) noise parameters such as its spectrum are

updated during non-speech periods being the

speech enhancement system strongly influenced by

the quality of the noise estimation, and (ii) frame-

dropping, a frequently used technique in speech

recognition to reduce the number of insertion er-
rors caused by the noise, is based on the VAD

decision and speech misclassification errors lead to

loss of speech, thus causing irrecoverable deletion

errors.

The reference framework (Base) is the ETSI

AURORA project for distributed speech recog-

nition (ETSI, 2000) while the recognizer is based

on the hidden Markov model toolkit software
package (Young et al., 2001). The task consists

on recognizing connected digits which are mod-

elled as whole word hidden Markov models with

the following parameters: 16 states per word,

simple left-to-right models, mixture of 3 Gaus-

sians per state and only the variances of all

acoustic coefficients (no full covariance matrix)

while speech pause models consist of three states
with a mixture of 6 Gaussians per state. The
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suppression method and frame dropping. The VADs are used

for noise spectrum estimation in the Wiener filtering stage and

for frame dropping.
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39-parameter feature vector consists of 12 ceps-

tral coefficients (without the zero-order coeffi-

cient), the logarithmic frame energy plus the

corresponding delta and acceleration coefficients.
Two training modes are defined for the experi-

ments conducted on the AURORA-2 data-

base: (i) training on clean data only (clean

training), and (ii) training on clean and noisy

data (multi-condition training). For the AUR-

ORA-3 SpeechDat-Car databases, the so-called

well-matched (WM), medium-mismatch (MM)

and high-mismatch (HM) conditions are used.
These databases contain recordings from the

close-talking and distant microphones. In WM

condition, both close-talking and hands-free

microphones are used for training and testing. In

MM condition, both training and testing are

performed using the hands-free microphone

recordings. In HM condition, training is done

using close-talking microphone material from all
driving conditions while testing is done using

hands-free microphone material taken for low

noise and high noise driving conditions. Finally,

recognition performance is assessed in terms of

the word accuracy (WAcc) that considers dele-

tion, substitution and insertion errors.

The influence of the VAD decision on the per-

formance of different feature extraction schemes
was studied. The first approach (shown in Fig. 7b)

incorporates Wiener filtering (WF) to the Base

system as noise suppression method. The second

feature extraction algorithm that was evaluated

uses Wiener filtering and non-speech frame drop-

ping as shown in Fig. 7c. In this preliminary set of

experiments, a simple noise reduction algorithm

based on Wiener filtering was used in order to
clearly show the influence of the VAD on the

system performance. The algorithm has been

implemented as described for the first stage of the

Wiener filtering in the AFE (ETSI, 2002). No

other mismatch reduction techniques already

present in the AFE standard (waveform processing

or blind equalization) have been considered since

they are not affected by the VAD decision and can
mask the impact of the VAD precision on the

overall system performance. In the next section,

results for a full version of the AFE will be pre-

sented.
Table 2 shows the AURORA-2 recognition re-

sults as a function of the SNR for the system

shown in Fig. 7a (Base), as well as for the
speech enhancement systems shown in Fig. 7b

(Base +WF) and Fig. 7c (Base +WF+FD), when

G.729, AMR, AFE, and LTSE are used as VAD

algorithms. These results were averaged over the

three test sets of the AURORA-2 recognition

experiments. An estimation of the 95% confidence

interval (CI) is also provided. Notice that, partic-

ularly, for the recognition experiments based on
the AFE VADs, we have used the same configu-

ration used in the standard (ETSI, 2002) with

different VADs for WF and FD. The same feature

extraction scheme was used for training and test-

ing. Only exact speech periods are kept in the FD

stage and consequently, all the frames classified by

the VAD as non-speech are discarded. FD has

impact on the training of silence models since less



Table 2

Average word accuracy for the AURORA-2 database

System Base Base+WF Base+WF+FD

VAD used None G.729 AMR1 AMR2 AFE LTSE G.729 AMR1 AMR2 AFE LTSE

(a) Clean training

Clean 99.03 98.81 98.80 98.81 98.77 98.84 98.41 97.87 98.63 98.78 99.12

20 dB 94.19 87.70 97.09 97.23 97.68 97.48 83.46 96.83 96.72 97.82 98.14

15 dB 85.41 75.23 92.05 94.61 95.19 95.17 71.76 92.03 93.76 95.28 96.39

10 dB 66.19 59.01 74.24 87.50 87.29 88.71 59.05 71.65 86.36 88.67 91.45

5 dB 39.28 40.30 44.29 71.01 66.05 72.38 43.52 40.66 70.97 71.55 77.06

0 dB 17.38 23.43 23.82 41.28 30.31 42.51 27.63 23.88 44.58 41.78 48.37

)5 dB 8.65 13.05 12.09 13.65 4.97 14.78 14.94 14.05 18.87 16.23 20.40

Average 60.49 57.13 66.30 78.33 75.30 79.25 57.08 65.01 78.48 79.02 82.28

CI (95%) ±0.24 ±0.24 ±0.23 ±0.20 ±0.21 ±0.20 ±0.24 ±0.23 ±0.20 ±0.20 ±0.19

(b) Multi-condition training

Clean 98.48 98.16 98.30 98.51 97.86 98.43 97.50 96.67 98.12 98.39 98.78

20 dB 97.39 93.96 97.04 97.86 97.60 97.94 96.05 96.90 97.57 97.98 98.50

15 dB 96.34 89.51 95.18 96.97 96.56 97.10 94.82 95.52 96.58 96.94 97.67

10 dB 93.88 81.69 91.90 94.43 93.98 94.64 91.23 91.76 93.80 93.63 95.53

5 dB 85.70 68.44 80.77 87.27 86.41 87.52 81.14 80.24 85.72 85.32 88.40

0 dB 59.02 42.58 53.29 65.45 64.63 66.32 54.50 53.36 62.81 63.89 67.09

)5 dB 24.47 18.54 23.47 30.31 28.78 31.33 23.73 23.29 27.92 30.80 32.68

Average 86.47 75.24 83.64 88.40 87.84 88.70 83.55 83.56 87.29 87.55 89.44

CI (95%) ±0.17 ±0.21 ±0.18 ±0.16 ±0.16 ±0.15 ±0.18 ±0.18 ±0.16 ±0.16 ±0.15
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non-speech frames are available for training.
However, if FD is effective enough, few non-

speech periods will be handled by the recognizer in

testing and consequently, little influence will have

the silence models on the speech recognition per-

formance. The proposed VAD outperforms the

standard G.729, AMR1, AMR2 and AFE VADs

when used for WF and also, when the VAD is used

for removing non-speech frames. Note that the
VAD decision is used in the WF stage for esti-

mating the noise spectrum during non-speech

periods, and a good estimation of the SNR is

critical for an efficient application of the noise

reduction algorithm. In this way, the energy-based

WF AFE VAD suffers fast performance degrada-

tion in speech detection as shown in Fig. 5b, thus

leading to numerous recognition errors and the
corresponding increase of the word error rate, as

shown in Table 2a. On the other hand, FD is

strongly influenced by the performance of the

VAD and an efficient VAD for robust speech

recognition needs a compromise between speech

and non-speech detection accuracy. When the

VAD suffers a rapid performance degradation
under severe noise conditions it losses too many
speech frames and leads to numerous deletion er-

rors; if the VAD does not correctly identify non-

speech periods it causes numerous insertion errors

the corresponding FD performance degradation.

The best recognition performance is obtained

when the proposed LTSE VAD is used for WF

and FD. Thus, in clean training (Table 2a) the

reductions of the word error rate were 58.71%,
49.36%, 17.66% and 15.54% over G.729, AMR1,

AMR2 and AFE VADs, respectively, while in

multi-condition training (Table 2b) the reductions

were of up to 35.81%, 35.77%, 16.92% and 15.18%.

Note that FD yields better results for the speech

recognition system trained on clean speech. Thus,

the reference recognizer yields a 60.49% average

WAcc while the enhanced speech recognizer based
on the proposed LTSE VAD obtains an 82.28%

average value. This is motivated by the fact that

models trained using clean speech does not ade-

quately model noise processes, and normally cause

insertion errors during non-speech periods. Thus,

removing efficiently speech pauses will lead to a

significant reduction of this error source. On the
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other hand, noise is well modelled when models

are trained using noisy speech and the speech

recognition system tends itself to reduce the

number of insertion errors in multi-condition
training as shown in Table 2a. Concretely, the

reference recognizer yields an 86.47% average

WAcc while the enhanced speech recognizer based

on the proposed LTSE VAD obtains an 89.44%

average value. On the other hand, since in the

worst case CI is 0.24% we can conclude that our

VAD method provides better results than the

VADs examined and that the improvements are
especially important in low SNR conditions. Fi-

nally, Table 3 compares the word accuracy results

averaged for clean and multi-condition style train-

ing modes to the performance of the recognition

system using the hand-labelling database. These

results show that the performance of the proposed

algorithm is very close to that of the manually

tagged database. In all test sets, the pro-
posed VAD algorithm is observed to outperform
Table 4

Average word accuracy for the SpeechDat-Car databases

System Base Base +WF

VAD used None G.729 AMR1 AMR2 AFE

Finnish WM 92.74 93.27 93.66 95.52 94.28

MM 80.51 75.99 78.93 75.51 78.52

HM 40.53 50.81 40.95 55.41 55.05

Average 71.26 73.36 71.18 75.48 75.95

Spanish WM 92.94 89.83 85.48 91.24 89.71

MM 83.31 79.62 79.31 81.44 76.12

HM 51.55 66.59 56.39 70.14 68.84

Average 75.93 78.68 73.73 80.94 78.22

German WM 91.20 90.60 90.20 93.13 91.48

MM 81.04 82.94 77.67 86.02 84.11

HM 73.17 78.40 70.40 83.07 82.01

Average 81.80 83.98 79.42 87.41 85.87

Average 76.33 78.67 74.78 81.28 80.01

CI (95%) ±0.44 ±0.42 ±0.45 ±0.40 ±0.41

Table 3

AURORA 2 recognition result summary

VAD used G.729 AMR1 AMR2

Base+WF 66.19 74.97 83.37

Base+WF+FD 70.32 74.29 82.89
standard VADs obtaining the best results followed

by AFE, AMR2, AMR1 and G.729.

Similar improvements were obtained for the

experiments conducted on the Spanish (Moreno
et al., 2000), German (Texas Instruments, 2001)

and Finnish (Nokia, 2000) SDC databases for the

three defined training/test modes. When the VAD

is used for WF and FD, the LTSE VAD provided

the best recognition results with 52.73%, 44.27%,

7.74% and 25.84% average improvements over

G.729, AMR1, AMR2 and AFE, respectively, for

the different training/test modes and databases
(Table 4).

3.4. Recognition results for the LTSE VAD replac-

ing the AFE VADs

In order to compare the proposed method to

the best available results, the VADs of the full

AFE standard (ETSI, 2002; Macho et al., 2002)

(including both the noise estimation VAD and
Base+WF+FD

LTSE G.729 AMR1 AMR2 AFE LTSE

95.34 88.62 94.57 95.52 94.25 94.99

75.10 67.99 81.60 79.55 82.42 80.51

56.68 65.80 77.14 80.21 56.89 80.60

75.71 74.14 84.44 85.09 77.85 85.37

91.34 88.62 94.65 95.67 95.28 96.55

84.35 72.84 80.59 90.91 90.23 91.28

65.59 65.50 62.41 85.77 77.53 87.07

80.43 75.65 74.33 90.78 87.68 91.63

92.85 87.20 90.36 92.79 93.03 93.77

85.65 68.52 78.48 83.87 85.43 86.68

83.58 72.48 66.23 81.77 83.16 83.40

87.36 76.07 78.36 86.14 87.21 87.95

81.17 75.29 79.04 87.34 84.25 88.32

±0.40 ±0.44 ±0.42 ±0.34 ±0.37 ±0.33

AFE LTSE Hand-labelling

81.57 83.98 84.69

83.29 85.86 86.86



Table 6

Average word error raes for the AURORA 3 databases: (a) full

AFE standard, (b) full AFE with LTSE as VAD for noise es-

timation and frame-dropping

AURORA 3 word error rate (%)

Finnish Spanish German Danish Average

(a) AFE

Well 3.96 3.39 4.87 6.02 4.56

Mid 19.49 6.21 10.40 22.49 14.65

High 14.77 9.23 8.70 20.39 13.27

Overall 12.10 5.84 7.76 15.38 10.27

CI (95%) ±0.58 ±0.36 ±0.56 ±0.75 ±0.28

(b) AFE+LTSE

Well 3.72 3.07 4.53 6.10 4.35

Mid 18.06 7.11 10.61 22.27 14.51

High 9.36 7.07 8.33 17.39 10.54

Overall 10.15 5.48 7.61 14.58 9.46

CI (95%) ±0.54 ±0.35 ±0.56 ±0.73 ±0.27
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frame dropping VAD) were replaced by the pro-

posed LTSE VAD and the AURORA recognition

experiments were conducted. Tables 5 and 6 show

the word error rates obtained for the full AFE
standard and the modified AFE incorporating the

proposed VAD for noise estimation in Wiener

filtering and frame dropping. We can observe that

a significant improvement is achieved in both

databases. In AURORA 2, the word error rate

was reduced from 8.14% to 7.82% for the multi-

condition training experiments and from 13.07%

to 11.87% for the clean training experiments. In
AURORA 3, the improvements were especially

important in high mismatch experiments being the

word error rate reduced from 13.27% to 10.54%.

Note that these improvements are only achieved

by replacing the VAD of the full AFE and not

introducing new improvements in the feature

extraction algorithm.

On the other hand, if the AURORA complex
Back-End using digit models with 20 Gaussians

per state and a silence model with 36 Gaussians

per state is considered, the AURORA 2 word er-

ror rate is reduced from 12.04% to 11.29% for the

clean training experiments and from 6.57% to

6.13% for the multi-condition training experiments

when the VADs of the original AFE are replaced

by the proposed LTSE VAD.
The efficiency of a VAD for speech recognition

depends on a number of factors. If speech pauses
Table 5

Average word error rates for the AURORA 2 databases: (a) full

AFE standard, (b) Full AFE with LTSE as VAD for noise

estimation and frame-dropping

AURORA 2 word error rate (%)

Set A Set B Set C Overall

(a) AFE

Multi 7.71 7.90 9.49 8.14

Clean 12.49 12.94 14.58 13.07

Average 10.10 10.42 11.99 10.61

CI (95%) ±0.16 ±0.17 ±0.25 ±0.11

(b) AFE+LTSE

Multi 7.36 7.56 9.27 7.82

Clean 11.44 11.56 13.35 11.87

Average 9.40 9.56 11.31 9.85

CI (95%) ±0.16 ±0.16 ±0.24 ±0.10
are very long and are more frequent than speech

periods, insertion errors would be an important

error source. On the contrary, if pauses are short,

maintaining a high speech hit-rate can be benefi-

cial to reduce the number of deletion errors with-
out being significantly important insertion errors.

The mismatch between training and test condi-

tions also affects the importance of the VAD in a

speech recognition system. When the system suf-

fers a high mismatch between training and test,

more important and effective can be a VAD for

increasing the performance of speech recognizers.

This fact is mainly motivated by the efficiency of
the frame-dropping stage in such conditions and

the efficient application of the noise suppression

algorithms.
4. Conclusion

This paper presented a new VAD algorithm for

improving speech detection robustness in noisy

environments and the performance of speech rec-

ognition systems. The VAD is based on the esti-

mation of the long-term spectral envelope and the

measure of the spectral divergence between speech

and noise. The decision threshold is adapted to the

measured noise energy while a controlled hang-
over is activated only when the observed SNR is
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low. It was shown by analysing the distribution

probabilities of the long-term spectral divergence

that, using long-term information about the

speech signal is beneficial for improving speech
detection accuracy and minimizing misclassifica-

tion errors.

A discrimination analysis using the AURORA-

2 speech database was conducted to assess the

performance of the proposed algorithm and to

compare it to standard VADs such as ITU

G.729B, AMR, and the recently approved ad-

vanced front-end standard for distributed speech
recognition. The LTSE-based VAD obtained the

best behaviour in detecting non-speech periods

and was the most precise in detecting speech

periods exhibiting slow performance degradation

at unfavourable noise conditions.

An analysis of the VAD ROC curves was also

conducted using the Spanish SDC database. The

ability of the adaptive LTSE VAD to tune the
detection threshold enabled working on the opti-

mal point of the ROC curve for different noisy

conditions. The adaptive LTSE VAD provided a

sustained improvement in both non-speech hit rate

and false alarm rate over G.729 and AMR VAD

being the gains particularly important over the

G.729 VAD. The working point of the G.729

algorithm shifts to the right in the ROC space with
decreasing SNR, while the proposed algorithm is

less affected by the increasing level of background

noise. On the other hand, it has been shown that

the AFE VADs yield poor speech/non-speech

discrimination. Particularly, WF AFE VAD yields

good non-speech detection accuracy but works on

a high false alarm rate point on the ROC space,

thus suffering rapid performance degradation
when the driving conditions get noisier. On the

other hand, FD AFE VAD is only used in the

DSR standard for frame dropping and has been

planned to be conservative exhibiting poor non-

speech detection accuracy and working on a low

false alarm rate point of the ROC space.

It was also studied the influence of the VAD in

a speech recognition system. The proposed VAD
outperformed the standard G.729, AMR1, AMR2

and AFE VADs when the VAD decision is used

for estimating the noise spectrum in Wiener fil-
tering and when the VAD is employed for non-

speech frame dropping. Particularly, when the

feature extraction algorithm was based on Wiener

filtering and frame-drooping, and the models were
trained using clean speech, the proposed LTSE

VAD leaded to word error rate reductions of up to

58.71%, 49.36%, 17.66% and 15.54% over G.729,

AMR1, AMR2 and AFE VADs, respectively,

while the advantages were of up to 35.81%,

35.77%, 16.92% and 15.18% when the models were

trained using noisy speech. Similar improvements

were obtained for the experiments conducted on
the SpeechDat-Car databases. It was also shown

that the performance of the proposed algorithm is

very close to that of the manually tagged database.

The proposed VAD was also compared to the

AFE VADs using the full AFE standard as feature

extraction algorithm. When the proposed VAD

replaced the VADs of the AFE standard, a sig-

nificant reduction of the word error rate was ob-
tained in both clean and multi-condition training

experiments and also for the SpeechDat-Car data-

bases.
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