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ABSTRACT

The VTS approach for noise reduction is based on a statistical for-
mulation. It provides the expected value of the clean speech given
the noisy observations and statistical models for the clean speech
and the additive noise. The compensated signal is only an approxi-
mation of the clean one and retains a residual mismatch. The main
objective of this work is to characterize this residual noise and to
propose techniques to reduce its unwanted effects. Two different
approaches to this problem are presented in this paper. The first
one is based on linear filtering the time sequences of compensated
acoustic parameters; for this purpose we use LDA-based RASTA-
like FIR filters. The second approach is based on canceling the
distortion introduced into the probability distribution of acoustic
parameters and uses the well-known technique of histogram equal-
ization. Results reported on AURORA database show that the pro-
posed methods increase the recognition performance.

1. INTRODUCTION

In the real world, there is a set of distortions that affect the speech
signal since it is produced by the speaker until it is in digital form;
these distortions are known as acoustical environment. A widely
used model of the acoustical environment includes the two main
sources of the distortion: additive noise and linear channel distor-
tion. The distorted signal degrades significantly the performance
of the speech recognition systems and methods to compensate the
effect of the environment must be applied in order to perform an
accurate enough recognition process. In this paper, we deal with
the problem of reducing additive noise effects on ASR systems.

The effect of the additive noise consist of a non-linear trans-
formation of the representation space in the log filter-bank-energy
(log FBE) domain; VTS [1] is introduced to approximate this non-
linear function by its Taylor series expansion. This approach for
noise reduction is based on a statistical formulation. The compen-
sation procedure is performed in the logarithmic filter-bank do-
main using a clean speech model and an estimation of the noise
statistics. This method provides the expected value of the clean
speech observations constrained to the observed noisy speech and
the statistical models for both clean speech and additive noise.

Using VTS, a great reduction of the mismatch between noisy
and clean speech is obtained. Nevertheless this compensation is
not perfect and recognition accuracies are not as good as those
obtained with clean speech. This is mainly due to a residual mis-
match that remains after the compensation procedure is applied. In
this work we try to characterize this mismatch as a residual noise

This work has been supported by the Spanish Government under the
CICYT project TIC99-0583.

(difference between compensated noisy speech and clean speech)
in both time and modulation frequency domains. We also explore
two possible approaches to deal with it.

As we will show later in this paper, the residual noise has two
main components. One of them is a variable bias that appears at
low modulation frequencies, and the other is the increment of noise
components at high modulation frequencies. Recently data-driven
techniques for designing filters for the time sequence of spectral
parameters have been proposed; particularly the filters obtained
using a LDA-based techniques [2] have the shape of a band-pass
filter, suppressing both low and high modulation frequency com-
ponents and enhancing the most discriminative range of modula-
tion frequencies. By using such a filter after VTS, some part of
the residual noise can be suppressed and therefore a performance
increase could be expected.

The second proposed approach is focused on using a non-
linear approach to deal with the non-linear nature of the resid-
ual noise. Histogram equalization is a well-known technique fre-
quently used in image enhancement. Recently, some of the au-
thors have applied this technique to noise compensation in ASR
systems [3] with promising results. In this work we present results
on applying it to equalize the probability distributions of cepstral
coefficients obtained from VTS compensated speech.

2. VTS RESIDUAL NOISE

The most usual acoustic representation of speech for ASR is based
on log FBE. In this domain, the effect of additive uncorrelated
noise can be modeled as a non-linear transform of clean speech x
and noise n to give the noisy observation y.

y = log(ex + en) (1)

In VTS context, the clean speech is statistically modeled as a Gaus-
sian mixture p(x). Given an estimate of noise statistics p(n), a lin-
ear approach of (1) is used to obtain a statistical model of corrupted
speech p(y). From it, an approximated maximum likelihood esti-
mate of clean speech x̂ is obtained (details of the implementation
of VTS used in this paper can be found in [4])

x̂ = y −
KX

k=1

P [k|y] log(1 + exp(µ̂n − µxk)) (2)

where P [k|y] is the posterior probability of the k-th Gaussian given
the noisy observation, µ̂n is the estimated noise mean and µxk is
the mean of the k-th clean Gaussian. On a first approximation, x̂
can be estimated using only the most likely Gaussian contribution

x̂ ≈ y − log(1 + exp(µ̂n − µ̂x)) = y − log(1 + e−ŝ) (3)
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Fig. 1. Typical temporal sequence of log FBE for clean speech
(solid), noisy speech (dotted), VTS compensated speech (dashed)
and residual noise (dotted bottom).

where µ̂x is the mean of the most probable Gaussian and ŝ =
µ̂x − µ̂n is an estimate of the instantaneous signal-to-noise ratio
(SNR). Note that (3) is also the form of a Wiener filter in the log
domain and therefore the following discussion is also valid for this
compensation approach.

In the univariate case, considering a first order Taylor expan-
sion of (1) around the true expected values of signal µx and noise
µn we can write

y = µx + log(1 + e−s) +
x − µx

1 + e−s
+

n − µn

1 + es
(4)

where s = µx − µn is the actual SNR. Using (3) and (4) we have

x̂ = µx + log

�
1 + e−s

1 + e−ŝ

�
+

x − µx

1 + e−s
+

n − µn

1 + es
(5)

from which we can obtain the expected value E and the variance
V of the estimator x̂.

E[x̂] = µx + log

�
1 + e−s

1 + e−ŝ

�
(6)

V [x̂] =
σ2

x

(1 + e−s)2
+

σ2
n

(1 + es)2
(7)

These expressions show the two main components of the residual
noise after compensation. First, equation (6) shows that the ex-
pected value of the estimator is the true value of clean speech plus
a varying bias which is a non-linear function of both the actual and
estimated SNR. Second, equation (7) shows that the variance of
the estimator is a nonlinear interpolated value between the clean
speech variance and the noise variance, and depends only on the
actual SNR. Figure 1 shows this typical behavior for a sentence,
where both effects are noticeable. residual noise has a great vari-
ance at initial and final silences while variance is smaller at non-
masked speech parts. Where speech is heavily masked by noise
the bias is large (due to an improper estimation of the SNR) while
other parts exhibit a small bias.

Other useful characterization of the residual noise can be done
in the modulation frequency domain [5]. This characterization has
been done by evaluating an averaged estimation of the power spec-
tral density (PSD) of time sequences of residual noise. The PSD is
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Fig. 2. PSD of a typical log FBE for clean speech (solid), of the dif-
ference between clean and noisy speech (dashed) and of the resid-
ual noise (dotted).

obtained from the training set of AURORA for which stereo data
is available; a subset of 402 sentences of this training set is used.
The noisy conditions correspond to clean speech with CAR noise
added at a mean SNR of 10dB. Figure 2 shows the average PSD of
a typical log FBE for clean speech, of the difference between noisy
and clean speech and of the residual noise. It can be seen that VTS
reduces the mismatch between noisy and clean speech resulting in
small values of the residual noise at low modulation frequencies.
However, at the same time, high modulation frequency compo-
nents of the residual noise have been increased.

3. RESIDUAL NOISE REDUCTION

In this section, two different approaches are presented to reduce
the effect of residual noise. The first one is based on linear fil-
tering the time sequences of log FBE’s after VTS is applied. The
second approach is based on the equalization of the probability dis-
tribution of cepstral parameters to a reference Probability Density
Function (PDF).

3.1. Temporal filtering

In the previous section, we have shown that the residual noise has
high modulation frequency components and also a non-zero mean
value. Several approaches have been proposed for the design of
temporal filters [2, 7] to enhance robustness of speech parameter-
ization. These filters tend to suppress both high and low modu-
lation frequency components and enhance those on the most dis-
criminative range of modulation frequencies located in the 3-4 Hz
region. Using such filters, some part of the residual noise can be
suppressed.

In this work, we have used two temporal filters designed in
an LDA-based data driven approach [8]. One is obtained from
OGI stories database (referred in the following as LDAC) and the
other one from the same database contaminated with Restaurant
noise at a mean SNR of 10dB (referred as LDAN). The frequency
responses of these filters are approximated with 27 tap FIR filters,
and they are showed in figure 3. The difference between these two
filters is that LDAN exhibits a greater attenuation at zero frequency
and a narrower pass-band.
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Fig. 3. Frequency response of the LDA filters obtained from clean
speech LDAC (solid) and from noisy speech LDAN (dashed).

3.2. Histogram equalization

This technique was originally developed for digital image pro-
cessing and its goal is to provide a transformation x = F (y)
which converts the probability density function (PDF) py(y) of
the original variable into a reference PDF pref (x). Under certain
conditions1, the relation between the cumulative density functions
(CDF) of x and y, and the transform function are [9]

CY (y) = Cref (F (y)) (8)

F (y) = C−1
ref (CY (y)) (9)

In practical situations, only a finite amount of data is available.
Therefore, cumulative histograms are used instead of CDF’s and
for this reason this technique is named histogram equalization.

In this work, we apply histogram equalization (HEQ) in the
cepstral domain. Once VTS is applied to reduce the mismatch in
the log FBE domain, filter-bank energies are transformed into the
cepstral domain and then each cepstral coefficients (and also the
log energy term) are independently equalized to a common refer-
ence PDF. Cumulative histograms are estimated for each coeffi-
cient and each sentence to be equalized by considering 100 uni-
form intervals between µy − 4σy and µy + 4σy where µy and σy

are the mean and standard deviation of the original values. The
reference cumulative histogram is obtained from a normal distri-
bution with zero mean and unity variance. The transformation (9)
is tabulated for the points in the center of each interval and it is ap-
plied to the parameters to be compensated as a linear interpolation
between the two closest tabulated points.

To illustrate the procedure of histogram equalization, figure
4 shows the histograms and transformation function used in the
equalization of a non-linear transformed Gaussian distribution. Da-
ta has been generated using (1) with µx = 0, σx = 1, µn = −0.75
and σn = 0.2 and for the reference histogram we have used a
Gaussian with zero mean and unity variance. Figures (4a) and (4b)
show the histograms and cumulative histograms of y and the corre-
sponding reference histograms and figure (4c) shows the transform
function F (y) that restores py(y) to a normal distribution.

Since VTS compensation introduces a residual noise that pres-
ents important non-linearities, the use of histogram equalization to
force a reference PDF for each cepstral coefficient could be ex-
pected to reduce the mismatch.

1F (y) must be single-valued and monotonically increasing
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Fig. 4. Histogram equalization. (a) Original (solid) and reference
(dashed) histograms. (b) Original (solid) and reference (dashed)
cumulative histograms. (c) Equalization transform.

4. EXPERIMENTAL RESULTS

The proposed algorithms have been tested on the AURORA II
database and task [6]. This database is based on TI-DIGITS. Two
training sets are available; one of them (clean condition training)
contains only clean data. The other one (multicondition training)
contains the same data but corrupted with different noises (Sub-
way, Babble, Car and Exhibition Hall) at mean SNR’s from 20dB
to 5dB. There are three test sets (A, B and C). Set A contains data
corrupted with the same noises and SNR’s used for the multicon-
dition training data. Set B contains data corrupted at same SNR’s
that set A but with four different noises (Restaurant, Street, Airport
and Train Station)). Finally, set C contains two of the noises of set
A (Subway and Street) but has also a channel distortion. Two types
of experiments are defined for this database. The first one uses the
clean condition training set to train acoustic models and the sec-
ond one uses the multicondition training set. Results are presented
as an average value for five SNR conditions (from 20dB to 0dB)
across the three test sets (A, B and C).

The baseline recognition system is based on HTK and use con-
tinuous density HMM models with six Gaussians per state. There
are 11 digit models with 16 states, one silence model with 3 states
and a inter-digit pause model with only one state. Basic parameter
extraction is obtained with a set of 23 MEL-spaced triangular fil-
ters covering the frequency range from 64Hz to 4KHz at a frame
rate of 100Hz. These parameters are transformed to cepstral do-
main using DCT, retaining only cepstral coefficients C1-C12, and
log Energy is appended. Finally, this basic set of 13 parameters
is augmented with its corresponding delta and acceleration coeffi-
cients obtained with regression lengths of 7 and 11 respectively.

The proposed techniques are implemented in the parameteri-
zation stage and therefore they are applied for both training and
testing. VTS is applied in the log FBE domain as in [4]. This is a
non-iterative implementation of VTS using a zero order approach
of the mismatch function (1). The input feature vector is composed
of the 23 log FBE’s plus log energy. Clean speech is modeled as
a mixture of 128 multivariate Gaussians estimated from the clean
training partition of AURORA database and the noise is character-
ized by its mean value obtained from 20 frames of each sentence
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Clean Condition Training
A B C Average

Baseline 61.34 55.75 66.14 60.06
VTS 80.66 80.74 77.99 80.16

VTS+LDAN 81.60 81.73 78.87 81.11
VTS+LDAC 81.88 81.55 79.69 81.31
VTS+HCEP 85.33 85.16 83.11 84.82

Multi Condition Training
Baseline 87.82 86.27 83.78 86.39

Table 1. Results for the proposed algorithms and baseline systems,
averaged for SNR conditions from 20dB to 0dB.
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Fig. 5. Mean results over sets A, B and C for baseline clean condi-
tion (Base Clean), baseline multicondition (Base Multi), and clean
condition for VTS, VTS+LDAC and VTS+HCEP.

that are considered as silence (10 at the beginning and 10 at the
end). Features are compensated on a frame-by-frame basis and
then transformed to the cepstral domain by means of a DCT trans-
form.

Temporal filtering is applied in the log FBE domain after VTS;
and histogram equalization is applied in the cepstral domain after
VTS and DCT, but before the calculation of delta and accelera-
tion parameters. Table 1 shows the results obtained for the base-
line system, the VTS compensation algorithm alone and for the
proposed residual noise compensation approaches. Tests labeled
VTS+LDAC and VTS+LDAN correspond to the application of
LDA filters trained on the clean and noisy database respectively
and VTS+HCEP are results for VTS in combination with cepstral
coefficient equalization. Figure 5 shows these results as a function
of the SNR (Baseline results for multicondition training are also
sown for reference).

From these results, it can be concluded that compensation of
the residual noise improves the performance of VTS. The improve-
ment is more noticeable at SNR’s below 10 dB where there is a
great amount of masked speech and VTS is less effective, leading
to a large residual noise.

Recognition accuracies for VTS+LDAN and VTS+LDAC are
very similar. However, when applying LDAN and LDAC alone we
have noticed that much better results where obtained for the first
(averaged word accuracy of 70.75% for LDAN and only 61.52%
for LDAC). This can be explained by the fact that VTS compen-
sated parameters are much more similar to clean ones than to noisy
ones.

VTS+HCEP performs significantly better than VTS+LDAC
(the best choice of LDA filter). This result seems to indicate that
histogram equalization is a better choice for residual noise com-

pensation than linear filtering. Nevertheless, two important aspects
must be taken into account when comparing these results. First,
temporal filter uses only 27 frames (270 ms of speech) while his-
togram equalization uses the whole sentence in the compensation
process. Second, LDA filters have not been optimized for VTS
compensated speech.

5. SUMMARY AND CONCLUSIONS

We have introduced the concept of residual noise as the residual
mismatch after speech parameter compensation in the log FBE
domain, and we have studied its approximate analytical form and
presented an experimental study of it in the modulation frequency
domain.

To deal with this residual noise, two different approaches have
been proposed. One based on linear processing of time sequences
of log FBE and the other is based on histogram equalization in
the cepstral domain. Both techniques have been tested on the AU-
RORA noisy TI-DIGITS task giving improved recognition accu-
racy. The higher performance of histogram equalization seems to
indicate that non-linear techniques could be a better choice than
linear ones to deal with residual noise.
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