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ABSTRACT:
Auditory evoked potentials can be estimated by synchronous averaging when the responses to the individual stimuli

are not overlapped. However, when the response duration exceeds the inter-stimulus interval, a deconvolution proce-

dure is necessary to obtain the transient response. The iterative randomized stimulation and averaging and the equiv-

alent randomized stimulation with least squares deconvolution have been proven to be flexible and efficient methods

for deconvolving the evoked potentials, with minimum restrictions in the design of stimulation sequences. Recently,

a latency-dependent filtering and down-sampling (LDFDS) methodology was proposed for optimal filtering and

dimensionality reduction, which is particularly useful when the evoked potentials involve the complete auditory

pathway response (i.e., from the cochlea to the auditory cortex). In this case, the number of samples required to accu-

rately represent the evoked potentials can be reduced from several thousand (with conventional sampling) to around

120. In this article, we propose to perform the deconvolution in the reduced representation space defined by LDFDS

and present the mathematical foundation of the subspace-constrained deconvolution. Under the assumption that the

evoked response is appropriately represented in the reduced representation space, the proposed deconvolution

provides an optimal least squares estimation of the evoked response. Additionally, the dimensionality reduction

provides a substantial reduction of the computational cost associated with the deconvolution. MATLAB/Octave code

implementing the proposed procedures is included as supplementary material.
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I. INTRODUCTION

Auditory evoked potentials (AEPs) are useful for the

study of the auditory system in the context of hearing research

as well as in the context of clinical practice and diagnosis

(Burkard and Don, 2007). AEP recording usually includes the

repetition of stimuli and the averaging of the responses to

improve the signal-to-noise ratio (SNR), usually too low for

an isolated response due to the small amplitude of the evoked

potentials and the presence of noise (Thornton, 2007).

When stimuli are presented in a repetitive sequence, the

standard way for obtaining the response from the electroen-

cephalogram (EEG) is by synchronous averaging of the

available epochs (Thornton, 2007). However, synchronous

averaging implies a restriction: the inter-stimulus interval

(ISI) must be longer than the response duration to avoid

overlapping of sequential responses. For this reason, the

recording filters and the response length are conventionally

configured according to the AEP components to be

recorded: for example, auditory brainstem response (ABR)

is recorded in the 100–3000 Hz band with a response dura-

tion of around 10 ms; middle latency response (MLR) in the

10–300 Hz band with a response duration of 100 ms; and

cortical auditory evoked potentials (CAEPs) in the 1–30 Hz

band with a response duration of 1 s (Hall, 2007).

Recording AEPs at a high stimulation rate as well as the

simultaneous recording of the responses from different por-

tions of the auditory pathway are relevant for both clinical and

research purposes, since they allow the study of neural adapta-

tion mechanisms (Gillespie and M€uller, 2009; Thornton and

Coleman, 1975; Thornton and Slaven, 1993; Valderrama

et al., 2014c) or analysis of the response to complex stimuli

more natural than repetitive sequences of clicks (de la Torre

et al., 2020; Holt and Ozdamar, 2016; Kohl et al., 2019;

Maddox and Lee, 2018; Martinez et al., 2021; Valderrama

et al., 2019). However, if the ISI is shorter than the response

duration, a deconvolution-based estimation of the AEPs

(instead of synchronous averaging) is necessary to disentangle

the overlapping responses (Boh�orquez and €Ozdamar, 2006;

Eysholdt and Schreiner, 1982; Valderrama et al., 2014b).

There are different deconvolution-based methods pro-

posed in the literature for recovering AEP responses: maxi-

mum length sequences (MLS) (Eysholdt and Schreiner, 1982;
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Thornton and Slaven, 1993), adjacent-responses (ADJAR)

(Woldorff, 1993), quasi-periodic sequence deconvolution

(QSD) (Jewett et al., 2004), continuous loop averaging decon-

volution (CLAD) (Boh�orquez and €Ozdamar, 2006; €Ozdamar

and Boh�orquez, 2006), linear deconvolution for baseline cor-

rection (LDBC) (L€utkenh€oner, 2010), randomized stimulation

and averaging (RSA) (Valderrama et al., 2012), iterative ran-

domized stimulation and averaging (IRSA) (de la Torre et al.,
2019; Valderrama et al., 2014b; Valderrama et al., 2016), and

randomized stimulation with least squares deconvolution

(RSLSD) (Bardy et al., 2014a; Bardy et al., 2014b; Bardy

et al., 2014c; de la Torre et al., 2019). Among them, IRSA

and RSLSD are particularly attractive because of the flexibil-

ity they provide for the stimulus design. While some methods

require very specific stimulation sequences (like MLS) or a

periodical repetition of a pseudo-random stimulation sequence

(like CLAD), the IRSA and RSLSD deconvolutions only

require the autocorrelation matrix of the stimulation sequence

to be invertible (situation usually verified in most practical sit-

uations) (Bardy et al., 2014a; Bardy et al., 2014c; de la Torre

et al., 2019; Valderrama et al., 2014c; Valderrama et al.,
2016). This less restrictive characteristic of IRSA and RSLSD

provides not only more flexibility in the experimental design

of audiological tests, but also the possibility of designing audi-

ological experiments with more ecologically valid stimuli

(Burkard et al., 2018; de la Torre et al., 2019; Finneran et al.,
2019; Martinez et al., 2021; Valderrama et al., 2014c;

Valderrama et al., 2016; Valderrama et al., 2019).

In a previous study (de la Torre et al., 2019), we demon-

strated that the iterative IRSA procedure converges to the

RSLSD solution (which supports the mathematical equivalence

of IRSA and RSLSD methods), and we proposed a matrix-

based implementation of this algorithm providing an efficient

computation of the deconvolution of the AEP responses.

More recently, we proposed the application of a

latency-dependent filtering and down-sampling (LDFDS) to

the AEP responses (de la Torre et al., 2020). This procedure

provides an optimal filtering to the evoked responses and

also a substantial reduction of the dimensionality required

for representing them. LDFDS was reported to be particu-

larly useful for processing the complete auditory pathway

response, i.e., including brainstem, middle latency, and cor-

tical responses simultaneously. The underlying idea with

LDFDS is that each portion of the evoked response involves

a specific frequency bandwidth, and therefore an optimal fil-

tering (and also an optimal down-sampling) should change

dynamically with the latency, with wider bandwidth and

higher sampling rate at early latency (i.e., in the region of

ABR), which progressively decrease as the latency increases

(i.e., for the MLR and CAEP components). In this previous

article, we demonstrated that LDFDS provides a significant

noise reduction thanks to the latency-dependent filtering.

Additionally, thanks to the latency-dependent down-sam-

pling, the complete auditory pathway response (including

ABR, MLR, and CAEP), usually requiring more than 10 000

samples at a constant sampling rate, can be correctly repre-

sented after LDFDS with only 40 samples per decade (a

decade is the interval between a latency T and a latency

10 � T), i.e., with around 120 samples. Therefore, the evoked

response can be represented in the original signal represen-

tation or, equivalently, in a reduced representation, requiring

a significantly smaller number of samples (or components)

in this last case.

While LDFDS was applied after the deconvolution in

our previous work (de la Torre et al., 2020), in the current

work, we propose to perform the deconvolution (either with

IRSA or with RSLSD) in the reduced representation given

by LDFDS, i.e., we propose a deconvolution constrained to

the subspace defined by LDFDS. This proposal implies two

important differences. On one hand, as we discuss in the

present work, the subspace-constrained deconvolution pro-

vides an optimal least squares estimation of the evoked

response. On the other hand, since the IRSA algorithm

involves iterative matrix products and RSLSD involves a

matrix division, a substantial reduction of the problem

dimensionality (typically from several thousand to

around 100 or 200 dimensions) implies a substantial

reduction of the computational cost in both deconvolution

algorithms.

In this work, we present the mathematical foundation of

the LDFDS-based subspace-constrained least squares (SC-

LS) deconvolution as an optimal solution when the evoked

response is assumed to be contained in the associated sub-

space (i.e., properly represented with LDFDS). We also dis-

cuss the quality of the proposed estimation (in terms of the

expected energy of the estimation error) as well as the com-

putational cost. The experimental results, including both

simulations and estimation of real AEP responses, illustrate

the utility of the proposed subspace-constrained deconvolu-

tion for recording AEPs, including the response of the com-

plete auditory pathway.

II. SUBSPACE-CONSTRAINED DECONVOLUTION

A. Least squares deconvolution

In an AEP recording procedure, the EEG is usually

modeled as a convolutional process (Jewett et al., 2004;
€Ozdamar and Boh�orquez, 2006),

yðnÞ ¼ sðnÞ � xðnÞ þ n0ðnÞ; (1)

where y(n), s(n), and n0ðnÞ are digital signals representing,

respectively, the EEG, the stimulation sequence (consisting

of one impulse at the beginning of each stimulation event),

and the noise affecting the EEG; n is the index for the sam-

ples (n 2 f0;…;N � 1g, where N is the number of samples

of the EEG); x(n) represents the response evoked by each

stimulus [with x(n) null for n > ðJ � 1Þ, J being the length

of the evoked response]; and the asterisk (*) represents dis-

crete time convolution.

This convolutional model can be rewritten using a

matrix notation (de la Torre et al., 2019),

y ¼ Sxþ n0; (2)
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where y, Sx, and n0 are N-component column vectors (repre-

senting the EEG signal, the convolution of the stimulation

signal with the response, and the noise, respectively), x is a

J-component column vector representing the evoked

response, and S is a ðN � JÞ matrix (with N rows and J col-

umns) with Sðn; jÞ ¼ sðn� jÞ providing the convolution

sðnÞ � xðnÞ as a matrix operation.

The deconvolution of y, i.e., the estimation of the

response x, can be formulated either as an over-determined

system of linear equations (with N equations and J
unknowns, being N � J), in the context of linear algebra, or

as a multiple linear regression problem, in the context of sta-

tistics (Gentle, 1998; Goldberger et al., 1964; Hayashi,

2000; Lawson and Hanson, 1974). Assuming linearity and

uncorrelated stationary white noise (i.e., if linearity, exoge-

neity, and homocedasticity conditions are verified), the

ordinary least squares (LS) solution provides a minimum-

variance unbiased estimation of the response (Hayashi,

2000). The LS criterion minimizes the sum of the squared

residuals or equivalently the squared distance between the

EEG and the expected convolution,

x̂LS ¼ arg min
x

jjy� Sxjj2; (3)

and the solution derived from this criterion, i.e., the LS

deconvolution, is (Gentle, 1998; Hayashi, 2000; Press et al.,
2002)

x̂LS ¼ STSð Þ�1
ST y; (4)

where ST is the transpose of S.

By defining the matrix Sk as the normalized and trans-

posed form of S (i.e., Sk ¼ ST=K, where K is the number of

impulses in the stimulation sequence) and taking into

account that Rs ¼ Sk S is the normalized ðJ � JÞ autocorrela-

tion matrix of the stimulation sequence s(n), the LS decon-

volution can be rewritten as

x̂LS ¼ R�1
s Sk y ¼ R�1

s z0; (5)

where z0 ¼ Sk y is a J-component vector obtained as the

synchronous averaging of the EEG. The derivation of the

LS estimation is detailed in Sec. 1 of the supplementary

material.1

The LS estimation of the evoked response requires the

synchronous averaging of the EEG (z0) and the inversion of

the ðJ � JÞ normalized autocorrelation matrix of the stimu-

lation sequence (R�1
s ). This LS estimation can be obtained

by matrix division [as proposed in RSLSD (Bardy et al.,
2014a; Bardy et al., 2014b; Bardy et al., 2014c)].

Alternatively, the IRSA procedure (de la Torre et al., 2019)

proposes an iterative LS estimation of the response accord-

ing to the following recursion:

x̂i ¼ x̂i�1 þ azi�1; (6)

zi ¼ z0 � Rs x̂i; (7)

where a is a convergence parameter that must be small

enough (a < 2=maxki, ki being the eigenvalues of Rs) to

guarantee the stability of the algorithm.

B. LDFDS

Since each portion of the evoked response requires a

specific bandwidth (range 100–3000 Hz for ABR; 10–300 Hz

for MLR; 1–30 Hz for CAEPs), a latency-dependent filtering

was proposed by de la Torre et al. (2020) for optimally filter-

ing the AEP responses. The latency-dependent filtering is

implemented as a matrix operator, where the impulsive

response changes from row to row, to adapt to the bandwidth

required at each latency (lower cut-off frequency as the

latency increases). Moreover, since the bandwidth changes

with the latency, according to the sampling theorem, the

sampling rate can also be adapted to optimal values at each

specific latency. The latency-dependent down-sampling can

easily be implemented by appropriately selecting specific

rows of the latency-dependent filtering matrix.

This way, the LDFDS is implemented by means of a

ðJr � JÞ matrix Vr, with J being the dimensionality of the rep-

resentation space of the original AEP response and Jr that of

the reduced representation space (i.e., after the filtering and

down-sampling). The reduced representation (with Jr compo-

nents) of the LS deconvolution is obtained by multiplying the

LDFDS matrix Vr and the J-component original vector x̂LS

(representing the LS estimation of the AEP response),

ðx̂LSÞr ¼ Vr x̂LS: (8)

With the proposed procedure, the noise out of the frequency

bands of interest is efficiently removed, and the dimension-

ality is reduced typically from several thousand samples to

40 samples per decade (around 120 samples for accurately

representing the complete auditory pathway response).

Additionally, the rows of the LDFDS matrix are orthonor-

malized, which preserves the metrics (i.e., the distances and

energies) in the reduced representation space. The orthonor-

mality of the rows allows the recovery of the optimally

latency-dependent filtered response in the original represen-

tation (at the original sampling rate and with J components),

x̂ldf , by multiplying the reduced representation and the trans-

pose of the LDFDS matrix,

x̂ldf ¼ VT
r ðx̂LSÞr: (9)

C. SC-LS deconvolution

If we assume that the response to be estimated x is

appropriately represented with the reduced representation xr

given by Vr (or, equivalently, if the latency-dependent filter-

ing provided by Vr is appropriate for the evoked response

x), then we can write

x ¼ xldf ¼ VT
r xr; (10)

and the convolutional model provided in Eq. (2) can be

rewritten as
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y ¼ S VT
r xr þ n0: (11)

This equation is mathematically similar to Eq. (2), with

the following differences: (i) the unknown is the Jr-compo-

nent vector xr instead of the J-component vector x, and (ii)

it involves the ðN � JrÞ matrix ðS VT
r Þ instead of the ðN � JÞ

matrix S. Equation (11) can again be formulated as another

over-determined system of linear equations, or as a multiple

linear regression problem, with the difference of the signifi-

cant dimensionality reduction provided by LDFDS. This

dimensionality reduction implies that the convolution prob-

lem is constrained to the subspace associated with the matrix

Vr, or equivalently, the solution of the system of equations is

forced to be in the subspace of responses compatible with

the latency-dependent filtering, with Jr freedom degrees

(instead of J). The formal LS solution is similar to that in

Eq. (4), but using ðS VT
r Þ instead of S,

x̂rLS ¼ ðS VT
r Þ

TðS VT
r Þ

� ��1

ðS VT
r Þ

T
y

¼ Vr ST S VT
r

� ��1
Vr ST y

¼ Vr Rs VT
r

� ��1
Vr Sk y

¼ Vr Rs VT
r

� ��1
Vr z0 ¼ R�1

sr z0r; (12)

where Rsr and z0r are, respectively, Rs and z0 projected into

the subspace. According to this equation, the subspace-

constrained LS deconvolution of the EEG can be obtained

with the following steps: (i) the autocorrelation matrix Rs

and the synchronous averaging of the EEG z0 must be trans-

formed to the subspace using the transformation Vr; (ii) the

autocorrelation matrix in the reduced representation must be

inverted; and (iii) the inverted reduced autocorrelation

matrix must be applied to the reduced synchronous averag-

ing. As can be observed, the LS deconvolution in Eq. (12) is

similar to that in Eq. (5), with the difference that the prob-

lem is solved in the reduced representation space.

Since it is assumed that the LS solution is contained in

the subspace defined by Vr, this procedure requires that the

evoked response is correctly described in this subspace.

Otherwise, the procedure will provide a biased solution, as

discussed in Sec. 2 of the supplementary material.1

Interestingly, since the matrix to be inverted has a size

ðJr � JrÞ instead of ðJ � JÞ, the subspace-constrained

deconvolution provides a substantial reduction of the com-

putational load. Moreover, since the solution is expected to

be contained in the subspace, the subspace constrain and the

LS criterion guarantee that the x̂rLS solution is closer to the

evoked response x than the non-constrained solution x̂LS.

As in the case of the original representation space, the

subspace-constrained LS deconvolution can be implemented

with matrix division as proposed for RSLSD. Alternatively,

it can be implemented with the IRSA recursion constrained

to the subspace, i.e., using Rsr and z0r instead of Rs and z0 in

Eqs. (6) and (7),

x̂ir ¼ x̂i�1r þ azi�1r; (13)

zir ¼ z0r � Rsr x̂ir; (14)

and the demonstration of the IRSA convergence to the LS

solution is similar in both the original and the reduced repre-

sentation space.

D. Energy of the error in the estimated response

Taking into account Eqs. (2) and (5), we can write

x̂LS ¼ R�1
s Sk y ¼ R�1

s SkðS x� n0Þ
¼ R�1

s Rs xþ R�1
s Sk n0

¼ xþ R�1
s Sk n0; (15)

and the error of the LS estimation is

eLS ¼ x̂LS � x ¼ R�1
s Sk n0 ¼ R�1

s nA; (16)

where nA ¼ Skn0 is the synchronous averaging of the noise

affecting the EEG. The noise affecting the EEG is unknown,

and therefore the error affecting the estimated evoked poten-

tial cannot be calculated. However, taking into account the

statistics of the noise (described with its covariance matrix

Rn0
) and the previous equation, we can calculate the covari-

ance matrix ReLS
of the error affecting the estimated response

(whose trace is the expected energy of the error),

ReLS
¼ R�1

s Sk Rn0
ST

k ðR�1
s Þ

T ¼ R�1
s RnA

R�1
s ; (17)

where RnA
is the ðJ � JÞ covariance matrix of the noise after

the synchronous averaging (which is a positive semidefinite,

Toeplitz, and symmetric matrix, as Rn0
), and the fact that Rs

(as well as its inverse) is symmetric has also been taken into

account.

A similar derivation can be done when the LS deconvo-

lution is performed in the reduced representation space. In

such case, the error affecting the LS estimation in the

reduced representation space is

erLS ¼ x̂rLS � xr ¼ ðVr Rs VT
r Þ
�1 Vr nA; (18)

and the corresponding covariance matrix is

RerLS
¼ ðVr Rs VT

r Þ
�1 Vr RnA

VT
r ðVr Rs VT

r Þ
�1; (19)

where both the reduced autocorrelation matrix ðVr Rs VT
r Þ

and its inverse are symmetric.

The LS criterion guarantees that the LS solution is opti-

mal (in the sense that it provides an unbiased and minimum-

variance estimation of xr under the required assumptions),

and therefore, if the response is expected to be contained in

the subspace defined by Vr, the energy of the error (as well

as the variance of the estimation) is expected to be smaller

when the LS solution is constrained to this subspace. Under

the LS assumptions (including uncorrelated and stationary

white noise), it is easy to demonstrate that the energy of the

error decreases or, equivalently, that the trace of the covari-

ance matrix of the error decreases,
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trðRerLS
Þ < trðReLS

Þ: (20)

The demonstration is included in Sec. 3 of the supple-

mentary materials.1

E. Comparison of subspace-constrained deconvolu-
tion vs LDFDS after deconvolution

The LS criterion guarantees that x̂rLS is an optimal solu-

tion under several assumptions: x is in the subspace, s(n)

and n0ðnÞ are uncorrelated, and n0ðnÞ is stationary white

noise. We have verified that the energy of the expected error

for x̂rLS is less than or equal to that for x̂LS. However, when

LDFDS was proposed, x̂LS was first estimated and then pro-

jected into the subspace,

x̂LSð Þr ¼ Vr x̂LS ¼ Vr R�1
s z0; (21)

and it was demonstrated to be effective for noise reduction

[i.e., ðx̂LSÞr substantially improves x̂LS]. Therefore, one

could wonder whether the subspace-constrained deconvolu-

tion x̂rLS proposed here improves or not the estimation

obtained when LDFDS is applied after a non-constrained

deconvolution ðx̂LSÞr, previously proposed in de la Torre

et al. (2020).

Of course, under the required assumptions, the LS crite-

rion guarantees that the subspace-constrained deconvolution

is better, but some analysis is also interesting. Both

approaches can be compared taking into account the trace of

the covariance matrix of the error affecting the correspond-

ing estimations. The covariance matrix of the error is given

in Eq. (19) for x̂rLS. In the case of ðx̂LSÞr, the covariance

matrix of the error is

RðeLSÞr ¼ VrR
�1
s RnAR�1

s VT
r : (22)

In Sec. 4 of the supplementary material,1 the traces of both

covariance matrices are compared. As expected, under the

assumptions (particularly, in the case of white noise), it is

demonstrated that the trace for the subspace-constrained

deconvolution is less than or equal to that for ðx̂LSÞr,

trðRerLS
Þ � trðRðeLSÞrÞ: (23)

Interestingly, the equality occurs if Rs ¼ I. This situation

never takes place in a deconvolution problem (because if Rs

¼ I, then the optimal solution is obtained with the synchro-

nous averaging). However, Rs is usually relatively close to

the identity matrix, and therefore the solutions ðx̂LSÞr and

x̂rLS are expected to be close.

III. EXPERIMENTS AND RESULTS

The experiments have been designed to compare (i) the

LS solution, (ii) the LS solution transformed to the reduced

subspace, and (iii) the subspace-constrained LS solution,

corresponding to the estimations x̂LS, ðx̂LSÞr, and x̂rLS, and

referred to as LS, LS-R, and SC-LS, respectively. These are

compared in terms of both the quality of the estimated

responses and the computational cost of the procedures.

According to the RSLSD and IRSA procedures, we have

compared implementations based on both matrix division

(LSMD, LS-RMD, and SC-LSMD) and iterative estimation

(LSIt, LS-RIt, and SC-LSIt).

The quality evaluation of the estimated responses

requires an a priori knowledge of the clean signal, to be

used as reference, which is not possible with real AEP

responses (because the estimations are always affected by

some residual noise). Therefore, the quality evaluations are

based on simulations (where a noisy EEG can be synthe-

sized using a known clean AEP response, which can be used

as reference). The evaluation of the computational cost is

based on real EEG signals.

A. Experimental design

For the experiments involving real EEG signals, the

stimulation consisted in rarefaction clicks of 0.1 ms at 74 dB

normal hearing level (nHL) presented at different average

stimulation rates, between 1.39 and 44.44 stimuli per second

(stim/sec). The 0 dB nHL reference level was estimated as

described in Martinez et al. (2022), i.e., as the mean thresh-

old level estimated in a sample of 10 normal-hearing adults

(five female, 23–38 years) who presented pure-tone thresh-

old levels within the normal range in the 0.5–8 kHz fre-

quency range and had no history of any type of auditory

dysfunction. At each average stimulation rate, the ISI has a

uniform distribution within one octave of variation (e.g.,

480–960 ms for average stimulation rate of 1.39 stim/s;

240–480 ms for 2.78 stim/s; etc.). Six stimulation conditions

are considered, with one octave of variation from condition

to condition (i.e., double average stimulation rate and half

ISI-limits for the next condition). The EEGs were recorded

with surface electrodes located at the forehead (active), right

mastoid (reference), and middle forehead (ground) using a

preamplifier with 70 dB gain and 1–3500 Hz bandwidth

(Valderrama et al., 2013; Valderrama et al., 2014a;

Valderrama et al., 2014c). The preamplified EEG signal was

digitized (44 100 Hz, 16 bits/sample), low-pass filtered

(4000 Hz cut-off frequency), and down-sampled to

14 700 Hz. Eye-blinking artifacts were suppressed with the

iterative template matching and suppression algorithm

(ITMS) (Valderrama et al., 2018). The EEG database [previ-

ously used in de la Torre et al. (2020)] contains recordings

from eight subjects (aged 26–58 years, one female) with six

ISI conditions for each subject and 684 s of EEG recording for

each ISI condition. All the participants of this database met

the inclusion criteria of reporting no hearing difficulties and

absence of a history of auditory dysfunction. To obtain the

response of the complete auditory pathway, the AEP response

extends from 0 to 1000 ms, i.e., the response length is

J¼ 14 700 samples. The LDFDS is performed with a resolu-

tion of 40 samples/decade, which provides a response length

in the reduced representation space of Jr ¼ 117 samples.

The experiments involving simulations are designed

with a configuration similar to that of the real experiments
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(same ISI conditions and EEG duration). The grand-average

AEP responses obtained in de la Torre et al. (2020) at each

ISI condition were used as reference clean AEP responses to

synthesize the simulated EEGs. These reference AEP

responses were latency-dependent filtered with a resolution

of 40 samples/decade. The EEGs are synthesized according

to the convolutional model in Eq. (1). The noise contaminat-

ing the EEGs was bandpass random noise (with flat spectral

density in the range [1.5–800] Hz and 620 dB/decade slope

out of the passband). It was prepared from white Gaussian

noise, filtered with a first-order 1.5–800 Hz Butterworth

bandpass filter. The noise level was adjusted to obtain a final

SNR (after the standard LS deconvolution) around þ10 dB,

which is a reasonable SNR for typical AEP estimations (de

la Torre et al., 2020).

In the simulation-based experiments, the AEP response

x̂ is estimated from the EEG y either with the LS, LS-R, or

SC-LS procedures. Using the clean reference x, the error

can be estimated as e ¼ x̂ � x, and the different procedures

can easily be compared in terms of the error energy.

However, since the noise affecting the EEG is a random pro-

cess, the error energy estimations are strongly affected by

statistical fluctuations. For this reason, the three procedures

have been compared in terms of the expected error energy

(statistically consistent with the measured error energies but

more stable than them) using the trace of the covariance

matrix of the respective errors in Eqs. (17), (22), and (19)

for LS, LS-R, and SC-LS, respectively. The simulations

have been repeated 100 times for each ISI condition, and

expected error measurements have been averaged.

For the experiments involving real EEGs and evaluation

of the computational cost, the LS, LS-R, and SC-LS estima-

tions have been obtained with algorithms based on both

RSLSD (i.e., involving matrix division) and IRSA (i.e.,

involving iterative estimation). MATLAB/Octave functions

implementing the RSLSD and IRSA algorithms for LS, LS-R,

and SC-LS estimations are described in Sec. 5 of the supple-

mentary materials,1 together with a demonstration script pro-

viding a simulation and examples of use of these functions.

The convergence criterion for the iterative estimations was set

either to 290 dB (more accurate) or to 120 dB (faster). The

computational cost was evaluated in terms of execution time,

measured using a desktop computer with an Intel-Core

i7–3770 central processing unit (CPU), 3.40 GHz, 8.00 GB

RAM running the algorithms with MATLAB.

B. Quality of the LS, LS-R, and SC-LS estimations

Figure 1 represents an example of the AEP responses

obtained in the simulations for one of the 100 repetitions.

The figure includes the clean AEP responses used for the

EEG synthesis (and as reference for the quality estimations)

and the different estimations based on LS, LS-R, and SC-LS

(with the matrix division implementation). The six responses

in each panel correspond to the different ISI conditions con-

sidered in the simulations, from 480–960 ms (top) to

15–30 ms (bottom). The latency axis is logarithmically

scaled to appropriately represent the response of the com-

plete auditory pathway, from the ABRs to the cortical

responses. The main waves of the AEP response are labeled,

and the stimulation artifact can be observed within the first

ms. As can be observed, the LS estimation is strongly

affected by noise (due to the noise added to the EEG). The

LS-R and SC-LS estimations are significantly less affected

by noise. Interestingly, the LS-R and SC-LS estimations are

very similar. The comparison of the different estimations is

detailed in Sec. 6.1 of the supplementary material.1

The quality of each estimation has been evaluated using

the expected SNR, defined as the ratio of the signal energy

to the expected error energy, expressed in dB, where the

expected error energy was estimated as the trace of the

covariance matrix of the residual error,

SNRdB ¼ 10 log10

EðxÞ
EðeÞ

� �
� 10 log10

EðxÞ
trðReÞ

� �
: (24)

The supplementary material1 includes, in Sec. 6.2, a descrip-

tion of the autocorrelation functions of the noise and the

averaged noise (providing Rn0
and RnA

, respectively) and the

main diagonal of the covariance matrix of the residual error

for the LS, LS-R, and SC-LS estimations.

Table I shows the expected SNR obtained for the LS,

LS-R, and SC-LS estimations, based on the respective covari-

ance matrices. The table includes means and standard devia-

tion (SD) for each ISI condition. As can be observed (and

consistent with the example in Fig. 1), there is a substantial

improvement in LS-R and SC-LS with respect to LS (associ-

ated with the latency-dependent filtering) and a very slight

improvement of SC-LS with respect to LS-R (associated with

the LS resolution constrained to the subspace). Table II evalu-

ates the improvement of LS-R with respect to LS and that of

SC-LS with respect to LS-R, including the mean and SD of

the SNR difference and the p value of a paired Student’s t-
test (i.e., the probability of the null hypothesis of statistical

independence). The improvement associated with the latency-

dependent filtering is between 6.3 and 13.8 dB, depending on

the ISI condition, which is consistent with the results reported

in de la Torre et al. (2020). The subspace-constrained decon-

volution provides a moderate (but systematic) improvement,

between 0.006 and 0.043 dB, depending on the ISI condition.

These improvements are statistically significant, as can be

appreciated from the p values in Table II.

The supplementary material1 includes, in Sec. 6.3,

results of the SNRs estimated from the error observed at

each repetition of the simulation. The SNRs obtained from

the expected error and from the observed error are statisti-

cally consistent (same mean values) even though the SDs

are much greater for the SNRs derived from the observed

error (due to statistical fluctuations).

C. Computational cost of the procedures

The computational cost of the deconvolution proce-

dures is compared in Table III. The three deconvolution pro-

cedures (LS, LS-R, SC-LS) have been implemented with
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matrix division (using the RSLSD algorithm) and with the

iterative estimation (using the IRSA algorithm with conver-

gence criterion of either 290 or 120 dB). The table includes

the execution time for each ISI condition (average execution

time per subject). The last row represents the execution time

for the complete test (including the six ISI conditions). The

results for LS and LS-R (with similar execution times)

reveal that the computational cost of the latency-dependent

filtering is very small compared with that of the deconvolu-

tion. However, the SC-LS provides a significant reduction

of the execution time with respect to LS or LS-R, thanks to

the dimensionality reduction (from J¼ 14 700 to Jr ¼ 117).

While the IRSA procedure provides a relevant computa-

tional cost reduction with respect to RSLSD in the case of

LS and LS-R, when the deconvolution is constrained to the

subspace the computational costs are very similar. Section

7.1 of the supplementary material1 provides more details

about the execution times (including initialization and time

devoted to each iteration). It also provides a comparison of

the execution times measured with a faster computer.

The execution times reported in Table III correspond to

a response length of 14 700 samples. To evaluate the influ-

ence of the response length over the computational cost, the

execution time has been evaluated for J ranging between

14 700 (1000 ms) and 147 (10 ms). Figure 2 represents the

total execution time per subject as a function of the response

length, for the LS-R and SC-LS deconvolution algorithms

FIG. 1. AEP responses obtained in the simulations for one repetition. The different panels represent (a) the template responses used as reference, (b) the LS estima-

tions (obtained in the original representation space), (c) the LS-R estimations (obtained by applying dimensionality reduction based on the LDFDS to the LS esti-

mations), and (d) the SC-LS estimations (subspace-constrained LS deconvolution). The plots in each panel correspond to the AEP responses at each ISI condition.

TABLE I. SNR mean [standard deviation (SD) in parenthesis] in dB for the

LS, LS-R, and SC-LS estimations, obtained in simulations with 100 repeti-

tions for each ISI condition. The SNR measurements are based on the

covariance matrix of the error.

ISI condition

LS mean

(SD) (dB)

LS-R mean

(SD) (dB)

SC-LS mean

(SD) (dB)

480–960 ms 9.351 (0.002) 23.181 (0.014) 23.188 (0.014)

240–480 ms 9.252 (0.012) 22.672 (0.023) 22.686 (0.023)

120–240 ms 9.589 (0.008) 21.778 (0.035) 21.810 (0.035)

60–120 ms 7.614 (0.004) 17.645 (0.041) 17.688 (0.041)

30–60 ms 11.472 (0.008) 19.180 (0.045) 19.209 (0.045)

15–30 ms 11.610 (0.008) 17.928 (0.030) 17.948 (0.030)

Average 9.815 (1.379) 20.397 (2.238) 20.421 (2.230)
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(LS has not been included in the plot, since it provides exe-

cution times similar to those of LS-R). As can be observed,

the execution time decreases with the response length,

and the improvements are less important as J decreases

(because the ratio J=Jr decreases with J).

D. Responses provided by the SC-LS deconvolution

Figure 3 represents the grand-average of the AEP

responses provided by the SC-LS deconvolution. These

responses correspond to the solutions provided by the SC-

LSMD algorithm (i.e., SC-LS criterion implemented with

matrix division). As in Fig. 1, the latency axis is logarithmi-

cally scaled to represent the responses of the different portions

of the auditory pathway. This responses are very similar to

those obtained in de la Torre et al. (2020) and represented in

Fig. 1(a), because they have been obtained from the same

EEG database and also because the solutions provided by LS-

R (i.e., applying the latency-dependent filtering) and SC-LS

are very similar (the energy of the difference between both

solutions is about 31 dB below the signal energy in these

experiments). Section 7.2 of the supplementary material1 eval-

uates the differences among the solutions provided by the dif-

ferent deconvolution algorithms considered in this paper.

E. Grand-average and individual AEP responses

Figure 4 shows, in the top-left panel, the grand-average

AEP responses across participants obtained with SC-LSMD

at different stimulation rates. The rest of the panels show the

individual responses for each participant. The AEP compo-

nents are labeled in the grand-average response presented at

the top (corresponding to ISI 480–960 ms). The latency has

been limited in these plots to the range [1–1000] ms to ease

the analysis of the evoked response (detailed individual

responses including also the stimulation artifact portion can

be found in Sec. 7.3 of the supplementary material1).

The plots with individual traces (subjects 1–8) visually

show that all the AEP components from wave I of the ABR

to the P3 can be identified in all subjects at the slow presen-

tation rate. Overall, the amplitude of the components

decreases as the stimulus rate increases. Moreover, the

grand-average AEP responses presented in Fig. 4 (top left),

and the individual subplots show that the components from

wave I to Pa are highly reproducible and that they can be

tracked from the slow to the faster presentation rates.

However, the P1/Pb, P2, and P3 components present a

higher variability as rate increases, and they are more diffi-

cult to track from the slow to the faster rates.

In addition, subject 7 presents a post-auricular muscle

response (PAMR) in all the AEP traces (an action potential

occurring at approximately 13 ms after the stimulus onset

resulting from the contraction of a muscle located behind

the ear, i.e., the post-auricular muscle). The amplitude of the

PAMR decreases as the stimulus rate increases. A remark-

able negative peak at the latency corresponding to N1

(between Pb/P1 and P2) is also observed for this subject at

TABLE II. SNR improvement provided by LS-R with respect to LS and by SC-LS with respect to LS-R, in dB, obtained in simulations with 100 repetitions

for each ISI condition. The SNR measurements are based on the trace of the covariance matrix of the error. The table includes mean, SD, and the p parame-

ter for a paired Student’s t-test.

ISI condition

LS-R vs LS SC-LS vs LS-R

Mean (SD) (dB) p Mean (SD) (dB) p

480–960 ms 13.830 (0.013) 1.4 � 10�300 0.006 (4.4 � 10�4) 4.0 � 10�117

240–480 ms 13.419 (0.018) 2.0 � 10�287 0.014 (8.1 � 10�4) 3.8 � 10�124

120–240 ms 12.188 (0.038) 6.1 � 10�250 0.033 (1.1 � 10�3) 1.2 � 10�149

60–120 ms 10.031 (0.037) 2.1 � 10�242 0.043 (4.9 � 10�4) 6.2 � 10�194

30–60 ms 7.708 (0.040) 9.2 � 10�228 0.028 (5.6 � 10�4) 4.5 � 10�171

15–30 ms 6.318 (0.023) 2.7 � 10�244 0.020 (4.2 � 10�4) 4.0 � 10�168

Average 10.582 (2.830) <1 � 10�320 0.024 (0.012) 7.5 � 10�211

TABLE III. Mean execution time across subjects for different ISI conditions in the experiments with real EEGs. The columns correspond to the different

deconvolution algorithms. The rows correspond to the different ISI conditions. The last row represents the execution time for processing the six ISI

conditions.

ISI (ms)

LSMD

(RSLSD)

(s)

LSIt

(IRSA-290dB)

(s)

LSIt

(IRSA-120dB)

(s)

LS-RMD

(RSLSD)

(s)

LS-RIt

(IRSA-290dB)

(s)

LS-RIt

(IRSA-120dB)

(s)

SC-LSMD

(RSLSD)

(s)

SC-LSIt

(IRSA-290dB)

(s)

SC-LSIt

(IRSA-120dB)

(s)

480–960 20.23 0.63 0.55 20.50 0.61 0.53 0.59 0.59 0.59

240–480 20.91 1.79 1.09 20.74 1.75 1.09 1.01 1.03 1.02

120–240 21.58 3.75 2.03 21.34 3.71 2.01 1.74 1.77 1.75

60–120 22.10 7.05 3.60 22.18 6.99 3.65 2.47 2.52 2.49

30–60 22.99 13.48 6.66 22.99 13.47 6.63 3.52 3.65 3.59

15–30 25.87 17.16 13.05 25.82 17.00 12.97 6.31 6.42 6.32

All 133.69 43.86 26.98 133.58 43.53 26.88 15.63 15.98 15.76
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slow presentation rates. Section 7.3 of the supplementary

material1 includes a comparison of the grand-average

responses including and excluding this particular subject

(when subject 7 is excluded, the morphology of the grand-

average responses is quite similar, except for the amplitude

reduction in waves P0 and N1).

IV. DISCUSSION AND CONCLUSIONS

In this work, we propose the subspace-constrained LS

deconvolution for the estimation of the AEPs, based on the

LDFDS dimensionality reduction. This work presents the

mathematical foundation of the subspace-constrained decon-

volution, a theoretical analysis of the residual error (includ-

ing a demonstration of the error reduction with respect to

the conventional LS deconvolution and with respect to LS-

R, i.e., when the LDFDS is applied after the LS

deconvolution), and experimental evaluation of the

improvement provided by the proposed method in terms of

quality of the estimated AEP responses and computational

cost.

Regarding the quality of the estimations, SC-LS signifi-

cantly improves the LS solution (thanks to the noise removal

provided by the latency-dependent filtering). Even though

the LS criterion guarantees (under the LS assumptions) that

the SC-LS solution is also better than or equal to the LS-R

solution, the improvement is moderate in this case (the dif-

ference between both solutions is about 31 dB below the

response energy, i.e., usually masked by the residual noise),

probably because the autocorrelation matrix of the stimula-

tion sequence Rs is close to the identity matrix. Therefore, in

practice, the solutions provided by SC-LS and LS-R are

very similar.

A relevant difference between SC-LS and LS-R is the

requirement that the response in the convolutional model x

belongs to the subspace. In the case of LS-R, if x is not cor-

rectly represented in the subspace (for example, if the

response is truncated to remove the stimulation artifact), the

estimated response does not contain components out of

the subspace, but the subspace component is not biased.

However, in the case of SC-LS, if x is not correctly repre-

sented in the subspace, the subspace component is biased

(due to the transference of energy from the orthogonal com-

plement to the reduced subspace). This effect would be a

disadvantage of the proposed method if the reduced repre-

sentation space was not appropriate to represent the signal

involved in the convolution. For this reason, in SC-LS, an

appropriate design of the reduced subspace is critical to

appropriately represent the signal involved in the convolu-

tion (including both the biological response and the stimula-

tion artifact if it was present).

The dimensionality reduction provided by LDFDS (from

J¼ 14 700 to Jr ¼ 117 in the reported experiments) provides

several practical advantages for the subspace-constrained

deconvolution. The most evident is the reduction of the com-

putational cost associated with the deconvolution, with a

reduction of the execution time by a factor of 8.5 in the case

of the RSLSD algorithm (from 133.7 to 15.6 s) and a factor

1.7 in the case of IRSA-120dB (from 27.0 to 15.8 s).

Additionally, the dimensionality reduction would allow the

analysis of the matrix to be inverted [for example, an analy-

sis of its eigenvalues is useful for the estimation of the

matrix condition number (Bardy et al., 2014b)], easier as

the size of the matrix decreases. Finally, the potential prob-

lems associated with matrix inversion (due to low eigenval-

ues or high condition number of the matrix to be inverted)

are alleviated in the reduced representation because the

condition number of the matrix to be inverted decreases

according to the Cauchy interlacing theorem (the LS decon-

volution is better conditioned in the reduced representation

space).

In conventional LS deconvolution, the computational

cost of IRSA is significantly smaller than that of RSLSD.

This advantage disappears when the deconvolution is

FIG. 2. (Color online) Mean execution time across subjects required by the

different algorithms for processing all the ISI conditions, as a function of

the response length J.

FIG. 3. Grand-average responses obtained with SC-LSMD for the experi-

ments using real EEG signals.
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FIG. 4. Grand-average and individual AEP responses obtained with the SC-LSMD algorithm at different stimulation rates. The AEP components are labeled

in the grand-average response at ISI 480–960 ms. The horizontal and vertical axes correspond, respectively, to latency (in ms) and amplitude. The latency

axis has been limited to the range [1–1000] ms.
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constrained to the subspace. Two factors contribute to

reduce the advantage of IRSA: on one hand, the matrix to be

inverted in the subspace is not Toeplitz, and therefore a fast-

Fourier-transform-based matrix product is not possible in

the reduced representation. On the other hand, part of the

advantage of IRSA with respect to RSLSD was associated

with the high dimensionality of the matrix to be inverted

and vanishes as the dimensionality decreases. As a conse-

quence, the RSLSD implementation of SC-LS (with a sim-

pler formulation and directly providing the solution at

convergence) has a computational cost similar to that of

IRSA.

The SC-LS deconvolution of overlapping AEPs

described in this paper along with the representation of the

deconvolved AEPs in the logarithmic time scale enables

the comprehensive and uninterrupted visualization of all the

AEP components of the auditory pathway (from the cochlea

to the cortex). While this type of AEP representation is cur-

rently non-standard, we believe that it provides a change of

paradigm with potential to become the natural way in which

AEPs are represented (both in clinical and research applica-

tions) due to the important advantages that it provides rela-

tive to the traditional representation of AEPs (in which the

ABR, MLR, or CAEP components can be only separately

visualised). For example, the proposed comprehensive AEP

representation would facilitate the exploration of peripheral

and central interactions resulting from both bottom-up and

top-down processes (Asilador and Llano, 2021; Lesicko and

Llano, 2017) or as a possible diagnostic tool for auditory

neuropathy spectrum disorder [as this population is charac-

terized by presenting clear cortical but absent brainstem

components (Hood, 2007)].

The amplitude reduction observed in the PAMR in sub-

ject 7 as the stimulus rate increased is consistent with the

results obtained by Zakaria et al. (2019), the only study that

to the best of our knowledge has investigated the influence

of the stimulus rate on the morphology of the PAMR.

Zakaria et al. (2019) evaluated three stimulus repetition

rates, 6.1, 11.1, and 17.1 stim/s, and found that the PAMR

threshold increased for the faster repetition rate. In the pre-

sent study, we show that the PAMR can be reliably recorded

at stimulation rates up to 44.4 stim/s (i.e., ISI 15–30 ms).

Future research aimed at characterizing the morphology of

the PAMR at faster rates shall benefit from deconvolution

algorithms, such as the proposed SC-LS.

At group level, the grand-average AEPs and the individ-

ual responses show that peripheral components of the

response (i.e., from wave I to Pa) can be visually tracked

down from the slow to the faster stimulus rates. In contrast,

the tracking of central components, such as the P1/Pb, P2,

and P3, as stimulus rate increases is not straightforward, par-

ticularly for ISIs lower than 60–120 ms. Tracking AEP com-

ponents from a control scenario (in which the neural

generators are known) to novel exploratory scenarios (in

which the morphology of the responses has not been docu-

mented) is an efficient strategy to identify the neural genera-

tors of those components (Elberling and Don, 2007). For

example, this strategy could be applied to identify AEP

components resulting from the analysis of transient AEP

responses from binaural stimuli (Martinez et al., 2021) or

from ecologically valid stimuli such as natural speech

(Valderrama et al., 2019). The difficulty in tracking central

components in the present study could be the result of a sub-

optimal placement of the active electrode on the head (situ-

ated in Fz in this study), as the P1-P2 complex maximizes

its magnitude in Cz (Bardy et al., 2014b) and the P3 compo-

nent in CPz (Hall, 2007). Placing the active electrode far

from the neural generator sites may have led to an inefficient

characterization of central AEP components, adding an extra

difficulty to track these components as a function of the

stimulus presentation rate. In this respect, future studies

investigating the morphology of both peripheral and central

AEP components at different rates shall benefit from the use

of a multi-channel EEG recording setup.

Furthermore, the analysis of the individual AEP wave-

forms has revealed the existence of the P3 component in all

the participants at the slow stimulus rate. This finding was

contrary to our expectations, since the P3 component is

associated with novelty and expectation and is typically

evoked by stimuli presented at slow rates (e.g., 1 or

0.5 stim/s) via the oddball paradigm [by comparing the

morphology from AEP responses elicited by a deviant

stimulus relative to a frequent stimulus (Hall, 2007;

Sharma, 2021)]. In contrast, the present study uses sequen-

ces of a single stimulus (clicks) in which the maximum ISI

doubles the minimum ISI. It could be the case that this

broad distribution of the ISI induces some degree of nov-

elty on the participant, thus evoking either (i) a consistent

P3 component in all the responses of the stimulus sequence

or (ii) a large P3 component only in those responses in

which the degree of novelty is higher (probably those with

longer ISIs). To respond to this question, a multi-response

deconvolution approach would be required to carry out a

time-invariant analysis, similar to the one proposed by

Valderrama et al. (2016).

A potential limitation of the proposed deconvolution

method (affecting any deconvolution procedure, also when

it is performed in the complete representation space) is the

linearity requirement for the least squares criterion. The

convolutional method described in Eq. (1) [or its matrix for-

mulation described in Eq. (2)] assumes that the auditory sys-

tem is linear and time invariant (LTI). However, it is well

known that auditory evoked responses do not have a linear

behavior with the stimulation level [there is a threshold

effect, a non-linear growing with the stimulation level, and a

saturation effect (Hall, 2007)] and are not time invariant

[the responses change with the state of the auditory system

(Valderrama et al., 2016)]. A possible strategy to deal with

this limitation consists in the formulation of a multi-

response deconvolution with different possible responses

associated with different stimulation levels [as proposed in

Martinez et al. (2022)] or with different states of the auditory

system [as proposed in Valderrama et al. (2016)]. This way,

under a multi-response formulation of the deconvolution, the
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non-LTI auditory system can be modeled as an LTI-like sys-

tem. The multi-response deconvolution, necessary for

exploring the response of the complete auditory pathway

using complex stimulation patterns, would increase the com-

putational requirements dramatically (a preliminary analysis

suggests to us that the computational cost would increase

with the square of the number of responses considered in the

multi-response model). Under this new paradigm, the com-

putational optimization proposed in this article is expected to

be very relevant.

In summary, the subspace-constrained deconvolution

together with the dimensionality reduction provided by

LDFDS provide a substantial quality improvement with

respect to the conventional LS solution (and very slight

improvement with respect to LS-R, this improvement not

being very useful in practice) and provide a substantial com-

putational cost reduction with respect to LS or LS-R, partic-

ularly important for the estimation of the complete auditory

pathway response. The reduction of both the execution time

and the dimensionality, together with the inherent flexibility

of IRSA or RSLSD, provide new perspectives in the design

of evoked potential experiments, with more ecological stim-

uli, involving the simultaneous deconvolution of multiple

responses (associated with multiple categories of acoustical

events) and including the response of the complete auditory

pathway (Martinez et al., 2021; Valderrama et al., 2019).
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