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Class-Based Parametric Approximation to
Histogram Equalization for ASR
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Abstract—This letter assesses an improved equalization trans-
formation for robust speech recognition in noisy environments.
The proposal is an evolution of the parametric approximation to
Histogram Equalization named PEQ into a two-step algorithm
dealing separately with environmental and acoustic mismatch. A
first parametric equalization is done to eliminate environmental
mismatch. These equalized data are divided into classes, and
parametrically re-equalized using class specific references to
reduce the acoustic mismatch. Experiments have been conducted
for Aurora 2 and Aurora 4 databases. A comparative analysis of
the experimental results shows significant benefits for databases
with high acoustic variability like Aurora 4.

Index Terms—Feature compensation, histogram equalization,
parametric equalization, probabilistic classes, robust ASR.

I. INTRODUCTION

W ITHIN the group of feature normalization techniques
for Robust Speech Recognition, statistical matching al-

gorithms are very commonly used due to their low computa-
tional cost and the simplicity of their implementation. They
eliminate the effects of noise in speech by modifying the sta-
tistics of the noisy feature vector, to make them equal to those
of a set of clean reference vectors. Cepstral Mean and Variance
Normalization (CMVN) [1] normalizes the two first statistical
moments compensating the linear effects of additive noise in
the Cepstral domain. A higher number of statistical moments
have also been normalized [2], [3], achieving certain word error
rate reductions with the drawback of a high computational cost.
In that context, Histogram Equalization (HEQ) applied to voice
features is the natural extension of the former efforts. It normal-
izes all the statistical moments of the Mel Frequency Cepstral
Coefficients (MFCCs) by forcing their Cumulative Distribution
Function (CDF) to match a clean reference CDF. In such way,
the linear and nonlinear effects of noise which had modified the
statistics and global shape of the histograms of the MFCCs are
neutralized. Due to its simplicity (there is no assumption about
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the type or types of noises expected during recognition) and low
computational cost, HEQ has been widely incorporated to the
front-ends of speech recognizers in noisy environments [4]–[8].
Two inherent limitations must be pointed at in order to have
its complete picture. Firstly, its “bag-of-frames” representation
while equalizing a speech utterance implies the waste of the
frame temporal context information. Secondly, it is not directly
feasible for real-time processing because of the “look ahead”
that would be required to calculate the utterance statistics.
The logic underneath HEQ is to transform train and test fea-

tures tomake themmatch a common range. Such equalization of
ranges makes the features less vulnerable to acoustic and envi-
ronmental mismatches, under the assumption of two premises.
On one hand, the environmental mismatch acts as a monotonic
invertible transformation in the feature domain. On the other,
both train and test sentences contain enoughacoustic information
to provide acoustically accurate CDFs of the sentences to define
properly the equalization transformation. Thefirst premise is sat-
isfied only partially. The random nature of noise adds a random,
and by definition non invertible, transformation to the voice
features that will not be eliminated by the equalization. There
are some obstacles to fulfill the second assumption. For some
ASR scenarios, the length of the sentences to be equalized is not
enough to provide empirical representative acoustic statistics.
Such lackof accuracydeteriorates the acoustic informationof the
equalized voice features which becomes then dependent on the
particular content of the sentence. To overcome that limitation,
parametric approximations likeDoubleGaussianNormalization
(DGN) [9] or Parametric Equalization (PEQ) [10] have been
proposed. They both assume two classes of speech frames (low
energy and high energy frames) and use a parametric model of
their probability distribution functions (pdfs). In that way, an
equalization to a normal Gaussian reference CDF is performed,
assuming also a Gaussian distribution for the observation
features. Considering two classes of features and separately
equalizing them facilitates the elimination of the acoustic mis-
match between train and test sets. The usage of two separate
independent histograms to equalize speech and silence frames
was first proposed in [11] and later extended to a higher number
of classes in the strategy named Probabilistic Class Equalization
[12]. Such work uses the equalized version of the utterances to
calculate class-probabilities for the corresponding noisy frames.
Then, the original noisy sentences are equalized to multiple
class-specific references. The final feature vector is calculated as
the weighted average of all the class-specific equalizations.
This work progresses in the overcoming of the limitations

of HEQ just defined, by extending the strategy of two-class
Parametric Equalization (PEQ) proposed in [10] to a higher
number of classes. Given the fact that acoustic classes are better
identified once environmental mismatch has been eliminated, a
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first two-class parametric equalization is done. Then, these al-
ready equalized data are divided into a optimum higher number
classes through unsupervised classification, and parametrically
re-equalized using class-specific references. Two facts differen-
tiate this proposal from [12]. Firstly, it deals with the class-spe-
cific equalization of features already cleaned through different
normalization techniques. Secondly, parametric class-equaliza-
tion is introduced. The number of parameters to be estimated
is lower than in the case of the nonparametric approach, per-
mitting to increase the number of classes used. As a result, the
acoustic variability of the database is modelled with higher pre-
cision. The letter is organized as follows. Section II describes
the procedure proposed. Section III presents the experimental
work and numerical results obtained. Section III-A analyzes the
benefits of the approximation for two databases with different
acoustic variability: Aurora 2 and Aurora 4. In Section III-B,
diverse global feature normalization techniques, including no
normalization at all, are confronted to PEQ to evaluate the need
of a first global noise reduction step and the appropriateness of
PEQ as such. Finally, conclusions on the suitability of the ap-
proach are exposed in Section IV.

II. CLASS-BASED PARAMETRIC EQUALIZATION

Speech features equalized to a reference distribution become
invariant to arbitrary transformations as long as such trans-
formations are invertible. Assuming that noise is an invertible
transformation (ignoring the random part of its behavior) HEQ
will make the equalized speech features invariant to noise.
Parametric models for the probability distributions of the fea-

tures to be equalized have been proposed to reduce the statistical
misestimations derived from the limited amount of observations
per sentence in some scenarios. Empirical CDFs used in HEQ
are substituted by Gaussian CDFs with a certain mean and vari-
ance in approximations that could also be considered as exten-
sions of CMVN. Double Gaussian Normalization (DGN) uses
a two-Gaussian mixture model (representing speech and non-
speech classes) for each component of the feature vector. A sim-
ilar approximation named Parametric Equalization (PEQ) uses
a multivariate probability model to separate speech and non-
speech frames instead of implementing an independent trans-
formation for each component like DGN does. These techniques
outperform successfully the existing HEQ mainly for two rea-
sons. On one hand they provide an improvement in the statistical
accuracy for the case of short test sentences with not enough
frames to provide realistic cumulative histograms. On the other
hand, they define independent transformations for speech and
nonspeech frames making the equalization independent of the
percentage of silence present in the sentence being equalized.
This idea of class equalization is further extended to a higher
number of acoustic classes in the work denominated Proba-
bilistic Class Equalization. Such work presents satisfactory re-
sults by dividing the acoustic space into a set of acoustic classes
and performing HEQ separately on each of them.
Based on the results just mentioned, the alternative proposed

in this letter extends PEQ to a higher number of classes to
analyze the convenience of implementing nonparametrically
or parametrically the equalization. It could also be considered
a class-based extension of CMVN on top of features already
normalized.

Fig. 1. Block diagram of the proposed equalization strategy.

Algorithm

Firstly, a two-classes Parametric Equalization (PEQ) is
performed transforming a noisy feature vector into a paramet-
rically equalized feature vector . PEQ approximates the pdf
of the MFCC features to a mixture of two Gaussians. The first
Gaussian represents the pdf for nonspeech frames.
The second Gaussian models the pdf for speech
frames. Four steps are followed to obtain :
i) A two-Gaussian classifier based on the logarithmic en-
ergy of the frame (C0 Cepstral coefficient) is used to ob-
tain the probability of each framebeing a nonspeech frame

, or a speech frame . These nonspeech and
speech classes are initialized with frames having respec-
tively theirC0Cepstral coefficient below (lowenergy) and
above (high energy) the average C0 value of the sentence.
Expectation and Maximization based re-estimations are
done to obtain and values.

ii) A clean reference two-Gaussian pdf is calculated ap-
plying the classifier on the clean training data set to
obtain the statistical references of the transformed do-
main for the nonspeech class and

for the speech class.
iii) Using the Gaussian classifier based on C0, all frames of

each feature vector are classifiedas nonspeechor speech.
The respective class-mean and class-variance for theutter-
ance are calculated on vectors , , and .

iv) Each component of the feature vector is linearly
mapped to the clean reference statistic domain following
(1) in case is a nonspeech frame, or (2) in case it is a
speech frame. The final parametrically equalized feature
vector is given by (3):

(1)

(2)

(3)

After this first global PEQ transformation, a second class-
parametric equalization is done through the following
steps:
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Fig. 2. Analysis for different databases and SNRs (a) Aurora 2: WER for Clean, 20 and 15 dBs (b) Aurora 2: WER for 10, 5 and 0 dBs (c) Aurora 4: WER.

v) A codebook of centroids is calculated applying the
k-means algorithm to the clean training dataset of vec-
tors previously equalized with PEQ.

vi) Using such codebook and the clean training dataset of
PEQ vectors, a C-mixtures Gaussian Mixture Model is
estimated. Classes are initialized using the minimum
euclidean distance to the centroids. Expectation and
Maximization based re-estimations are done to build the
GMM model for classes to .

vii) For every PEQ feature vector , mean and variance
are computed. The C-classes GMM created in step

(vi) is first used to calculate the posterior probabilities
of the vector belonging to each of the classes ,
and secondly to linearly map to each of the classes
following (4). The final feature vector is described in (5):

(4)

(5)

Fig. 1 shows a block diagram of steps (i)–(vii) followed
through the train and test equalization process proposed.

III. EXPERIMENTAL WORK

Class-based parametric equalization has been evaluated in the
experimental framework of Aurora 2 [13] and Aurora 4 [14]
databases following the standard clean-training tests. The proce-
dures for training and recognition are identical to the reference
experiments with the exception of the front-end that includes
the feature normalization techniques described in this paper.
Training and recognition are performed using the HMM Tool
Kit (HTK) Software. A feature vector of 13 Cepstral coefficients
is used as basic parametrization using coefficient C0 instead of
the logarithmic energy. This basic feature vector is augmented
with first and second order regressions yielding a final feature
vector of 39 components. For comparison purposes, different
parameterizations described in the following subsections have
been implemented and evaluated.

A. Analysis for Different Databases

In order to evaluate the convenience of the parametric
approximation proposed in this work, experiments have been
conducted comparing it with an analogue implementation
based on the traditional HEQ ([5], [12]). Two strategies have
been confronted. Firstly, a quantile-based global histogram

equalization followed by a class histogram equalization (named
HEQ-CHEQ) has been performed. The dictionary of centroids
and GMM used for the classification were built using the clean
training set of features normalized with HEQ. Secondly, the
two-class parametric equalization followed by the multi-class
parametric equalization proposed in this letter has been imple-
mented with name PEQ-CPEQ. Fig. 2 shows word error rate
(WER) recognition results for experiments conducted on two
databases with different acoustic variability and SNR condi-
tions: Aurora 2 [13] and Aurora 4 [14]. Aurora 2 contains short
utterances formed by connected digits artificially contaminated
with several noises and SNRs ranging from clean condition
to 0 dBs. Acoustic word models (16 states and 3 Gaussians
per state) have been used for recognition. On the other hand,
Aurora 4 is a large vocabulary database with bigger acoustic
variability and several noises artificially added with an average
SNR of 15 dB. Triphone models (3 states and 6 Gaussians per
state) have been used for recognition.
Fig. 2 shows tendencies similar to those pointed at in the

Probabilistic Class Equalization proposed for Aurora 2 in [12].
Fig. 2(a) plots the WER for Aurora 2 high SNR experiments
(average results for clean, 20 and 15 dBs). The lowest WER is
obtained using the nonparametric approach when two acoustic
classes are separately equalized after a first global equalization
(HEQ-CHEQ). Plain HEQ and PEQ are also shown in exper-
iment labeled ’ 1 class’. Fig. 2(b) depicts WER for low SNR
Aurora 2 experiments (average results for 10, 5 and 0 dBs).
Plain PEQ outperforms HEQ in noisy conditions but the op-
timal number of classes increases then to 4. The noisy acoustic
environment is better modeled with a higher number of classes
compared to the high SNR case. Aurora 4 is analyzed in Fig. 2(c)
In this case, plain PEQ improves plain HEQ importantly (ex-
periment “1 class”). Moreover, PEQ-CPEQ remarkably outper-
forms HEQ-CHEQ in all cases. Due to the raise in acoustic
variability of Aurora 4, the optimal strategy is to significantly
augment number of classes and use the class-based parametric
equalization. When the number of classes increases, class de-
pendent histograms become inexact. The less aggressive class-
dependent mean and variance normalization done in the para-
metric approach produces better results then.

B. Optimum Domain for the Class Equalization

The objective of the PEQ transformation (performed as very
first step of the algorithm proposed in Section II-A) is to reduce
the environmental mismatch. Such noise removal improves it-
self recognition and permits calculating more exact statistics
and probabilities for the acoustic classes of the utterances in the
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TABLE I
AURORA 4 WER FOR DIFFERENT EQUALIZATION STRATEGIES

second equalization step. An analysis of the suitability of PEQ
has been done based on experiments on Aurora 4 database.
Table I shows the WER obtained in recognition for several

noise removal techniques applied to Aurora 4. Firstly, a baseline
MFCC parameterization ( BASELINE in the table) has been
evaluated. Relative Improvement (R-I) over this baseline result
is also shown in the table. Quantile based Histogram Equaliza-
tion [5], named HEQ, has been implemented using a reference
CDF averaged empirically over the whole clean training set.
PEQ [10] has been performed computing both speech and
nonspeech Gaussian probability density functions averaging
the clean training data set. Finally, a third more complex feature
transformation named Vector Taylor Series Approach (VTS)
[15] has been applied. VTS uses an analytical expression of the
environmental degradation based on the noisy observations and
statistical models for the clean speech and the additive noise.
Using such model of environmental mismatch it provides the
expected value of the clean speech. A comparative analysis of
these three feature normalization techniques shows that PEQ
outperforms HEQ reducing its WER from 37.08% to 34.24%
due to the introduction of the speech and nonspeech separate
equalization and the parametric formulation. VTS outperforms
both HEQ and PEQ lowering the WER to 33.02%.
WER results for Aurora 4 are also provided comparing the

just mentioned normalization techniques as originary domains
for the class equalization (baseline, HEQ, PEQ and VTS).
Parametric (CPEQ) and nonparametric (CHEQ) class equal-
ization of baseline features, and features transformed through
HEQ, PEQ and VTS have been done. Results are shown for the
number of classes empirically found to produce best average
results using the database development set: eight classes in
the case of baseline-CHEQ and baseline-CPEQ; four classes
in the case of HEQ-CHEQ and HEQ-CPEQ; 32 classes in the
case of PEQ-CHEQ and PEQ-CPEQ; 16 and four classes for
VTS-HEQ and VTS-CPEQ respectively. The lowest WER is
obtained when using CPEQ after PEQ, which is the topic of
this letter. The PEQ originary domain outperforms the VTS
originary domain, which seems interesting given the fact that
plain VTS produces lower WER than plain PEQ. Performing a
first statistical matching produces better global results when a
second class-specific statistical matching is to be done on top
of it. PEQ-CPEQ produces a R-I of 33.79% followed by the
combination PEQ-CHEQ giving a R-I of 31.14%. The lowest
R-I (11.27%) is obtained when applying directly class-equal-

ization to baseline features. This result sustains the need of
using some primary noise removal technique before doing the
class-equalization.

IV. CONCLUSION

This letter proposes a class-based parametric approximation
to the well known technique of Histogram Equalization for ro-
bust speech recognition. In order to improve the environmental
and acoustic mismatch removal performed by HEQ, a two-steps
strategy has been proposed. Firstly, a two-classes parametric
equalization named PEQ is done to remove noise. Secondly,
on such equalized domain acoustic classes are defined and fea-
tures are normalized using class specific references. The intro-
duction of acoustic classes separately equalized to match class
specific statistics helps to overcome the acoustic mismatch in
a very effective way. For databases with long sentences and
high acoustic variability like Aurora 4 (large vocabularies), in-
creasing the number of acoustic classes and simplifying the
equalization to a parametric normalization of mean and vari-
ance produces satisfactory results that outperform the existing
HEQ approximations.
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