CDF-matching based Nonlinear Feature Transformations for Robust Speech Recognition

José C. Segura

Signal Processing and Communications Group

University of Granada (SPAIN)

Outline

- Nonlinear effects in speech and speaker recognition
- Mismatch reduction techniques
- CDF-matching based feature transformations
- Cepstral domain nonlinear equalization
- Some experimental results
- Conclusion

Nonlinear effects

- At the signal level
 - ★ Transducer and acquisition hardware
- At the feature level
 - ★ MFCC are generally used as features

$$\rightarrow$$
 PSD \rightarrow \cancel{M} \cancel{M} \longrightarrow Log $|\cdot|$ \longrightarrow DCT \longrightarrow

Time domain Spectral power domain Log-spectral power domain

 $x = \log(S_x) \qquad y = \log(S_y)$

y(t) = h(t) * x(t) + n(t) $S_y = S_x \cdot |H|^2 + S_n$ $y = \log(\exp(x+h) + \exp(n))$ $n = \log(S_n) \quad h = \log(|H|^2)$

José C. Segura, Edinburgh 2002

Log-FBE nonlinear distortion effects

Nonlinear transformation 2 3 clean histogram x=v 1.8 noise average noise level noisy histogram _-----1.6 2 log-energy for noisy data 1.4 probability density 1.2 0.8 0 0.6 0.4 -1 0.2 -2 0 -2 -2 -3 -1 n 2 3 -3 0 2 _1 log-energy for clean data log-energy

Mismatch reduction

Linear approaches

- ★ Spectral subtraction (SS), Wiener filtering (WF)
- ★ Cepstral Mean Subtraction (CMS)
- ★ Cepstral Mean and Variance Normalization (CMVN)
- ★ Time filtering of log-FBE's (RASTA, LDA)

Nonlinear approaches

- ★ Linear approximations (CDCN, VTS, SPLICE,...)
- ★ Neural networks (RBF, MLP)

Feature normalization

Tries to reduce the mismatch normalizing the feature space

Linear approaches

- ★ Cepstral Mean Subtraction
- ★ Cepstral Mean and Variance Normalization
- ★ Time filtering of log-FBE's

Nonlinear extension

- ★ Compensate not only the location and scale (first and second moment) but also the shape of the PDF's (higher order moments)
- ★ Our approach is based on CDF-matching

CDF-matching (I)

Given a zero-memory one-to-one general transformation y=T[x]

$$x \to p_X(x)$$
 $y = T[x] \to p_Y(T[x]) = p_Y(y)$

- $C_X(x) = \int_{-\infty}^x p_X(u) \, du \qquad C_Y(y) = \int_{-\infty}^y p_Y(u) \, du$
- $C_X(x) = C_Y(y) \qquad \Rightarrow \quad x = T^{-1}[y] = C_X^{-1}(C_Y(y))$

CDF-matching (II)

Two Gaussian class example

osé C. Segura, Edinburgh 2002

CDF-matching (III)

Two ways of using CDF-matching for mismatch reduction

CDF-matching for feature compensation

- ★ $C_X(x)$ is estimated during training
- **★** During test, $C_{Y}(y)$ estimate is used to compensate for the mismatch

$$\hat{x} = \hat{T}^{-1}[y] = C_X^{-1}(\hat{C}_Y(y))$$

CDF-matching for feature normalization

- ★ A predefined $C_X(x)$ is selected (usually Gaussian)
- ★ For both training and test, features are transformed to match the reference distribution using an estimate of $C_{Y}(y)$
- ★ Can be viewed as an extension of CMVN

CDF-matching based approaches (I)

- Previous works: Feature compensation
 - ★ R. Balchandran, R. Mammone. *Non-parametric estimation and correction of non-linear distortion in speech systems* [ICASSP'98]
 - Domain: Speech samples
 - Task: Speaker ID / Sigmoid and cubic distortions
 - * S. Dharanipragada, M. Padmanabhan. A nonlinear unsupervised adaptation technique for speech recognition [ICSLP'00]
 - Domain: Cepstrum
 - Task: Speech Recognition / Handset / Speaker-phone mismatch
 - ★ F. Hilger, H. Ney. *Quantile based histogram equalization for noise* robust speech recognition [EUROSPEECH'01]
 - Domain: Filter-bank Energy
 - Task: Speech Recognition / AURORA task

CDF-matching based approaches (II)

- Previous works: Feature normalization
 - ★ J. Pelecanos, S. Sridharan. *Feature warping for robust speaker verification* [Speaker Odyssey'01]
 - Domain: Cepstrum
 - Task: NIST 1999 Speaker Recognition Evaluation database
 - ★ B. Xiang, U.V. Chaudhari,... *Short-time gaussianization for robust speaker verification* [ICASSP'02]
 - Domain: Cepstrum / Short-time
 - Task: Speaker Verification
 - ★ J.C. Segura, A. de la Torre, M.C. Benítez,... Non-linear transformations of the feature space for robust speech recognition [ICASSP'02]
 - Domain: Cepstrum
 - Task: Speech Recognition / AURORA
 - ★ J.C. Segura, M.C. Benítez, A. de la Torre, S. Dupont, A.J. Rubio, *VTS residual noise compensation* [ICASSP'02]
 - Domain: Cepstrum
 - Task: Speech Recognition / AURORA

CDF-matching based approaches (III)

Some recent works

- ★ S. Molau, F. Hilger, D. Kayser, H. Ney. *Enhanced Histogram Equalization in the acoustic feature space* [ICSLP'02]
 - Domain: log-FBE
 - Task: Speech Recognition in noise
- ★ F. Hilger, S. Molau, H. Ney. *Quantile based histogram equalization for online applications* [ICSLP'02]
 - Domain: Filter-bank Energy
 - Task: Speech Recognition / AURORA
- ★ J.C. Segura, A. de la Torre, M.C. Benítez,... Feature extraction combining spectral noise reduction and cepstral histogram equalization [ICSLP'02]
 - Domain: Cepstrum
 - Task: Speech Recognition / AURORA

Implementation details

- Domain selection
 - ★ Log-FBE
 - ★ Cepstrum (has the advantage that features are almost uncorrelated)
- CDF estimation
 - ★ Using Cumulative Histograms
 - ★ Using the Empirical Cumulative Distribution Function
 - ★ Using sampling quantiles (a reduced number 4-10)
- Reference density
 - ★ Learned from clean data
 - ★ Fixed (usually Gaussian)
- Adaptation data
 - ★ From several sentences to short windows (2-3s)

Efficient implementation with ECDF

$$\{x_1, \dots, x_t, \dots, x_T\}$$

$$\{x_{(1)}, \dots, x_{(r)}, \dots, x_{(T)}\}$$

$$ECDF(x_{(r)}) = \frac{(r - 0.5)}{T}$$

$$Q(u)$$

Time sequence of features Sorted sequence CDF estimation Reference quantile function

$$T(x_t) = Q\left(\frac{(r-0.5)}{T}\right) \quad \forall \quad x_t = x_{(r)}$$

✤ For *T* fixed we only need

$$q_r = Q\left(\frac{(r-0.5)}{T}\right) \quad \forall \quad r = 1, \cdots, T$$

Variable silence lengths (I)

CDF-matching main assumption

★ The global statistics of speech is independent of the phonetic content

Problem

- ★ When using a single sentence to estimate the transformation, this is not true
- ★ The silence fraction has a special influence
 - If higher than the mean, equalization tends to transform silence into speech increasing the insertion rate
 - If shorter than the mean, equalization tends to transform speech into silence increasing deletions

Variable silence lengths (II)

Possible solutions

- ★ Adapt the reference histogram
 - This needs an estimation of the silence fraction
 - Using a VAD
 - Perform two pass recognition
- ★ Use frame-dropping
 - Using a VAD to discard non-speech frames
 - This approach also improves the performance of almost any speech recognition system by limiting the insertion rate

Cepstral domain Nonlinear EQ

- In our current approach
 - ★ Equalization is performed in the cepstral domain
 - ★ For each sentence
 - Each cepstral coefficient is processed independently
 - The reference distribution is a standard Gaussian
 - Frame-Dropping is used to deal with variable silence lengths
 Equalization is performed after frame-dropping

A real example

Results (I)

Experimental set-up: ETSI AURORA tasks

- ★ Noisy TI-digits (artificially added noise)
 - Experiments: Multi-Condition and Clean-Condition training
- ★ SpeechDat Car databases (2 microphones in 3 noise conditions)
 - Experiments: Well-Match, Medium-Mismatch, High-Mismatch
- Acoustic features
 - ★ Standard front-end: 12 MFCC + logE
 - ★ Delta and acceleration coefficients are appended at the recognizer with regression lengths of 7 and 11 frames respectively

Acoustic modeling

★ One 16 emitting states left-to-right continuous HMM per digit

★ 3 Gaussian mixture per state

Results (II)

Cepstral equalization (Gaussian reference) compared with CMS and CMVN for noisy TI-digits

losé C. Segura, Edinburgh 2002

Results (III): combined with SS

Aurora 2 results

TI-Digits Multi-condition Training						
	А	В	С	Average	Rel.Imp.	
Baseline	88.07	87.22	84.56	87.03		
SS	90.94	88.69	86.29	89.11	9.43%	
SS+HE	90.72	89.74	90.03	90.19	15.42%	\mathbf{X}
SS+FD+HE	90.89	89.80	90.11	90.30	17.99%	$\langle \rangle \rangle$

TI-Digits Clean-condition Training							
	А	В	С	Average	Rel.Imp.		
Baseline	58.74	53,40	66.00	58.06			
SS	73.71	69.35	75.63	72.35	37.71%		
SS+HE	82.08	82.61	81.73	82.22	55.59%		
SS+FD+HE	82.51	82.78	81.87	82.49	56.45%		

Aurora 3 results

Finnish							
	WM	MM	HM	Average	Rel.Imp.		
Baseline	92.74	80.51	40.53	75.41			
SS	95.09	78.80	69.19	82.91	21.92%		
SS+HE	94.58	86.53	74.20	86.67	35.10%		
SS+FD+HE	94.58	86.73	73.11	86.46	35.00%		
Spanish							
	WM	MM	HM	Average	Rel.Imp.		
Baseline	92.94	83.31	51.55	79.22			
SS	95.58	89.76	71.94	87.63	39.00%		
SS+HE	96.15	93.15	86.77	93.00	57.00%		
SS+FD+HE	96.65	94.10	87.03	93.35	61.95%		
German							
	WM	MM	HM	Average	Rel.Imp.		
Baseline	91.20	81.04	73.17	83.14			
SS	93.41	86.60	84.32	88.75	30.70%		
SS+HE	94.79	88.58	89.32	91.25	45.29%		
SS+FD+HE	94.57	88.07	88.95	90.89	43.00%		

20 mixtures Aurora 2 results

Features	Clean Co	ondition	Multi Condition		
	Absolute	Relative	Absolute	Relative	
BL 3mix	58.06		87.03		
BL 20mix	58.04	4.51%	88.98	26.39%	
SS+FD+HE 3mix	82.49	56.45%	90.30	17.99%	
SS+FD+HE 20mix	83.22	62.67%	91.53	41.38%	

Conclusion

- Nonlinear cepstral equalization based on CDF-matching is superior to CMS and CMVN
- It can be used as a standalone technique or in combination with noise reduction ones.
- Some open questions
 - ★ Handling variable speech/silence ratios
 - ★ Segmental implementation
 - \star Selection of the reference distribution
 - ★ Parametric estimation of the CDF
 - ★ Modelling equalized features

Signal Processing and Communications Group

University of Granada (SPAIN)