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Abstract. In this paper a fuzzy C-means (FCM) based approach for
speech/non-speech discrimination is developed to build an effective voice
activity detection (VAD) algorithm. The proposed VAD method is based
on a soft-decision clustering approach built over a ratio of subband ener-
gies that improves recognition performance in noisy environments. The
accuracy of the FCM-VAD algorithm lies in the use of a decision function
defined over a multiple-observation (MO) window of averaged subband
energy ratio and the modeling of noise subspace into fuzzy prototypes.
In addition, time efficiency is also reached due to the clustering approach
which is fundamental in VAD real time applications, i.e. speech recog-
nition. An exhaustive analysis on the Spanish SpeechDat-Car databases
is conducted in order to assess the performance of the proposed method
and to compare it to existing standard VAD methods. The results show
improvements in detection accuracy over standard VADs and a repre-
sentative set of recently reported VAD algorithms.

1 Introduction

The emerging wireless communication systems are demanding increasing levels
of performance of speech processing systems working in noise adverse environ-
ments. These systems often benefits from using voice activity detectors (VADs)
which are frequently used in such application scenarios for different purposes.
Speech/non-speech detection is an unsolved problem in speech processing and
affects numerous applications including robust speech recognition, discontinuous
transmission, real-time speech transmission on the Internet or combined noise
reduction and echo cancelation schemes in the context of telephony [1, 2]. The
speech/non-speech classification task is not as trivial as it appears, and most of
the VAD algorithms fail when the level of background noise increases. During
the last decade, numerous researchers have developed different strategies for de-
tecting speech on a noisy signal [3] and have evaluated the influence of the VAD
effectiveness on the performance of speech processing systems [4]. Most of them
have focussed on the development of robust algorithms with special attention on
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the derivation and study of noise robust features and decision rules [5, 6, 7, 3].
The different approaches include those based on energy thresholds, pitch detec-
tion, spectrum analysis, zero-crossing rate, periodicity measure or combinations
of different features.

The speech/pause discrimination can be described as an unsupervised learn-
ing problem. Clustering is one solution to this case where data is divided into
groups which are related “in some sense”. Despite the simplicity of clustering
algorithms, there is an increasing interest in the use of clustering methods in
pattern recognition, image processing and information retrieval [9, 10]. Cluster-
ing has a rich history in other disciplines [11] such as machine learning, biology,
psychiatry, psychology, archaeology, geology, geography, and marketing. Clus-
ter analysis, also called data segmentation, has a variety of goals. All related to
grouping or segmenting a collection of objects into subsets or “clusters” such that
those within each cluster are more closely related to one another than objects
assigned to different clusters. Cluster analysis is also used to form descriptive sta-
tistics to ascertain whether or not the data consist of a set of distinct subgroups,
each group representing objects with substantially different properties.

2 A Suitable Model for VAD

Let x(n) be a discrete time signal. Denote by yj a frame of signal containing the
elements:

{xj
i } = {x(i + j · D)}; i = 1 . . . L (1)

where D is the window shift and L is the number of samples in each frame.
Consider the set of 2 ·m+1 frames {yl−m, . . . yl . . . , yl+m} centered on frame yl,
and denote by Y (s, j), j = l − m, . . . l . . . , l + m its Discrete Fourier Transform
(DFT) resp.:

Yj(ωs) ≡ Y (s, j) =
NF F T −1�

n=0

x(n + j · D) · exp (−j · n · ωs) . (2)

where ωs = 2π·s
NF F T

, 0 ≤ s ≤ NFFT − 1 and NFFT is the number of points or
resolution used in the DFT (if NFFT > L then the DFT is padded with zeros).
The energies for the l-th frame, E(k, l), in K subbands (k = 0, 1, ..., K − 1), are
computed by means of:

E(k, l) =

(
K

NF F T

sk+1−1∑
s=sk

|Y (s, l)|2
)

sk =
⌊

NF F T

2K k
⌋

k = 0, 1, ..., K − 1

(3)

where an equally spaced subband assignment is used and �·� denotes the “floor”
function. Hence, the signal energy is averaged over K subbands obtaining a
suitable representation of the input signal for VAD [12], the observation vector at
frame l, E(l) = (E(0, l), . . . , E(K − 1, l))T . The VAD decision rule is formulated
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over a sliding multiple observation (MO) window consisting of 2m+1 observation
vectors around the frame for which the decision is being made (l), as we will show
in the following sections. This strategy consisting on “long term information”
provides very good results using several approaches for VAD such as [8] etc.

3 FCM Clustering over the Observation Vectors

CM clustering is a method for finding clusters and cluster centers in a set of
unlabeled data. The number of cluster centers (prototypes) C is a priori known
and the CM iteratively moves the centers to minimize the total within cluster
variance. Given an initial set of centers the CM algorithm alternates two steps:
a) for each cluster we identify the subset of training points (its cluster) that is
closer to it than any other center; b) the means of each feature for the data points
in each cluster are computed, and this mean vector becomes the new center for
that cluster.

This previous clustering technique is referred to as hard or crisp clustering,
which means that each individual is assigned to only one cluster. For FCM
clustering, this restriction is relaxed, and the object can belong to all of the
clusters with a certain degree of membership. This is particularly useful when
the boundaries among the clusters are not well separated and ambiguous.

3.1 Noise Modeling

FCM is one of the most popular fuzzy clustering algorithms. FCM can be re-
garded as a generalization of ISODATA [13] and was realized by Bezdek [14]. In
our algorithm, the fuzzy approach is applied to a set of N initial pause frames
(energies) in order to characterize the noise space. From this energy noise space
we obtain a set of clusters, namely noise prototypes 1. The process is as the
following: each observation vector (E from equation 3) is uniquely labeled, by
the integer i ∈ {1, . . . , N}, and assigned to a prespecified number of prototypes
C < N , labeled by an integer c ∈ {1, . . . , C}. The dissimilarity measure between
observation vectors is the squared Euclidean distance:

d(Ei,Ej) =
K−1∑
k=0

(E(k, i) − E(k, j))2 = ||Ei − Ej||2 (4)

FCM attempts to find a partition (fuzzy prototypes) for a set of data points
Ei ∈ RK , i = 1, . . . , N while minimizing the cost function

J(U,M) =
C∑

i=1

N∑
j=1

(uij)mDij (5)

1 The word cluster is assigned to different classes of labeled data, that is K is fixed to
2 (noise and speech frames).
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Fig. 1. a) 20 log Energies of noise frames, computed using NF F T = 256, averaged over
50 subbands. b) Clustering approach applied to the a set of log-energies using hard
decision CM (C=4 prototypes).

where U = [uij ]C×N is the fuzzy partition matrix, uij ∈ (0, 1) is the member-
ship coefficient of the j-th individual in the i-th prototype; M = [m1, . . . ,mC ]
denotes the cluster prototype (center) matrix, m ∈ [1, ∞) is the fuzzification
parameter (set to 2) and Dij = d(Ej ,mi) is the distance measure between Ej

and mi.
Thus, the loss function is minimized by assigning the N observations to the C

prototypes with a certain degree of membership in such a way that within each
prototype the average dissimilarity of the observations Dij is minimized. Once
convergence is reached, N K-dimensional pause frames are efficiently modeled by
C K-dimensional noise prototype vectors denoted by mc, c = 1, . . . , C. In figure
1 we observed how the complex nature of noise can be simplified (smoothed)
using a clustering approach (hard CM). The clustering approach speeds the
decision function in a significant way since the dimension of feature vectors is
reduced substantially (N → C).

3.2 Soft Decision Function for VAD

In order to classify the second labeled data (energies of speech frames) we use a
sequential algorithm scheme using a MO window centered at frame l, as shown
in section 2. For this purpose let consider the same dissimilarity measure, a
threshold of dissimilarity γ and the maximum clusters allowed K = 2.

Let Ê(l) be the decision feature vector that is based on the MO window as
follows:

Ê(l) = max{E(i)}, i = l − m, . . . , l + m (6)

This selection of the feature vector describing the actual frame is useful as it
detects the presence of voice beforehand (pause-speech transition) and holds the
detection flag, smoothing the VAD decision (as a hangover based algorithm [7, 6]
in speech-pause transition).
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Fig. 2. VAD operation: Top- Decision function and threshold versus frames. Bottom-
Input signal and VAD decision versus time.

Finally, the presence of a new cluster (speech frame detection) is satisfied if
the following ratio holds:

F (l) = log

(
1/K

K−1∑
k=0

Ê(k, l)
< m̄c >

)
> γ (7)

where < m̄c > is the averaged noise prototype center and γ is the decision
threshold.

The set of noise prototypes are updated in pause frames (not satisfying equa-
tion 7)) using the adaptation of the standard FCM, replacing the oldest energy in
the noise model, consisting of N samples, by the actual feature vector Ê(l). The
initial prototype matrix M(l) at decision frame l is the previous one M(l − 1),
and the following update is applied to the fuzzy partition and prototype center
matrices:

u
(t+1)
ij = 1/

(∑C
l=1(Dlj/Dij)1/(1−m)

)
m(t+1)

i =
(∑N

j=1

(
u

(t+1)
ij

)m

Ej

)
/

(∑N
j=1

(
u

(t+1)
ij

)m)
until ||M(t+1)(l) − M(t)(l)|| < ε
for i = 1, . . . , C, j = 1, . . . , N

(8)

This sequential adaptation doesn’t involve high computational effort although
other kind of static adaptation rules could be applied. The algorithm described
so far is presented as pseudo-code in the following:

1. Initialize Noise Model:
– Select N feature vectors {E(i)}, i = 1, . . . , N .
– Compute threshold γ.
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2. Apply FCM clustering to feature vectors extracting C noise prototype cen-
ters {m(c)}, c = 1, . . . , C

3. for l=init to end
(a) Compute Ê(l) over the MO window
(b) if equation 7 holds then VAD=1

else Update noise prototype centers m(c) with equations 8.

Figure 2 shows the operation of the proposed FCM-VAD on an utterance of
the Spanish SpeechDat-Car (SDC) database [15]. The phonetic transcription is:
“tres”, “nueve”,“zero”, “siete”, “μinko”, “dos”, “uno”, “otSo”, “seis”,“cuatro”.
We also show the soft decision function and the selected threshold in the FCM-
VAD operation for the same phrase.

4 Experimental Framework

Several experiments are commonly conducted to evaluate the performance of
VAD algorithms. The analysis is normally focused on the determination of mis-
classification errors at different SNR levels [7], and the influence of the VAD
decision on speech processing systems [4]. The experimental framework and the
objective performance tests conducted to evaluate the proposed algorithm are
described in this section. The ROC curves are used in this section for the evalu-
ation of the proposed VAD. These plots describe completely the VAD error rate
and show the trade-off between the speech and non-speech error probabilities
as the threshold γ varies. The Spanish SpeechDat- Car database [15] was used
in the analysis. This database contains recordings in a car environment from
close-talking and hands-free microphones. Utterances from the close-talking de-
vice with an average SNR of about 25dB were labeled as speech or non-speech
for reference while the VAD was evaluated on the hands-free microphone. Thus,
the speech and non-speech hit rates (HR1, HR0) were determined as a function
of the decision threshold γ for each of the VAD tested. Figure 3 shows the ROC
curves in the most unfavorable conditions (high-speed, good road) with a 5 dB
average SNR. It can be shown that increasing the number of observation vectors
m improves the performance of the proposed FCM-VAD. The best results are
obtained for m = 8 while increasing the number of observations over this value
reports no additional improvements. The proposed VAD outperforms the Sohn’s
VAD [3], which assumes a single observation likelihood ratio test (LRT) in the
decision rule together with an HMM-based hangover mechanism, as well as stan-
dardized VADs such as G.729 and AMR [2, 1]. It also improve recently reported
methods [3, 6, 5, 7]. Thus, the proposed VAD works with improved speech/non-
speech hit rates when compared to the most relevant algorithms to date. Table 1
shows the recognition performance for the Spanish SDC database for the different
training/test mismatch conditions (HM, high mismatch, MM: medium mismatch
and WM: well matched) when WF and FD are performed on the base system
[8]. The VAD outperforms all the algorithms used for reference, yielding relevant
improvements in speech recognition.
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Fig. 3. ROC curves of proposed FCM-VAD in high noisy conditions for m = 8, K = 32
and C = 2 and comparison to standard and recently reported VADs

Table 1. Average word accuracy (%) for the Spanish SDC database

Base G.729 AMR1 AMR2 AFE
WM 92.94 88.62 94.65 95.67 95.28
MM 83.31 72.84 80.59 90.91 90.23
HM 51.55 65.50 62.41 85.77 77.53
Average 75.93 75.65 74.33 90.78 87.68

Woo Li Marzinzik Sohn FCM-VAD
WM 95.35 91.82 94.29 96.07 96.68
MM 89.30 77.45 89.81 91.64 91.82
HM 83.64 78.52 79.43 84.03 86.05
Average 89.43 82.60 87.84 90.58 91.51

5 Conclusions

A new VAD for improving speech detection robustness in noisy environments
is proposed. The proposed FCM-VAD is based on noise modeling using FCM
clustering and benefits from long term information for the formulation of a soft
decision rule. The proposed FCM-VAD outperformed Sohn’s VAD, that defines
the LRT on a single observation, and other methods including the standardized
G.729, AMR and AFE VADs, in addition to recently reported VADs. The VAD
performs an advanced detection of beginnings and delayed detection of word
endings which, in part, avoids having to include additional hangover schemes or
noise reduction blocks. Obviously it also will improve the recognition rate when
it is considered as part of a complete speech recognition system. The discrimina-
tion analysis or the ROC curves are effective to evaluate a given algorithm, the
influence of the VAD in a speech recognition system depends on its discrimina-
tion accuracy [12]. Thus the proposed VAD improves the recognition rate when
it is used as a part of a Automated Speech Recognition (ASR) system.
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