
VOICE ACTIVITY DETECTION WITH NOISE REDUCTION AND LONG-TERM
SPECTRAL DIVERGENCE ESTIMATION

J. Ramı́rez, J. C. Segura, C. Benı́tez, A. de la Torre, A. Rubio

Dept. of Electronics and Computer Technology
University of Granada, Spain

ABSTRACT

This paper is mainly focussed on an improved voice activity detec-
tion algorithm employing long-term signal processing and maxi-
mum spectral component tracking. The benefits of this approach
has been analyzed in a previous work with clear improvements
in speech/non-speech discriminability and speech recognition per-
formance in noisy environments. Two clear aspects are consid-
ered in this paper. The first one, which improves the performance
of the VAD in low noise conditions, considers an adaptive length
frame window to track the long-term spectral components. The
second one reduces misclassification errors in high noisy environ-
ments by using a noise reduction stage before the long-term spec-
tral tracking. Experimental results show clear improvements over
different VAD methods in speech/pause discrimination and speech
recognition performance. Particularly, the proposed VAD reported
improvements in recognition rate when replaced the VADs of the
ETSI Advanced Front-end (AFE) for distributed speech recogni-
tion (DSR).

1. INTRODUCTION

Modern applications of speech technology are demanding increased
levels of performance in many areas. With the advent of wireless
communications new speech services are becoming a reality with
the development of modern robust speech processing technology.
An important obstacle affecting most of the environments and ap-
plications is the environmental noise and its harmful effect on the
system performance.

Most of the noise compensation algorithms often require to
estimate the noise statistics by means of a precise voice activity
detector (VAD). The detection task is not as trivial as it appears
since the increasing level of background noise degrades the clas-
sifier effectiveness. During the last decade numerous researchers
have studied different strategies for detecting speech in noise and
the influence of the VAD decision on speech processing systems
[1, 2]. Most of them have focussed on the development of robust
algorithms, with special attention on the study and derivation of
noise robust features and decision rules [3, 4, 5, 6].

This paper presents several improvements over a previous work
on voice activity detection [7] that has been shown to be very ef-
fective for noise suppression and speech recognition in noisy envi-
ronments. The algorithm assumes that the most significant infor-
mation for detecting speech in noise remains on the time-varying
signal spectrum. The main contributions of this paper are: i) the
increased non-speech detection accuracy in low noise conditions
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by making the long-term window length adaptive to the measured
noise energy, and ii) a noise reduction stage previous to tracking
the long-term spectral envelope that improves the VAD effective-
ness in high noise environments. The algorithm is evaluated on
the context of the AURORA project and the recently approved
Advanced Front-End (AFE) [8] for distributed speech recognition
(DSR). Other standard VADs such as the ITU G.729 [9] or ETSI
AMR [10] are also used as a reference.

2. LONG-TERM SPECTRAL ESTIMATION VAD

A block diagram of the proposed VAD is shown in Fig. 1. Noise
reduction is performed first and the VAD decision is formulated
on the de-noised signal. The noisy speech signal x(n) is decom-
posed into 25-ms frames with a 10-ms window shift. Let X(k, l)
be the spectrum magnitude for the k-th band at frame l. The de-
sign of the noise reduction block is based on Wiener filter theory
being its attenuation dependent on the signal-to-noise ratio (SNR)
of the processed signal. Finally, the VAD decision is formulated in
terms of the de-noised speech signal, being its spectrum Y (k, l),
processed by means of a (2N + 1)-frame window.

2.1. Noise reduction

The noise reduction block consists of four stages: i) Spectrum
smoothing. The power spectrum is averaged over two consecu-
tive frames and two spectral bands. ii) Noise estimation. The
noise spectrum Ne(k) is updated by means of a 1st order IIR fil-
ter based on the smoothed spectrum Ys(k, l), that is, Ne(k) =
λNe(k) + (1 − λ)Ys(k, l) where λ = 0.99. iii) Design of the
Wiener filter (WF). First, the clean signal S(k) is estimated by
spectral subtraction:

S(k, l) = XβS′(k, l)+(1−Xβ)max(Ys(k, l)−Ne(k), 0) (1)

and the Wiener filter H(k) is calculated by:

η(k, l) = max
[

S(k,l)
Ne(k)

, ηmin

]
H(k, l) = η(k,l)

1+η(k,l)

(2)

where ηmin is selected so that the filter yield a 20 dB maximum
attenuation, and Xβ= 0.98. Finally, S′(k, l), that is assumed to be
zero at the beginning of the process, is defined to be:

S′(k, l) = max[Y (k, l)H(k, l), 16] (3)

The filter H(k, l) is smoothed in order to eliminate rapid changes
between neighbor frequencies that may often cause musical noise.
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Fig. 1. Block diagram of the VAD.

The smoothing is performed by truncating the impulse response
of the corresponding causal FIR filter to 17 taps using a Hanning
window. iv) Frequency domain filtering. The filter is applied in
the frequency domain to obtain the de-noised spectrum Y (k, l).

2.2. VAD decision rule

Once the input speech has been de-noised, its spectrum magni-
tude Y (k, l) is processed by means of a (2N + 1)-frame window.
Spectral changes around an N -frame neighborhood of the actual
frame are analyzed using the N -order Long-Term Spectral Enve-
lope (LTSE) that was defined in [7] as:

LTSE(k) = max {Y (k, l + j)}j=+N
j=−N (4)

where l is the actual frame for which the VAD decision is made
and k= 0, 1, ..., NFFT-1, is the spectral band.

Note that the noise suppression block have to perform the
noise reduction of the block {X(k, l − N), X(k, l − N + 1),
..., X(k, l − 1), X(k, l), X(k, l + 1), ..., X(k, l + N)} before
the LTSE at the l-th frame can be computed. This is carried out as
follows. During the initialization, the noise suppression algorithm
is applied to the first 2N + 1 frames and, in each iteration, the
(l+N +1)-th frame is de-noised, so that Y (k, l+N +1) become
available for the next iteration.

The VAD decision rule is formulated in terms of the long-term
spectral divergence (LTSD) calculated as the deviation of the LTSE
respect to the residual noise spectrum N(k) and defined by:

LTSD = 10 log10

(
1

NFFT

NFFT−1∑
k=0

LTSE2(k)

N2(k)

)
(5)

If the LTSD is greater than an adaptive threshold γ, the actual
frame is classified as speech, otherwise it is classified as non-
speech. A hangover delays the speech to non-speech transition in
order to prevent low-energy word endings being misclassified as
silences. On the other hand, if the LTSD achieves a given thresh-
old LTSD0, the hangover algorithm is turned off to improve non-
speech detection accuracy in low noise environments.

The VAD is defined to be adaptive to time-varying noise en-
vironments with the following algorithm for updating the noise
spectrum during non-speech periods being used:

N(k) = αN(k) + (1 − α)NK(k) (6)

where NK is the average spectrum magnitude over a K-frame neigh-
bourhood:

NK(k) =
1

2K + 1

K∑
j=−K

Y (k, n − j) (7)

and k= 0, 1, ..., NFFT/2.

2.3. Initialization of the algorithm

For the initialization of the algorithm, the first frames of the input
utterance are assumed to be non-speech and the decision threshold
γ and N are adapted to the measured noise energy E by:

γ = γ0−γ1
E0−E1

E + γ0 − γ0−γ1
1−E1/E0

N = round
[

N0−N1
E0−E1

E + N0 − N0−N1
1−E1/E0

] (8)

where E0 and E1 are the average noise energy for clean and high
noise conditions, respectively. Since γ and N are critical param-
eters for the algorithm, they are restricted to be bounded in the
intervals [γ0, γ1] and [N0, N1], respectively.

3. EXPERIMENTAL FRAMEWORK

Several experiments were conducted to evaluate the performance
of the VAD. The analysis is focused on the assessment of misclas-
sification errors at different SNR levels and the influence of the
VAD decision on an automatic speech recognition (ASR) system.

3.1. Receiver operating characteristics (ROC) curves

The ROC curves are frequently used to completely describe the
VAD error rate. The AURORA subset of the original Spanish
SpeechDat-Car (SDC) database [11] was used in this analysis.
This database contains 4914 recordings using close-talking and
distant microphones from more than 160 speakers. As in the whole
SDC database, the files are categorized into three noisy conditions:
quiet, low noisy and highly noisy conditions, which represent dif-
ferent driving conditions with average SNR values between 25dB,
and 5dB. The non-speech hit rate (HR0) and the false alarm rate
(FAR0= 100-HR1) were determined in each noise condition being
the “real” speech frames and “real” speech pauses determined by
hand-labelling the database on the close-talking microphone. The
parameters used for the VAD were: N0= 3 N1= 6, α= 0.95, K= 3,
LTSD0= 40, HO= 3 (hang-over length).

Fig. 2.a shows the ROC curve for recordings from the close-
talking microphone with low noise. The working points of the
G.729, AMR and AFE VADs are also included. It can be de-
rived from the figure that the improvements considered in this
work yield higher speech/non-speech discrimination. This fact is
mainly motivated by using a shorter frame window for low noise
environments. Fig. 2. b shows the ROC curve for recordings from
the distant microphone in high noisy conditions. It also shows
improvements in detection accuracy over standard VADs such as
G.729, AMR and AFE and over a representative set of recently
reported VAD algorithms [3, 6, 4, 5].
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Fig. 2. ROC curves. (a) Close talking microphone (stopped car,
motor running). (b) Distant microphone (high speed, good road).

It can be concluded from these results that: i) The working
point of the G.729 VAD shifts to the right in the ROC space with
decreasing SNR. ii) AMR1 works on a low false alarm rate point
of the ROC space but exhibits poor non-speech hit rate. iii) AMR2
yields clear advantages over G.729 and AMR1 exhibiting impor-
tant reduction of the false alarm rate when compared to G.729 and
increased non-speech hit rate over AMR1. iv) The VAD used in
the AFE for noise estimation yields good non-speech detection
accuracy but works on a high false alarm rate point on the ROC
space. It suffers from rapid performance degradation when the
driving conditions get noisier. On the other hand, the VAD used
in the AFE for frame-dropping has been planned to be conserva-
tive since it is only used in the DSR standard for frame-dropping.
Thus, it exhibits poor non-speech detection accuracy working on a
low false alarm rate point of the ROC space. Among all the VAD
examined, our VAD yields the lowest false alarm rate for a fixed
non-speech hit rate and also, the highest non-speech hit rate for a
given false alarm rate. The ability of the adaptive LTSE VAD to
tune the detection threshold by means the algorithm described in
Eq. 8 enables working on the optimal point of the ROC curve for
different noisy conditions.

3.2. Speech recognition performance

Although the ROC curves are effective to evaluate a given al-
gorithm, the influence of the VAD in an ASR system was also

studied. The reference framework (Base) is the ETSI AURORA
project for distributed speech recognition [12] while the recog-
nizer is based on the HTK (Hidden Markov Model Toolkit) soft-
ware package [13]. The task consists on recognizing connected
digits which are modelled as whole word HMMs (Hidden Markov
Models) with the following parameters: 16 states per word, simple
left-to-right models, mixture of 3 Gaussians per state while speech
pause models consist of 3 states with a mixture of 6 Gaussians
per state. The 39-parameter feature vector consists of 12 cepstral
coefficients (without the zero-order coefficient), the logarithmic
frame energy plus the corresponding delta and acceleration coef-
ficients. Two training modes are defined for the experiments con-
ducted on the AURORA-2 database: i) training on clean data only
(Clean Training), and ii) training on clean and noisy data (Multi-
Condition Training).

The influence of the VAD decision on the performance of a
feature extraction scheme incorporating Wiener filtering (WF) as
noise suppression method and non-speech frame-dropping (FD) to
the Base system [12] was assessed. Table 1 shows the recognition
results as a function of the SNR for the Base system and for the
different VADs that were incorporated to the feature extraction al-
gorithm. These results are averaged over the three test sets of the
AURORA-2 recognition experiments. An estimation of the 95%
confidence interval (CI) is also provided. Notice that, particularly,
for the recognition experiments based on the AFE VADs, we have
used the same configuration used in the standard [8] which present
different VADs for WF and FD. The proposed VAD outperforms
the standard G.729, AMR1, AMR2 and AFE VADs in both clean
and multi condition training/testing experiments.

Table 2 compares recently reported VAD algorithms to the
proposed one in terms of the average word accuracy for clean and
multicondition training/test experiments. The proposed algorithm
also outperforms the VADs used as a reference being the one that
is closer to the “ideal” hand-labelled speech recognition perfor-
mance.

Finally, in order to compare the proposed method to the best
available results, the VADs of the full AFE standard (including
both the noise estimation and frame dropping VADs) were re-
placed by the proposed LTSE VAD and the AURORA recogni-
tion experiments were conducted. The results are shown in Table
3. The word error rate is reduced from 13.07% to 12.42% for
the clean training experiments and from 8.14% to 7.88% in multi-
condition when the VADs of the original AFE are replaced by the
proposed VAD.

4. CONCLUSIONS

This paper has shown an improved VAD algorithm for increasing
speech detection robustness in noisy environments and the perfor-
mance of speech recognition systems. The VAD is based on the es-
timation of the long-term spectral envelope and the measure of the
spectral divergence between speech and noise. Two improvements
have been considered over the base system. The first one, which
improves the performance of the VAD in low noise conditions,
considers a variable length frame window to track the long-term
spectral components. The second one reduces misclassification
errors in high noisy environments by using a noise reduction stage
before the long-term spectral tracking. With this and other innova-
tions the proposed VAD has demonstrated an enhanced ability to
discriminate speech and silences and to be well suited for robust
speech recognition.
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Table 1. Average Word Accuracy for the AURORA-2 database.

Base Multicondition Clean condition
VAD used None G.729 AMR1 AMR2 AFE Proposed G.729 AMR1 AMR2 AFE Proposed
Clean 99.03 97.50 96.67 98.12 98.39 98.83 98.41 97.87 98.63 98.78 99.11

20 dB 94.19 96.05 96.90 97.57 97.98 98.40 83.46 96.83 96.72 97.82 98.03
15 dB 85.41 94.82 95.52 96.58 96.94 97.59 71.76 92.03 93.76 95.28 96.44
10 dB 66.19 91.23 91.76 93.80 93.63 95.49 59.05 71.65 86.36 88.67 91.51
5 dB 39.28 81.14 80.24 85.72 85.32 88.49 43.52 40.66 70.97 71.55 77.25
0 dB 17.38 54.50 53.36 62.81 63.89 67.49 27.63 23.88 44.58 41.78 49.27

-5 dB 8.65 23.73 23.29 27.92 30.80 33.36 14.94 14.05 18.87 16.23 22.90

Average 60.49 83.55 83.56 87.29 87.55 89.49 57.08 65.01 78.48 79.02 82.50
C.I. (95%) ±0.24 ±0.18 ±0.18 ±0.16 ±0.16 ±0.15 ±0.24 ±0.23 ±0.20 ±0.20 ±0.19

Table 2. Average Word Accuracy for the AURORA-2 database.

VAD Used Clean Multi Average
Woo 76.64 85.54 81.09
Li 78.63 85.58 82.11
Marzinzik 82.15 88.32 85.23
Sohn 79.49 88.11 83.80

Proposed 82.50 89.49 86.00

Hand-labelled 84.83 88.88 86.86

Table 3. Average Word Accuracy for the AURORA-2 database.

Clean training Multicondition training
AFE AFE + LTSE AFE AFE + LTSE

Set A 87.51 88.12 92.29 92.55
Set B 87.06 87.79 92.10 92.41
Set C 85.42 86.10 90.51 90.70

Average 86.93 87.58 91.86 92.12
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