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ABSTRACT

This paper shows an effective voice activity detector based on a sta-
tistical likelihood ratio test defined on the integrated bispectrum of
the signal. It inherits the ability of higher order statistics to detect
signals in noise with many other additional advantages: i) its com-
putation as a cross spectrum leads to significant computational sav-
ings, and ii) the variance of the estimator is of the same order as
that of the power spectrum estimator. The proposed method incor-
porates contextual information to the decision rule, a strategy that
has reported significant improvements in speech detection accuracy
and robust speech recognition applications. The experimental anal-
ysis conducted on the well-known AURORA databases has reported
significant improvements over standardized techniques such as ITU
G.729, AMR1, AMR2 and ESTI AFE VADs, as well as over recently
published VADs.

1. INTRODUCTION

Currently, there are technology barriers inhibiting speech process-
ing systems that work in extremely noisy conditions from meeting
the demands of modern applications. These systems often require
a noise reduction system in combination with a precise voice activ-
ity detector (VAD). Most of the algorithms for detecting presence of
speech in a noisy signal only exploit the power spectral content of
the signals and require knowledge of the noise power spectral den-
sity [1, 2, 3, 4]. One of the most important disadvantages of these
approaches is that no a priori information about the statistical prop-
erties of the signals is used. Higher order statistics methods rely on
an a priori knowledge of the input processes and have been con-
sidered for VAD since they can distinguish between Gaussian sig-
nals (which has a vanishing bispectrum) from non-Gaussian signals.
However, the main limitations of bispectrum-based techniques are
that they are computationally expensive and the variance of the bis-
pectrum estimators is much higher than that of power spectral esti-
mators for identical data record size. These problems were addressed
by Tugnait [5, 6] who showed a computationally efficient and re-
duced variance statistical test based on the integrated polyspectra for
detecting an unknown random, stationary, non-Gaussian signal in
Gaussian noise. This paper advances in the field and shows an effec-
tive VAD based on a likelihood ratio test (LRT) that is defined on the
integrated bispectrum of the noisy speech. The proposed approach
also incorporates contextual information to the decision rule, a strat-
egy first proposed in [7] that has reported significant benefits [8] and
particularly, in robust speech recognition applications [9, 10, 11].
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2. INTEGRATED BISPECTRUM

The bispectrum of a discrete-time signal x(t) is defined as:

Bx(ω1, ω2) =

∞∑
i=−∞

∞∑
k=−∞

C3x(i, k) exp{−j(ω1i + ω2k)} (1)

where C3x(i, k) = E{x∗(t)x(t + i)x(t + k)} is the third-order
cumulant of the process x(t). Note that, from the above definition,
the third-order cumulant can be expressed as:

C3x(i, k) =
1

(2π)2

∫ π

−π

∫ π

−π

Bx(ω1, ω2) exp{j(ω1i+ω2k)}dω1dω2

(2)
Although the bispectra have all the advantages of cumulants/polyspectra,
their direct use has two serious limitations: i) the computation of
bispectra in the whole triangular region is huge, and ii) the two-
dimensional (2-D) template matching score in the classification is
impractical. To use efficiently bispectra, integrated bispectrum meth-
ods [5, 6] were proposed for different applications [12, 13].

2.1. Definition

Let x(t) be a zero mean stationary random process. If we define
ỹ(t) = x2(t) − E{x2(t)}, the cross correlation between ỹ(t) and
x(t) is defined to be:

rỹx(k) = E{ỹ(t)x(t+k)} = E{x2(t)x(t+k)} = C3x(0, k) (3)

and its cross spectrum is given by:

Sỹx(ω) =

∞∑
−∞

C3x(0, k) exp{−jωk} (4)

with

C3x(0, k) =
1

2π

∫ π

−π

Sỹx(ω) exp{j(ωk)}dω (5)

If equations 2 and 5 are compared we obtain:

Sỹx(ω) =
1

2π

∫ π

−π

Bx(ω, ω2)dω2 =
1

2π

∫ π

−π

Bx(ω1, ω)dω1 (6)

Thus, the integrated bispectrum is defined as a cross spectrum be-
tween the signal and its square, and therefore, it is a function of a
single frequency variable. It is easy to see that the bispectrum of a
Gaussian process is identically zero, its integrated bispectrum is as
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well. Hence, its computation as a cross spectrum leads to signifi-
cant computational savings. But more important is that the variance
of the estimator is of the same order as that of the power spectrum
estimator [5].

2.2. Estimation

Let Ŝyx(ω) denote a consistent estimator of Syx(ω), where y(t) =
x2(t) − E{x2(t)}. Given a finite data set x(1), x(2), ..., x(N), the
integrated bispectrum is normally estimated by dividing the sample
sequence into segments or blocks [14]. Thus, the data set is divided
into KB non-overlapping segments each of size NB samples so that
N = KBNB . Then, the cross periodogram of the ith block of data
is given by

Ŝ(i)
yx (ω) =

1

NB
X(i)(ω)

[
Y (i)(ω)

]∗
(7)

where X(i)(ω) and Y (i)(ω) denote the discrete Fourier transform
(DFT) of the ith block. Finally, the estimate is obtained by averaging
KB blocks

Ŝyx(ω) =
1

KB

KB∑
i=1

Ŝ(i)
yx (ω) (8)

3. VOICE ACTIVITY DETECTION

This section addresses the VAD problem formulated in terms of a
classical binary hypothesis testing framework:

H0 : x(t) = n(t)
H1 : x(t) = s(t) + n(t)

(9)

In a two-hypothesis test, the optimal decision rule that minimizes the
error probability is the Bayes classifier. Given an observation vector
ŷ to be classified, the problem is reduced to selecting the class (H0 or
H1) with the largest posterior probability P (Hi|ŷ). From the Bayes
rule, a statistical LRT [1] is defined as:

L(ŷ) =
py|H1(ŷ|H1)

py|H0(ŷ|H0)
(10)

and the observation vector ŷ is classified as H1 if L(ŷ) is greater
than P (H0)/P (H1) otherwise it is classified as H0.

Assuming the integrated bispectrum {Syx(ω) : ω} as the fea-
ture vector ŷ and to be independent zero-mean Gaussian variables in
presence and absence of speech:

p(Syx(ω)|H0) = 1
πλ0(ω)

exp

[
−|Syx(ω)|2

λ0(ω)

]

p(Syx(ω)|H1) = 1
πλ1(ω)

exp

[
−|Syx(ω)|2

λ1(ω)

] (11)

the evaluation of the test defined in 10 only requires to estimate the
integrated bispectrum of the noisy signal and its variance. Thus,
taking logarithms in 10 and substituting the model defined in 11 we
obtain:

Φ(ŷ) =
∑
ω

log
(

p(Syx(ω)|H1)

p(Syx(ω)|H0)

)
=

∑
ω

{(
1 − λ0(ω)

λ1(ω)

) |Syx(ω)|2
λ0(ω)

− log
(

λ1(ω)
λ0(ω)

)} (12)

Finally, if we define the a priori and a posteriori variance ratios as:

ξ(ω) =
λ1(ω)

λ0(ω)
− 1 γ(ω) =

|Syx(ω)|2
λ0

(13)

equation 12 can be expressed in a more compact form:

Φ(ŷ) =
∑
ω

[(
1 − 1

1+ξ(ω)

)
γ(ω) − log (1 + ξ(ω))

]
=

=
∑
ω

[
ξ(ω)γ(ω)
1+ξ(ω)

− log (1 + ξ(ω))
] (14)

Thus, the two key issues to evaluate the proposed LRT are: i) the
estimation of the integrated bispectrum by means of a finite data set,
and ii) the computation of the variances λ0(ω) and λ1(ω) of the
integrated bispectrum under H0 and H1 hypothesis.

4. VARIANCE OF THE INTEGRATED BISPECTRUM

The properties of the bispectrum estimators has been discussed in
[14, 15]. The test proposed in the previous section and the model
assumed in equation 11 are justified since for large NB , the esti-
mate S

(i)
yx (ωm) is complex Gaussian and independent of S

(i)
yx (ωn)

for m �= n (m, n = 1, 2, ..., NB/2 − 1). Moreover, its mean and
variance for large values of NB and KB can be approximated [5]
by:

E
{

Ŝyx(ω)
}
≈ Syx(ω)

var
{
�

[
Ŝ

(i)
yx (ω)

]}
≈ 1

2KB

[
Syy(ω)Sxx(ω) + �{

S2
yx(ω)

}]
var

{
�

[
Ŝ

(i)
yx (ω)

]}
≈ 1

2KB

[
Syy(ω)Sxx(ω) −�{

S2
yx(ω)

}]
(15)

and the estimation of λ0(ω) and λ1(ω) requires to compute Sxx(ω)
and Syy(ω) under H0 and H1 hypothesis. It can be shown [5, 6]
that:

λ0(ω) =
1

KB

[
2Snn(ω) ∗ Snn(ω) + 2πσ4

nδ(ω)
]
Snn(ω) (16)

λ1(ω) = 1
KB

[Sss(ω) + Snn(ω)]

[2Sss(ω) ∗ Sss(ω) + 2Snn(ω) ∗ Snn(ω) + 4Sss(ω) ∗ Snn(ω)]
(17)

Finally, a way to estimate the integrated bispectrum of the clean
signal, Sss(ω), is needed. In this paper, a method combining Wiener
filtering and spectral subtraction is used to estimate Sss(ω) in terms
of the integrated bispectrum of the noisy signal Sxx(ω). During a
short initialization period, the integrated bispectrum of the residual
noise Snn(ω) is estimated assuming a short non-speech period at
the beginning of the utterance. Note that, Snn(ω) can be computed
in terms of the DFT of the noisy signal x(t) = n(t). After the
initialization period, the integrated bispectrum of the noisy signal
Sxx(ω) is computed for each frame through equations 7 and 8 and
Sss(ω) is then obtained by applying a denoising process. Denois-
ing consists of a previous smoothed spectral subtraction followed
by Wiener filtering. Figure 1 shows a block diagram for the esti-
mation of the denoised integrated bispectrum Sss(ω) through the
noisy signal Sxx(ω). It is worthwhile clarifying that Snn(ω) is not
only estimated during the initialization period but also updated dur-
ing non-speech frames based on the VAD decision. Thus, the de-
noising process consists of the following stages:
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Fig. 1. Estimation of Sss(ω) via smoothed spectral subtraction and
Wiener filtering

1. Spectral subtraction.

S1(ω) = LsSss(ω)+(1−Ls) max(Sxx(ω)−αSnn(ω), βSxx(ω))
(18)

2. First WF design and filtering.

µ1(ω) = S1(ω)/Snn(ω)
W1(ω) = µ1(ω)/(1 + µ1(ω))

S2(ω) = W1(ω)Sxx(ω)
(19)

3. Second WF design and filtering.

µ2(ω) = S2(ω)/Snn(ω)
W2(ω) = max(µ2(ω)/(1 + µ2(ω)), β)

Sss(ω) = W2(ω)Sxx(ω)
(20)

where Ls = 0.99, α = 1 and β = 10(−22/10) is selected to ensure a
-22dB maximum attenuation for the filter in order to reduce the high
variance musical noise that normally appears due to rapid changes
across adjacent frequency bins.

5. INTEGRATED BISPECTRUM LRT FOR VOICE
ACTIVITY DETECTION

The proposed VAD is described as follows. The input signal x(t)
sampled at 8 kHz is divided into overlapping windows each of size
N = KBNB samples. A typical value of the window size in or-
der to get precise estimations of the integrated bispectrum is about
0.2 seconds. The best tradeoff between block averaging (KB) and
spectral resolution (NB) will be discussed in next sections.

Figure 2 illustrates the way the signal is processed and the block
of data the decision is made for. Note that, the decision is made for
a T-sample data block around the mid-point of the analysis window
where T is the “frame-shift”. Thus, a large data set is used to esti-
mate the integrated bispectrum by averaging KB successive blocks
of data while the decision is made for a shorter data set. As in most
of the standardized VADs [16, 17, 18] the frame-shift is 80 samples
so that the VAD frame rate is 100 Hz.

After having estimated the integrated bispectrum Sss(ω) of the
clean signal, λ0(ω) and λ1(ω) are computed by evaluating the con-
volution operations required by equations 16 and 17. Then, the a
priori and a posteriori variance ratios as defined in equation 13 can
be estimated and the VAD decision rule is performed by comparing

K
B
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samples

N
B

samples

K
B
blocks

Frame

shift

l-th frame

(l+1)-th frame

Frame

shift

VAD

decision

Frame

shift

VAD

decision

T

T

Fig. 2. Integrated bispectrum estimation by block averaging and
VAD decision.

the LRT defined in equation 14 to a given threshold η. If the LRT is
greater than the threshold η, the frame is classified as speech, other-
wise it is classified as non-speech. Once the VAD decision is made
for the frame being processed, the estimation of the integrated bis-
pectrum of the noise is updated during non-speech periods in order
to track non-stationary noisy environments:

Snn(ω) = LnSnn(ω) + (1 − Ln)Sxx(ω) (21)

where Ln= 0.98.

6. EXPERIMENTAL ANALYSIS

The receiving operating characteristics (ROC) curves are frequently
used to completely describe the VAD error rate. They show the
tradeoff between speech and non-speech detection accuracy as the
decision threshold varies [9]. The AURORA subset of the origi-
nal Spanish SpeechDat-Car database [19] was used in this analysis.
This database contains 4914 recordings using close-talking and dis-
tant microphones from more than 160 speakers. The files are cat-
egorized into three noisy conditions: quiet, low noisy and highly
noisy conditions, which represent different driving conditions with
average SNR values between 25dB and 5dB. The non-speech hit
rate (HR0) and the false alarm rate (FAR0= 100-HR1) were deter-
mined in each noise condition being the actual speech frames and
actual speech pauses determined by hand-labelling the database on
the close-talking microphone.

Figure 3 shows the ROC curve of the proposed VAD and other
frequently referred algorithms [1, 2, 3, 4] for recordings from the
distant microphone in high noisy conditions. The working points
of the G.729, AMR and AFE VADs are also included. Note that
increasing the number of blocks (KB) in the block averaging in-
tegrated bispectrum (BA-IBI) LRT VAD leads to a shift-up and to
the left of the ROC curve in the ROC space. The proposed method
shows clear improvements in detection accuracy over standardized
VADs and over a representative set of recently published VAD algo-
rithms [1, 2, 3, 4]. Among all the VAD examined, our VAD yields
the lowest false alarm rate for a fixed non-speech hit rate and also,
the highest non-speech hit rate for a given false alarm rate. The ben-
efits are especially important over G.729, which is used along with
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Fig. 3. ROC curves obtained in high noise conditions.

a speech codec for discontinuous transmission, and over Li’s algo-
rithm [3], that is based on an optimum linear filter for edge detection.
The proposed VAD also improves Marzinzik’s VAD [2] that tracks
the power spectral envelopes, and the statistical VAD proposed by
Sohn et al. [1], that formulates the decision rule by means of a sta-
tistical LRT defined on the power spectrum of the noisy signal.

7. CONCLUSIONS

This paper showed a voice activity detector for improving speech de-
tection robustness in noisy environments. The proposed method is
based on a statistical LRT defined on the integrated bispectrum of the
signal which is defined as a cross spectrum between the signal and
its square and inherits the ability of higher order statistics to detect
signals in noise with many other additional advantages: i) its compu-
tation as a cross spectrum leads to significant computational savings,
and ii) the variance of the estimator is of the same order as that of
the power spectrum estimator. It incorporates contextual informa-
tion to the decision rule, a strategy that has reported significant im-
provements in speech detection accuracy and robust speech recogni-
tion applications. The experimental analysis conducted on the well-
known AURORA databases has reported significant improvements
over standardized techniques such as ITU G.729, AMR1, AMR2
and ESTI AFE VADs, as well as over recently published VADs.
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