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Nomnlinear effects

% At the signal level

* Transducer and acquisition hardware

% At the feature level
* MFECC are generally used as features
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Time domain y(t) = h(t)* x(¢) + n(f)
Spectral power domain 5, =9, [HI* +8,
Log-spectral power domain Y = log(exp(x + h) + exp(n))

x=log(s,)  y=log(s,) n=logs,)  h=log(H’)




Log-FBE nonlinear distortion effects
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Mismatch reduction

% Linear approaches
* Spectral subtraction (SS), Wiener filtering (WF)
* Cepstral Mean Subtraction (CMS)
* Cepstral Mean and Variance Normalization (CMVN)
* Time filtering of log-FBE’s (RASTA, LDA)

% Nonlinear approaches
* Linear approximations (CDCN, VTS, SPLICE,...)
* Neural networks (RBF, MLP)




Feature normalization

% Tries to reduce the mismatch normalizing the feature space

% Linear approaches
* Cepstral Mean Subtraction

* Cepstral Mean and Variance Normalization
* Time filtering of log-FBE’s

< Nonlinear extension

* Compensate not only the location and scale (first and second
moment) but also the shape of the PDF’s (higher order moments)

* Our approach is based on CDF-matching




CDF-matching (1)

% Given a zero-memory one-to-one general
transformation y=T[x]

X = py(X) y =T[x] - py (T[x]) = py(y)

Cy(x)= ,[_xoo px(u) du Cy(y)= foo py (1) du

Cy(x)=Cy(y) = x=T '[y]=C{(Cy(v))




CDF-matching (11)
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Two Gaussian class example

5! 10 . -
x0=5.6283 Ex=3.23% x0t=-0.6519 Ext=3.23%

0.2¢

01

0 - - 0 LS
0 5 10 5 0
y0=6.5550 Ey=3.23% Exy=7.97% y0t=-0.6519 Eyt=3.23% Exyt=3.23%

Y= log(exp(x +h)+ exp(n)) h=0.8




CDF-matching (111)

% Two ways of using CDF-matching for mismatch reduction

% CDF-matching for feature compensation
* Cy(x) is estimated during training
* During test, C,(y) estimate is used to compensate for the mismatch

£=T"[y]=C{(Cy(v))

% CDF-matching for feature normalization
* A predefined Cy(x) is selected (usually Gaussian)

* For both training and test, features are transformed to match the
reference distribution using an estimate of C,(y)

* Can be viewed as an extension of CMVN




CDF-matching based approaches (1)

% Previous works: Feature compensation

* R. Balchandran, R. Mammone. Non-parametric estimation and
correction of non-linear distortion in speech systems [ICASSP 98]

® Domain: Speech samples
® Task: Speaker ID / Sigmoid and cubic distortions

* S. Dharanipragada, M. Padmanabhan. A nonlinear unsupervised
adaptation technique for speech recognition [ICSLP’'00]

® Domain: Cepstrum
® Task: Speech Recognition / Handset / Speaker-phone mismatch

* F. Hilger, H. Ney. Quantile based histogram equalization for noise
robust speech recognition [EUROSPEECH01]

® Domain: Filter-bank Energy
® Task: Speech Recognition / AURORA task




CDF-matching based approaches (11)

% Previous works: Feature normalization

* J. Pelecanos, S. Sridharan. Feature warping for robust speaker verification
[Speaker Odyssey’01]

® Domain: Cepstrum
® Task: NIST 1999 Speaker Recognition Evaluation database
* B. Xiang, U.V. Chaudhari,... Short-time gaussianization for robust speaker
verification [ICASSP'02]
® Domain: Cepstrum / Short-time
® Task: Speaker Verification
* J.C. Segura, A. de la Torre, M.C. Benitez,... Non-linear transformations of
the feature space for robust speech recognition [ICASSP’02]
® Domain: Cepstrum
® Task: Speech Recognition / AURORA
* J.C. Segura, M.C. Benitez, A. de la Torre, S. Dupont, A.J. Rubio, VTS residual
noise compensation [ICASSP’'02]

® Domain: Cepstrum
® Task: Speech Recognition / AURORA
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CDF-matching based approaches (111)

% Some recent works

* S. Molau, F. Hilger, D. Kayser, H. Ney. Enhanced Histogram
Equalization in the acoustic feature space [ICSLP'02]

® Domain: log-FBE
® Task: Speech Recognition in noise

*x F. Hilger, S. Molau, H. Ney. Quantile based histogram equalization
for online applications [ICSLP'02]

® Domain: Filter-bank Energy
® Task: Speech Recognition / AURORA

* J.C. Segura, A. de la Torre, M.C. Benitez,... Feature extraction
combining spectral noise reduction and cepstral histogram
equalization [ICSLP'02]

® Domain: Cepstrum
® Task: Speech Recognition / AURORA




Implementation details

<+ Domain selection
* Log-FBE

* Cepstrum (has the advantage that features are almost
uncorrelated)

% CDF estimation
* Using Cumulative Histograms
* Using the Empirical Cumulative Distribution Function
* Using sampling quantiles (a reduced number 4-10)

L)

< Reference density
* Learned from clean data
* Fixed (usually Gaussian)

< Adaptation data
* From several sentences to short windows (2-3s)




Efficient implementation with ECDF

o, x,,xr} Time sequence of features
{x(l), ty Xyt x(T)} Sorted sequence
ECDF(x,)= (r=0.5) CDF estimation

Q(u) Reference quantile function

)= U2 v ox=x,

% For T fixed we only need




Variable silence lengths (I)

% CDF-matching main assumption
* The global statistics of speech is independent of the phonetic content

<+ Problem

* When using a single sentence to estimate the transformation, this is
not true

* The silence fraction has a special influence

® If higher than the mean, equalization tends to transform silence into
speech increasing the insertion rate

® [f shorter than the mean, equalization tends to transform speech into
silence increasing deletions
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Variable silence lengths (11)

< Possible solutions

* Adapt the reference histogram

® This needs an estimation of the silence fraction
e Using a VAD

* Perform two pass recognition

* Use frame-dropping
® Using a VAD to discard non-speech frames

® This approach also improves the performance of almost any speech
recognition system by limiting the insertion rate




Cepstral domain Nonlinear EQ

% In our current approach

* Equalization is performed in the cepstral domain

* For each sentence
® Fach cepstral coefficient is processed independently
® The reference distribution is a standard Gaussian

* Frame-Dropping is used to deal with variable silence lengths

® Equalization is performed after frame-dropping




A real example
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Results (I)

< Experimental set-up: ETSI AURORA tasks
* Noisy TI-digits (artificially added noise)
® Experiments: Multi-Condition and Clean-Condition training
* SpeechDat Car databases (2 microphones in 3 noise conditions)
® Experiments: Well-Match, Medium-Mismatch, High-Mismatch

<+ Acoustic features
* Standard front-end: 12 MFCC + logE

* Delta and acceleration coefficients are appended at the recognizer
with regression lengths of 7 and 11 frames respectively

% Acoustic modeling

* One 16 emitting states left-to-right continuous HMM per digit
* 3 Gaussian mixture per state




Results (11)
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Aurora 2 results

TI-Digits Multi-condition Training

] A [ B[ C [Average|Rellmp.
| Baseline | 8807 [8720{8456f 87.08 | -

TI-Digits Clean-condition Training
| A |8 | C [Average|Relimp
| Baseline | 5874 53406600 5806 | -




Aurora 3 results

Finnish
MM | HM | Average
Baseline 80.51 | 40.53 75.41
SS 78.80 | 69.19 82.91 21.92%
SS+HE 86.53 | 74.20 86.67 35.10%
SS+FD+HE 86.73 | 73.11 86.46 35.00%

Spanish
MM | HM | Average | Rel.Imp.
Baseline 83.31 | 51.55 79.22 ——— o
S5 89.76 | 71.94 | 87.63 | 39.00% 30.54%
SS+HE 93.15 | 86.77 93.00 57.00% 45.799%,
SS+FD+HE 94.10 | 87.03 93.35 61.95% 46.65%

Average
Baseline 83.14
SS 88.75 30.70%
SS+HE 91.25 45.29%
SS+FD+HE 90.89 43.00%




20 mixtures Aurora 2 results
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Clean Condition Multi Condition
Absolute | Relative | Absolute | Relative
BL 3mix 58.06 --,-- 87.03 -
BL 20mix 58.04 4.51% 88.98 26.39%
SS+FD+HE 3mix 82.49 56.45% 90.30 17.99%
SS+FD+HE 20mix 83.22 62.67% 91.53 41.38%

Features




Conclusion

< Nonlinear cepstral equalization based on CDF-matching is superior
to CMS and CMVN

% It can be used as a standalone technique or in combination with
noise reduction ones.

< Some open questions
* Handling variable speech/silence ratios
* Segmental implementation
* Selection of the reference distribution
* Parametric estimation of the CDF
* Modelling equalized features
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