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Generalized LRT-Based Voice Activity Detector
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Abstract—A robust and effective voice activity detection (VAD)
algorithm is proposed for improving speech recognition per-
formance in noisy environments. The approach is based on
well-known statistical tests based on the determination of the
speech/non-speech bispectra by means of third-order auto-cu-
mulants. This algorithm differs from many others in the way
the decision rule is formulated being the statistical tests built
on a multiple observation (MO) window consisting of averaged
bispectrum coefficients of the speech signal. Clear improvements
in speech/non-speech discrimination accuracy demonstrate the
effectiveness of the proposed VAD. It is shown that application of
a statistical detection test leads to a better separation of the speech
and noise distributions, thus allowing a more effective discrimi-
nation and a tradeoff between complexity and performance. The
experimental analysis carried out on the AURORA 3 databases
provides an extensive performance evaluation together with an
exhaustive comparison to the standard VADs, such as ITU G.729,
GSM AMR, and ETSI AFE, for distributed speech recognition
(DSR) and other recently reported VADs.

Index Terms—Bispectra analysis, higher order statistics, noise
reduction, speech/non-speech detection.

I. INTRODUCTION

SPEECH/NON-SPEECH detection is an unsolved problem
in speech processing and affects numerous applications, in-

cluding robust speech recognition, discontinuous transmission,
real-time speech transmission on the Internet, or combined noise
reduction and echo cancellation schemes in the context of tele-
phony [1], [2]. The speech/non-speech classification task is not
as trivial as it appears, and most of the voice activity detection
(VAD) algorithms often fail when the level of background noise
increases. During the last decade, numerous researchers have
developed different strategies for detecting speech on a noisy
signal [3] and have evaluated the influence of the VAD effec-
tiveness on the performance of speech processing systems. Most
of them have focused on the development of robust algorithms
with special attention on the derivation and study of noise robust
features and decision rules [4]–[6]. The different approaches in-
clude those based on energy thresholds, pitch detection, spec-
trum analysis, zero-crossing rate, periodicity measure, higher
order statistics in the LPC residual domain, or combinations of
different features.
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This letter explores a new alternative toward improving
speech detection robustness in adverse environments and the
performance of speech recognition systems. The proposed
VAD incorporates a noise reduction block that precedes the
VAD and uses bispectra of third-order cumulants to formulate
a robust decision rule.

II. MODEL ASSUMPTIONS

Let denote the discrete time measurements
at the sensor. Consider the set of stochastic variables

obtained from the shift of
the input signal

(1)

where is the differential delay (or advance) between the sam-
ples. This provides a new set of vector variables

by selecting samples of the input signal.
It can be represented using the associated Toeplitz matrix

(2)

Using this model, the speech/non-speech detection can be de-
scribed by using two essential hypotheses (reordering indexes)

(3)

where denotes the common non-Gaussian speech signal
with delay , and are the additive non-speech noise se-
quences, respectively. All the processes involved are assumed
to be jointly stationary and zero-mean. Consider the third-order
cumulant function defined as and
the two-dimensional discrete Fourier transform (DFT) of ,
the bispectrum function

(4)
Sampling (4), the bispectrum estimate can be written as

(5)

where with
are the sampling frequencies, is the
window function (to reduce aliasing [7]), and

.
The estimation of the bispectrum is discussed in depth in [8]
and many others, where conditions for consistency are given.
The estimate is said to be asymptotically consistent if the
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squared deviation goes to zero as the number of samples tends
to infinity.

III. TESTS FOR VOICE ACTIVITY DETECTION

The decision of our algorithm is based on statistical tests, in-
cluding the generalized likelihood ratio tests (GLRT) [9] and the
central -distributed test statistic under [10]. We will call
them GLRT and tests. The tests are based on some asymp-
totic distributions, and computer simulations in [11] show that
the tests require larger data sets to achieve a consistent the-
oretical asymptotic distribution.
A. GLRT

Consider the complete domain in bispectrum frequency for
and define uniformly distributed points in

this grid , called coarse grid, as shown in Fig. 1. Define
the fine grid of points as the nearest frequency pairs to the
coarse grid points. We have that . If we reorder
the components of the set of bispectrum estimates ,
where , on the fine grid around the bifrequency pair
into an vector , where indexes the coarse
grid [9], and define -vectors , ;
the GLRT, for the above-discussed hypothesis testing problem

against (6)

where and are the mean and covariance max-
imum likelihood Gaussian estimates of vector

, that is

(7)

Thus, presence of speech is detected if

(8)

where is the threshold determined by a certain significance
level, i.e., the probability of false alarm. Note the following.

1) We assume independence between the components of bis-
pectrum of signal and additive noise ;1 thus

(9)

2) The right-hand side of hypothesis must be estimated
in each frame (it is a priori unknown). In our algorithm,
the approach is based on the information in the previous
non-speech detected intervals.

The statistic considered here is distributed as a cen-
tral under the null hypothesis. Therefore, a
Neyman–Pearson test can be designed for a significance level

.

B. Tests

In this section, we consider the distributed test statistic
[10]

(10)

1This is an acceptable assumption [12] since the results obtained from it are
quiet significant. Here, we do not assume that n (t) k = 0 � � � � M are
Gaussian; they are modeled as an adaptive Bispectrum bias instead.

Fig. 1. a) Fine and coarse grids. P points are uniformly distributed with L
boundary points. b) Row averaging for integrated bispectrum estimation.

where is the number of nonoverlapping segments, each
of size , given the sample sequence,

, which is
asymptotically distributed as , where represents
the power spectrum of , and denotes the number of
points in the principal domain. The Neyman–Pearson test for a
significant level (false-alarm probability) turns out to be

(11)

where is determined from tables of the central distribu-
tion. Note that the denominator of is unknown a
priori so they must be estimated as the bispectrum function (that
is, calculate ). This requires a larger data set, as we
mentioned earlier in this section.

IV. AVERAGED BISPECTRUM FUNCTION

AND LONG-TERM INFORMATION

In order to observe the potential of the proposed method, we
propose an approximated decision based on an average of the
components of the bispectrum in one frequency dimension in-
stead of averaging over coarse and fine grids [9]. In this way, we
define as

(12)

where , defines the selected grid (high frequencies with
noteworthy variability). It can be easily deduced that

(13)
That is, the cross spectrum between the signal and its square

can be interpreted as an integrated bispectrum of . This
integrated bispectrum will form the basis for the test statistic
used in this letter for detecting the presence of the non-Gaussian
signal in noisy data. The advantage of this implementation
is the low computational cost, unlike the bispectrum-based test
for voice activity detection presented in [12].

Fig. 2 shows the differences between the cumulants and bis-
pectrum of speech and non-speech. It can be clearly concluded
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Fig. 2. Different features enabling voice activity detection (third-order cumu-
lants, bispectrum magnitude, and phase y ). (a) Features of a speech signal. (b)
Features of non-speech signal.

that the bispectrum of the signal exhibits discriminative charac-
teristics for speech/non-speech classification.

Fig. 3(a) shows the fine-to-coarse grid transformation of (12)
when it is defined as an average over rows (integrated bispec-
trum) of the 2-D bispectrum representation. The so-defined bis-
pectrum estimation retains discriminative behavior and exhibits
important differences between speech and non-speech signals.
Fig. 3(b) shows the operation of the proposed VAD on an utter-
ance of the Spanish SpeechDat-Car (SDC) database [13]. The
phonetic transcription is: [“siete,” “ ,” “dos,” “uno,” “otSo,”
“seis”]. Fig. 3(b) shows the value of versus time. Observe
how assuming a decision threshold slightly above the ini-
tial value of the magnitude over the first frame (noise), we can
achieve a good VAD decision. The figure also shows the good
behavior of the proposed method for detecting fricative sounds
(as derived from the phonetic transcription), even when a single
frame is used in these preliminary experiments. Alternatively,
we have also included long-term information (LTI) in the VAD
decision, as proposed in [11], which essentially improves the ef-
ficiency of the proposed method. With this approach, the VAD

Fig. 3. Operation of the VAD on an utterance of Spanish SDC database. (a)
Bispectrum averaged over rows for speech and non-speech. (b) Evaluation of �
and VAD decision.

decision is formulated not only over the current frame , using
, , but also over previous and fu-

ture frames, that is, the frame set that
includes multiple consecutive observations of the input signal

, , , where de-
fines the VAD frame-shift. In this way, the VAD performs an ad-
vanced detection of beginnings and delayed detection of word
endings that, in part, makes a hangover unnecessary.

V. EXPERIMENTAL FRAMEWORK

The ROC curves are frequently used to completely describe
the VAD error rate. The AURORA 3 subset of the original
Spanish SDC database [13] was used in this analysis. The
files are categorized into three noisy conditions: quiet, low
noisy, and highly noisy conditions, which represent different
driving conditions with average SNR values between 25dB and
5dB. The non-speech hit rate (HR0) and the false alarm rate
(FAR0= 100-HR1) were determined in each noise condition.
Fig. 4 shows the ROC curves of the proposed bispectra GLRT
based-VAD when defined on a single observation and
over multiple observations ( frame delay) under different
noise conditions. The working points of the ITU-T G.729 [2],
ETSI AMR [1], and ETSI AFE VADs [14] are also included
as well as other frequently referred to algorithms [3]–[6] for
recordings from the distant microphone in quiet and high noisy
conditions.

The proposed VAD yields clear improvements in detection
accuracy working closer to the upper left corner than any other
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Fig. 4. ROC curves obtained for different subsets of the Spanish SDC database
at different driving conditions. (a) Quiet (stopped car, motor running, 12 dB
average SNR). (b) High (high speed, good road, 5 dB average SNR).

algorithm used as a reference. The benefits are especially impor-
tant over G.729 and over the Li’s algorithm [5]. The statistical
test is more effective when multiple observation are considered.
It improves Marzinzik’s VAD [6], the Sohn’s VAD [3], and all
recently reported VADs to date for varying significance level.
Fig. 4 also assesses the influence of the noise reduction block
on the ROC curves in order to state clearly if the benefits re-
ported by the proposed method are due to the use of a GLRT
defined on the bispectrum of the input signal or to the noise re-
duction block. If noise reduction is not applied, the algorithm
yields clear improvements over the competing algorithm. The
purpose of the noise reduction is to achieve a more robust de-
tection algorithm for use in high noise acoustic environments.
Thus, denoising leads to an additional shift up and to the left of
the ROC curve in the ROC space.

The results are conclusive over Aurora 3 on average (see
Table I). The comparison with [12] is not included. Although the
model is essentially different (in the latter reference, a Gaussian
model is assumed in the vector of observations), the accuracy of
both approaches is rather similar.

VI. CONCLUSION

This letter presented a new technique for improving speech
detection robustness in noisy environments. The approach is
based on higher order spectra analysis, i.e., the integrated bis-
pectrum function. The VAD performs an advanced detection

TABLE I
AVERAGE AURORA-3 SPEECH/NON-SPEECH HIT RATES

using the estimated components of the bispectrum function and
robust statistical tests (i.e., GLRT) over the set of vector vari-
ables (multiple-single observation). As a result, it leads to
clear improvements in speech/non-speech discrimination, espe-
cially when the SNR drops. The proposed algorithm outper-
formed G.729, AMR and AFE standard VADs, as well as re-
cently reported approaches for endpoint detection.
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